1
|
Field R, Field T, Pourkazemi F, Rooney K. Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2022; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
Affiliation(s)
- Rowena Field
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
2
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
3
|
Zhou Z, Vidales J, González-Reyes JA, Shibata B, Baar K, Rutkowsky JM, Ramsey JJ. A 1-Month Ketogenic Diet Increased Mitochondrial Mass in Red Gastrocnemius Muscle, but Not in the Brain or Liver of Middle-Aged Mice. Nutrients 2021; 13:nu13082533. [PMID: 34444693 PMCID: PMC8401881 DOI: 10.3390/nu13082533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Alterations in markers of mitochondrial content with ketogenic diets (KD) have been reported in tissues of rodents, but morphological quantification of mitochondrial mass using transmission electron microscopy (TEM), the gold standard for mitochondrial quantification, is needed to further validate these findings and look at specific regions of interest within a tissue. In this study, red gastrocnemius muscle, the prefrontal cortex, the hippocampus, and the liver left lobe were used to investigate the impact of a 1-month KD on mitochondrial content in healthy middle-aged mice. The results showed that in red gastrocnemius muscle, the fractional area of both subsarcolemmal (SSM) and intermyofibrillar (IMM) mitochondria was increased, and this was driven by an increase in the number of mitochondria. Mitochondrial fractional area or number was not altered in the liver, prefrontal cortex, or hippocampus following 1 month of a KD. These results demonstrate tissue-specific changes in mitochondrial mass with a short-term KD and highlight the need to study different muscle groups or tissue regions with TEM to thoroughly determine the effects of a KD on mitochondrial mass.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
| | - Jocelyn Vidales
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
| | - José A. González-Reyes
- Department of Cell Biology, Physiology and Immunology, Campus de Excelencia Internacional Agroalimentario, CeiA3, University of Córdoba, 14071 Córdoba, Spain;
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA;
| | - Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
- Correspondence: (J.M.R.); (J.J.R.)
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
- Correspondence: (J.M.R.); (J.J.R.)
| |
Collapse
|
4
|
Zhou Z, Hagopian K, López-Domínguez JA, Kim K, Jasoliya M, Roberts MN, Cortopassi GA, Showalter MR, Roberts BS, González-Reyes JA, Baar K, Rutkowsky J, Ramsey JJ. A ketogenic diet impacts markers of mitochondrial mass in a tissue specific manner in aged mice. Aging (Albany NY) 2021; 13:7914-7930. [PMID: 33735837 PMCID: PMC8034930 DOI: 10.18632/aging.202834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Declines in mitochondrial mass are thought to be a hallmark of mammalian aging, and a ketogenic diet (KD) may prevent the age-related decreases in mitochondrial content. The objective of this study was to investigate the impact of a KD on markers of mitochondrial mass. Mice were fed an isocaloric control diet (CD) or KD from 12 months of age. Tissues were collected after 1 month and 14 months of intervention, and a panel of commonly used markers of mitochondrial mass (mitochondrial enzyme activities and levels, mitochondrial to nuclear DNA ratio, and cardiolipin content) were measured. Our results showed that a KD stimulated activities of marker mitochondrial enzymes including citrate synthase, Complex I, and Complex IV in hindlimb muscle in aged mice. KD also increased the activity of citrate synthase and prevented an age-related decrease in Complex IV activity in aged brain. No other markers were increased in these tissues. Furthermore, the impacts of a KD on liver and kidney were mixed with no pattern indicative of a change in mitochondrial mass. In conclusion, results of the present study suggest that a KD induces tissue-specific changes in mitochondrial enzyme activities, or structure, rather than global changes in mitochondrial mass across tissues.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kevork Hagopian
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - José A. López-Domínguez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA 95617, USA
| | - Mittal Jasoliya
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Megan N. Roberts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gino A. Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Megan R. Showalter
- NIH-West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Bryan S. Roberts
- NIH-West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - José A. González-Reyes
- Department of Cell Biology, Physiology and Immunology, Campus de Excelencia Internacional Agroalimentario, ceiA3, University of Córdoba, Córdoba, Spain
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Jennifer Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Koppel SJ, Pei D, Wilkins HM, Weidling IW, Wang X, Menta BW, Perez-Ortiz J, Kalani A, Manley S, Novikova L, Koestler DC, Swerdlow RH. A ketogenic diet differentially affects neuron and astrocyte transcription. J Neurochem 2021; 157:1930-1945. [PMID: 33539571 DOI: 10.1111/jnc.15313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Ketogenic diets (KDs) alter brain metabolism. Multiple mechanisms may account for their effects, and different brain regions may variably respond. Here, we considered how a KD affects brain neuron and astrocyte transcription. We placed male C57Bl6/N mice on either a 3-month KD or chow diet, generated enriched neuron and astrocyte fractions, and used RNA-Seq to assess transcription. Neurons from KD-treated mice generally showed transcriptional pathway activation while their astrocytes showed a mix of transcriptional pathway suppression and activation. The KD especially affected pathways implicated in mitochondrial and endoplasmic reticulum function, insulin signaling, and inflammation. An unbiased analysis of KD-associated expression changes strongly implicated transcriptional pathways altered in AD, which prompted us to explore in more detail the potential molecular relevance of a KD to AD. Our results indicate a KD differently affects neurons and astrocytes, and provide unbiased evidence that KD-induced brain effects are potentially relevant to neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Scott J Koppel
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dong Pei
- Departments of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ian W Weidling
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaowan Wang
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Blaise W Menta
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Judit Perez-Ortiz
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anuradha Kalani
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sharon Manley
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lesya Novikova
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C Koestler
- Departments of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med 2020; 10:jpm10020042. [PMID: 32455946 PMCID: PMC7354630 DOI: 10.3390/jpm10020042] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the sixth leading cause of death and is correlated with obesity, which is the second leading cause of preventable diseases in the United States. Obesity, diabetes, and AD share several common features, and inflammation emerges as the central link. High-calorie intake, elevated free fatty acids, and impaired endocrine function leads to insulin resistance and systemic inflammation. Systemic inflammation triggers neuro-inflammation, which eventually hinders the metabolic and regulatory function of the brain mitochondria leading to neuronal damage and subsequent AD-related cognitive decline. As an early event in the pathogenesis of AD, chronic inflammation could be considered as a potential biomarker in the treatment strategies for AD.
Collapse
|
7
|
Dietary Neuroketotherapeutics for Alzheimer's Disease: An Evidence Update and the Potential Role for Diet Quality. Nutrients 2019; 11:nu11081910. [PMID: 31443216 PMCID: PMC6722814 DOI: 10.3390/nu11081910] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with growing prevalence as the global population ages. Currently available treatments for AD have minimal efficacy and there are no proven treatments for its prodrome, mild cognitive impairment (MCI). AD etiology is not well understood and various hypotheses of disease pathogenesis are currently under investigation. A consistent hallmark in patients with AD is reduced brain glucose utilization; however, evidence suggests that brain ketone metabolism remains unimpaired, thus, there is a great deal of increased interest in the potential value of ketone-inducing therapies for the treatment of AD (neuroketotherapeutics; NKT). The goal of this review was to discuss dietary NKT approaches and mechanisms by which they exert a possible therapeutic benefit, update the evidence available on NKTs in AD and consider a potential role of diet quality in the clinical use of dietary NKTs. Whether NKTs affect AD symptoms through the restoration of bioenergetics, the direct and indirect modulation of antioxidant and inflammation pathways, or both, preliminary positive evidence suggests that further study of dietary NKTs as a disease-modifying treatment in AD is warranted.
Collapse
|
8
|
Abstract
Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary ‘moonlighting’ functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.
Collapse
|
9
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
10
|
Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 4:28-36. [PMID: 29955649 PMCID: PMC6021549 DOI: 10.1016/j.trci.2017.11.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction We assessed the feasibility and cognitive effects of a ketogenic diet (KD) in participants with Alzheimer's disease. Methods The Ketogenic Diet Retention and Feasibility Trial featured a 3-month, medium-chain triglyceride-supplemented KD followed by a 1-month washout in clinical dementia rating (CDR) 0.5, 1, and 2 participants. We obtained urine acetoacetate, serum β-hydroxybutyrate, food record, and safety data. We administered the Alzheimer's Disease Assessment Scale-cognitive subscale and Mini-Mental State Examination before the KD, and following the intervention and washout. Results We enrolled seven CDR 0.5, four CDR 1, and four CDR 2 participants. One CDR 0.5 and all CDR 2 participants withdrew citing caregiver burden. The 10 completers achieved ketosis. Most adverse events were medium-chain triglyceride-related. Among the completers, the mean of the Alzheimer's Disease Assessment Scale-cognitive subscale score improved by 4.1 points during the diet (P = .02) and reverted to baseline after the washout. Discussion This pilot trial justifies KD studies in mild Alzheimer's disease.
Collapse
Affiliation(s)
- Matthew K Taylor
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA.,Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Debra K Sullivan
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA.,Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA.,Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure 2017; 52:15-19. [DOI: 10.1016/j.seizure.2017.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
|
12
|
Hutfles LJ, Wilkins HM, Koppel SJ, Weidling IW, Selfridge JE, Tan E, Thyfault JP, Slawson C, Fenton AW, Zhu H, Swerdlow RH. A bioenergetics systems evaluation of ketogenic diet liver effects. Appl Physiol Nutr Metab 2017; 42:955-962. [PMID: 28514599 PMCID: PMC5857360 DOI: 10.1139/apnm-2017-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Ketogenic diets induce hepatocyte fatty acid oxidation and ketone body production. To further evaluate how ketogenic diets affect hepatocyte bioenergetic infrastructure, we analyzed livers from C57Bl/6J male mice maintained for 1 month on a ketogenic or standard chow diet. Compared with the standard diet, the ketogenic diet increased cytosolic and mitochondrial protein acetylation and also altered protein succinylation patterns. SIRT3 protein decreased while SIRT5 protein increased, and gluconeogenesis, oxidative phosphorylation, and mitochondrial biogenesis pathway proteins were variably and likely strategically altered. The pattern of changes observed can be used to inform a broader systems overview of how ketogenic diets affect liver bioenergetics.
Collapse
Affiliation(s)
- Lewis J. Hutfles
- Kansas City University of Medicine and Biosciences, Kansas City, MO 64106
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Scott J. Koppel
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ian W. Weidling
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - J. Eva Selfridge
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Eephie Tan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - John P. Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
- Kansas City VA Medical Center, Kansas City, MO 64128
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Aron W. Fenton
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66150
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
13
|
Neuroketotherapeutics: A modern review of a century-old therapy. Neurochem Int 2017; 117:114-125. [PMID: 28579059 PMCID: PMC5711637 DOI: 10.1016/j.neuint.2017.05.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023]
Abstract
Neuroketotherapeutics represent a class of bioenergetic medicine therapies that feature the induction of ketosis. These therapies include medium-chain triglyceride supplements, ketone esters, fasting, strenuous exercise, the modified Atkins diet, and the classic ketogenic diet. Extended experience reveals persons with epilepsy, especially pediatric epilepsy, benefit from ketogenic diets although the mechanisms that underlie its effects remain unclear. Data indicate ketotherapeutics enhance mitochondrial respiration, promote neuronal long-term potentiation, increase BDNF expression, increase GPR signaling, attenuate oxidative stress, reduce inflammation, and alter protein post-translational modifications via lysine acetylation and β-hydroxybutyrylation. These properties have further downstream implications involving Akt, PLCγ, CREB, Sirtuin, and mTORC pathways. Further studies of neuroketotherapeutics will enhance our understanding of ketone body molecular biology, and reveal novel central nervous system therapeutic applications.
Collapse
|
14
|
Wilkins HM, Swerdlow RH. Relationships Between Mitochondria and Neuroinflammation: Implications for Alzheimer's Disease. Curr Top Med Chem 2016; 16:849-57. [PMID: 26311426 DOI: 10.2174/1568026615666150827095102] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/03/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Mitochondrial dysfunction and neuroinflammation occur in Alzheimer's disease (AD). The causes of these pathologic lesions remain uncertain, but links between these phenomena are increasingly recognized. In this review, we discuss data that indicate mitochondria or mitochondrial components may contribute to neuroinflammation. While mitochondrial dysfunction could cause neuroinflammation, neuroinflammation could also cause mitochondrial dysfunction. However, based on the systemic nature of AD mitochondrial dysfunction as well as data from experiments we discuss, the former possibility is perhaps more likely. If correct, then manipulation of mitochondria, either directly or through manipulations of bioenergetic pathways, could prove effective in reducing metabolic dysfunction and neuroinflammation in AD patients. We also review some potential approaches through which such manipulations may be achieved.
Collapse
Affiliation(s)
| | - Russell H Swerdlow
- University of Kansas School of Medicine, MS 2012, Landon Center on Aging, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
15
|
Lauritzen KH, Hasan-Olive MM, Regnell CE, Kleppa L, Scheibye-Knudsen M, Gjedde A, Klungland A, Bohr VA, Storm-Mathisen J, Bergersen LH. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging 2016; 48:34-47. [PMID: 27639119 DOI: 10.1016/j.neurobiolaging.2016.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Md Mahdi Hasan-Olive
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Christine E Regnell
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liv Kleppa
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Albert Gjedde
- Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jon Storm-Mathisen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Vasilopoulou CG, Margarity M, Klapa MI. Metabolomic Analysis in Brain Research: Opportunities and Challenges. Front Physiol 2016; 7:183. [PMID: 27252656 PMCID: PMC4878281 DOI: 10.3389/fphys.2016.00183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results.
Collapse
Affiliation(s)
- Catherine G Vasilopoulou
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT)Patras, Greece; Human and Animal Physiology Laboratory, Department of Biology, University of PatrasPatras, Greece
| | - Marigoula Margarity
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras Patras, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT)Patras, Greece; Departments of Chemical and Biomolecular Engineering and Bioengineering, University of MarylandCollege Park, MD, USA
| |
Collapse
|
17
|
Kang DH, Heo RW, Yi CO, Kim H, Choi CH, Roh GS. High-fat diet-induced obesity exacerbates kainic acid-induced hippocampal cell death. BMC Neurosci 2015; 16:72. [PMID: 26518260 PMCID: PMC4628384 DOI: 10.1186/s12868-015-0202-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/29/2015] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Obesity has deleterious effects on the brain, and metabolic dysfunction may exacerbate the outcomes of seizures and brain injuries. However, it is unclear whether obesity affects excitotoxicity-induced neuronal cell death. The purpose of this study was to investigate the effects of a high-fat diet (HFD) on neuroinflammation and oxidative stress in the hippocampus of kainic acid (KA)-treated mice. RESULTS Mice were fed with a HFD or normal diet for 8 weeks and then received a systemic injection of KA. HFD-fed mice showed hypercholesterolemia, insulin resistance, and hepatic steatosis. HFD-fed mice showed greater susceptibility to KA-induced seizures, an increased number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, neuroinflammation, and oxidative stress. Furthermore, we found that KA treatment increased HFD-induced calpain1, nuclear factor E2-related factor 2, and heme oxygenase-1 expression in the hippocampus. CONCLUSIONS These findings imply that complex mechanisms affected by obesity-induced systemic inflammation, neuroinflammation, ER stress, calcium overload, and oxidative stress may contribute to neuronal death after brain injury.
Collapse
Affiliation(s)
- Dong Ho Kang
- Department of Neurosurgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, 15, Jinju-daero 816 Beon-gil, Jinju-si, Gyeongnam, Republic of Korea.
| | - Rok Won Heo
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, 15, Jinju-daero 816 Beon-gil, Jinju-si, Gyeongnam, Republic of Korea.
| | - Chin-Ok Yi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, 15, Jinju-daero 816 Beon-gil, Jinju-si, Gyeongnam, Republic of Korea.
| | - Hwajin Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, 15, Jinju-daero 816 Beon-gil, Jinju-si, Gyeongnam, Republic of Korea.
| | - Chang Hwa Choi
- Department of Neurosurgery, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, Republic of Korea.
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, 15, Jinju-daero 816 Beon-gil, Jinju-si, Gyeongnam, Republic of Korea.
| |
Collapse
|