1
|
Corrêa-Ferreira ML, do Rocio Andrade Pires A, Miranda JV, de Freitas Montin E, Barbosa IR, Lima AEAN, Rocha MEM, Martinez GR, Cadena SMSC. The Mesoionic 1,3,4-thiadiazolium Derivative, MI-D, is a Potential Drug for Treating Glioblastoma by Impairing Mitochondrial Functions Linked to Energy Provision in Glioma Cells. Anticancer Agents Med Chem 2025; 25:411-419. [PMID: 39440773 DOI: 10.2174/0118715206329159241010052746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Mesoionic compound MI-D possesses important biological activities, such as antiinflammatory and antitumoral against melanoma and hepatocarcinoma. Glioblastoma is the most aggressive and common central nervous system tumor in adults. Currently, chemotherapies are not entirely effective, and the survival of patients diagnosed with glioblastoma is extremely short. OBJECTIVE In this study, we aimed to evaluate the cytotoxicity of MI-D in noninvasive A172 glioblastoma cells and establish which changes in functions linked to energy provision are associated with this effect. METHODS Cells A172 were cultured under glycolysis and phosphorylation oxidative conditions and evaluated: viability by the MTT method, oxygen consumption by high-resolution respirometry, levels of pyruvate, lactate, citrate, and ATP, and glutaminase and citrate synthase activities by spectrophotometric methods. RESULTS Under glycolysis-dependent conditions, MI-D caused significant cytotoxic effects with impaired cell respiration, reducing the maximal capacity of the electron transport chain. However, A172 cells were more susceptible to MI-D effects under oxidative phosphorylation-dependent conditions. At the IC25, inhibition of basal and maximal respiration of A172 cells was observed, without stimulation of the glycolytic pathway or Krebs cycle, along with inhibition of the activity of glutaminase enzyme, resulting in a 30% ATP deficit. Additionally, independent of metabolic conditions, MI-D treatment induced cell death in A172 cells by apoptosis machinery/ processes. CONCLUSION The impairment of mitochondrial respiration by MI-D under the condition sustained by oxidative phosphorylation may enhance the cytotoxic effect on A172 glioma cells, although the mechanism of cell death relies on apoptosis.
Collapse
Affiliation(s)
| | | | - Juan Vitor Miranda
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | | | - Igor Resendes Barbosa
- Department of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Glaucia Regina Martinez
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
2
|
Gao L, Gao B, Ge W, Li S, Wang F. Stimulated Emission Depletion Imaging Reveals Mitochondrial Phenotypic Heterogeneity under Apoptosis Stimuli across Living Glioma Models. NANO LETTERS 2024; 24:15904-15911. [PMID: 39587402 DOI: 10.1021/acs.nanolett.4c04986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The mitochondrial phenotypes contribute to the understanding of disease mechanisms and treatments, which are typically characterized through the omics methods. However, the high dynamics and phenotypic heterogeneity of mitochondria require high-resolution characterization within individual living cells. Therefore, we introduce a fluorescence analysis method, based on two-color and fluorescence lifetime stimulated emission depletion (STED) super-resolution imaging, to explore mitochondrial phenotypic heterogeneity in human (U87) and mouse (GL261) glioma models. Furthermore, we used rotenone and etoposide to simulate the effects of antitumor drugs, inducing apoptosis through mitochondrial dysfunction, respectively. The two-color labeling introduces intracellular parameters to qualitatively visualize changes in mitochondrial morphology, while fluorescence lifetime reflects the status of mitochondria and their microenvironment from the perspective of probe characteristics. This method reveals mitochondria phenotypic heterogeneity induced by the apoptotic stimuli in human and mouse glioma models from a morphological perspective.
Collapse
Affiliation(s)
- Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Ge
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxian Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Chobanov NM, Dzhemileva LU, Dzhemilev UM, D’yakonov VA. Lithocholic Acid's Ionic Compounds as Promising Antitumor Agents: Synthesis and Evaluation of the Production of Reactive Oxygen Species (ROS) in Mitochondria. Antioxidants (Basel) 2024; 13:1448. [PMID: 39765777 PMCID: PMC11672617 DOI: 10.3390/antiox13121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The development of a methodology for the synthesis of new compounds with antitumor activity represents a significant and priority task within the field of medicinal chemistry. As a continuation of our research group's earlier studies on the antitumor activity of ionic derivatives of natural compounds, we have synthesized a series of previously undescribed pyrazole ionic compounds through a series of transformations of lithocholic acid methyl ester. To investigate the biological activity of the newly synthesized lithocholic acid derivatives, a series of modern flow cytometry techniques were employed to assess their cytotoxic activity, effects on the cell cycle, and induction of apoptosis. This included the analysis of alterations in the mitochondrial potential, accumulation of ROS ions in mitochondria, and loss of cytochrome c. These compounds demonstrate promising antitumor activity through their effects on mitochondrial oxidation and phosphorylation processes. These compounds, which we have designated as "soft dissociators", exhibit enhanced biopharmacological properties relative to the original lithocholic acid molecule.
Collapse
Affiliation(s)
| | - Lilya U. Dzhemileva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | | | - Vladimir A. D’yakonov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
4
|
Ha CP, Hua TNM, Vo VTA, Om J, Han S, Cha SK, Park KS, Jeong Y. Humanin activates integrin αV-TGFβ axis and leads to glioblastoma progression. Cell Death Dis 2024; 15:464. [PMID: 38942749 PMCID: PMC11213926 DOI: 10.1038/s41419-024-06790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFβ) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFβR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFβR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.
Collapse
Affiliation(s)
- Cuong P Ha
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Jiyeon Om
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Sangwon Han
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Seung-Kuy Cha
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Peng J, Yang D, Xing Z, Jiang B, Ding X, Jiang C, Ouyang B, Su L. From metabolism to malignancy: the multifaceted role of PGC1α in cancer. Front Oncol 2024; 14:1383809. [PMID: 38774408 PMCID: PMC11106418 DOI: 10.3389/fonc.2024.1383809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Jianing Peng
- Division of Biosciences, University College London, London, United Kingdom
| | - Dengyuan Yang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Zhongjie Xing
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Ouyang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Estaras M, Martinez R, Garcia A, Ortiz-Placin C, Iovanna JL, Santofimia-Castaño P, Gonzalez A. Melatonin modulates metabolic adaptation of pancreatic stellate cells subjected to hypoxia. Biochem Pharmacol 2022; 202:115118. [PMID: 35671789 DOI: 10.1016/j.bcp.2022.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Pancreatic stellate cells (PSCs), the main cell type responsible for the development of fibrosis in pancreatic cancer, proliferate actively under hypoxia. Melatonin has received attention as a potential antifibrotic agent due to its anti-proliferative actions on PSCs. In this work, we investigated the activation of the PI3K/Akt/mTOR pathway and the metabolic adaptations that PSCs undergo under hypoxic conditions, as well as the probable modulation by melatonin. Incubation of cells under hypoxia induced an increase in cell proliferation, and in the expression of alpha-smooth muscle actin and of collagen type 1. In addition, an increase in the phosphorylation of Akt was observed, whereas a decrease in the phosphorylation of PTEN and GSK-3b was noted. The phosphorylation of mTOR and its substrate p70 S6K was decreased under hypoxia. Treatment of PSCs with melatonin under hypoxia diminished cell proliferation, the levels of alpha-smooth muscle actin and of collagen type 1, the phosphorylation of Akt and increased phosphorylation of mTOR. Mitochondrial activity decreased in PSCs under hypoxia. A glycolytic shift was observed. Melatonin further decreased mitochondrial activity. Under hypoxia, no increase in autophagic flux was noted. However, melatonin treatment induced autophagy activation. Nevertheless, inhibition of this process did not induce detectable changes in the viability of cells treated with melatonin. We conclude that PSCs undergo metabolic adaptation under hypoxia that might help them survive and that pharmacological concentrations of melatonin modulate cell responses to hypoxia. Our results contribute to the knowledge of the mechanisms by which melatonin could modulate fibrosis within the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Remigio Martinez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, España
| | - Alfredo Garcia
- Departamento de Producción Animal, CICYTEX-La Orden, Guadajira, Badajoz, España
| | - Candido Ortiz-Placin
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Antonio Gonzalez
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España.
| |
Collapse
|
7
|
Vlaikou AM, Nussbaumer M, Komini C, Lambrianidou A, Konidaris C, Trangas T, Filiou MD. Exploring the crosstalk of glycolysis and mitochondrial metabolism in psychiatric disorders and brain tumours. Eur J Neurosci 2021; 53:3002-3018. [PMID: 33226682 DOI: 10.1111/ejn.15057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours. We investigate potential common patterns of altered mitochondrial metabolism in different brain regions and sample types and explore how changes in mitochondrial number, shape and morphology affect disease-related manifestations. We also highlight the potential of pharmacologically targeting mitochondria to achieve therapeutic effects.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Andromachi Lambrianidou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Konidaris
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
8
|
Iranmanesh Y, Jiang B, Favour OC, Dou Z, Wu J, Li J, Sun C. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Glioblastoma. Front Oncol 2021; 11:582694. [PMID: 33692947 PMCID: PMC7937970 DOI: 10.3389/fonc.2021.582694] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM), one of the deadliest primary brain malignancies, is characterized by a high recurrence rate due to its limited response to existing therapeutic strategies such as chemotherapy, radiation therapy, and surgery. Several mechanisms and pathways have been identified to be responsible for GBM therapeutic resistance. Glioblastoma stem cells (GSCs) are known culprits of GBM resistance to therapy. GSCs are characterized by their unique self-renewal, differentiating capacity, and proliferative potential. They form a heterogeneous population of cancer stem cells within the tumor and are further divided into different subpopulations. Their distinct molecular, genetic, dynamic, and metabolic features distinguish them from neural stem cells (NSCs) and differentiated GBM cells. Novel therapeutic strategies targeting GSCs could effectively reduce the tumor-initiating potential, hence, a thorough understanding of mechanisms involved in maintaining GSCs' stemness cannot be overemphasized. The mitochondrion, a regulator of cellular physiological processes such as autophagy, cellular respiration, reactive oxygen species (ROS) generation, apoptosis, DNA repair, and cell cycle control, has been implicated in various malignancies (for instance, breast, lung, and prostate cancer). Besides, the role of mitochondria in GBM has been extensively studied. For example, when stressors, such as irradiation and hypoxia are present, GSCs utilize specific cytoprotective mechanisms like the activation of mitochondrial stress pathways to survive the harsh environment. Proliferating GBM cells exhibit increased cytoplasmic glycolysis in comparison to terminally differentiated GBM cells and quiescent GSCs that rely more on oxidative phosphorylation (OXPHOS). Furthermore, the Warburg effect, which is characterized by increased tumor cell glycolysis and decreased mitochondrial metabolism in the presence of oxygen, has been observed in GBM. Herein, we highlight the importance of mitochondria in the maintenance of GSCs.
Collapse
Affiliation(s)
| | - Biao Jiang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Okoye C Favour
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jiawei Wu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Chongran Sun
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
9
|
The Suitability of Glioblastoma Cell Lines as Models for Primary Glioblastoma Cell Metabolism. Cancers (Basel) 2020; 12:cancers12123722. [PMID: 33322454 PMCID: PMC7764800 DOI: 10.3390/cancers12123722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is a deadly brain tumour with no effective treatments. Recently, new treatments which target the cancer’s unique metabolic properties are beginning to emerge. However, this preclinical research is commonly undertaken in human cell lines which poorly recapitulate the properties of the cancer in situ. This study has examined the metabolic properties of five commonly used GBM cell lines in comparison to healthy brain and GBM tissue. While no cell line faithfully recapitulates GBM, certain lines are useful for aspects of metabolic analysis in GBM cells. We identified three cell lines which accurately reflect the mitochondrial metabolism of GBM tumours, and one cell line suited for studies into glycolysis. In addition to providing detailed metabolic profiles of these commonly used cell lines, this research can guide preclinical experiments to assess the efficacy of desperately needed, novel therapeutics for GBM. Abstract In contrast to most non-malignant tissue, cells comprising the brain tumour glioblastoma (GBM) preferentially utilise glycolysis for metabolism via “the Warburg effect”. Research into therapeutics targeting the disease’s highly glycolytic state offer a promising avenue to improve patient survival. These studies often employ GBM cell lines for in vitro studies which translate poorly to the in vivo patient context. The metabolic traits of five of the most used GBM cell lines were assessed and compared to primary GBM and matched, healthy brain tissue. In patient-derived GBM cell lines, the basal mitochondrial rate (p = 0.043) and ATP-linked respiration (p < 0.001) were lower than primary adjacent normal cells from the same patient, while reserve capacity (p = 0.037) and Krebs cycle capacity (p = 0.002) were higher. Three cell lines, U251MG, U373MG and D54, replicate the mitochondrial metabolism of primary GBM cells. Surprisingly, glycolytic capacity is not different between healthy and GBM tissue. The T98G cell line recapitulated glycolysis-related metabolic parameters of the primary GBM cells and is recommended for research relating to glycolysis. These findings can guide preclinical research into the development of novel therapeutics targeting metabolic pathways in GBM.
Collapse
|
10
|
Lee JE, Yoon SS, Lee JW, Moon EY. Curcumin-induced cell death depends on the level of autophagic flux in A172 and U87MG human glioblastoma cells. Chin J Nat Med 2020; 18:114-122. [PMID: 32172947 DOI: 10.1016/s1875-5364(20)30012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the deadliest neoplasm with the worst 5-year survival rate among all human cancers. Autophagy promotes autophagic cell death or blocks the induction of apoptosis in eukaryotic cells. Here, we investigated whether varying levels of autophagic flux in glioblastoma lead to different efficacies of curcumin treatment using U87MG and A172 human glioblastoma cells. The number of LC3 puncta, the number of cells with LC3 puncta and the level of LC3 II, Atg5 and Atg7 protein were higher in U87MG cells compared with A172 cells. When the cells were incubated with curcumin for 24 or 48 h, the percentage of cell death was higher in A172 cells compared with U87MG cells. Although the level of LC3 was lower, that of curcumin-induced LC3 was higher, in A172 cells than in U87MG cells. The relative increases in cell death and LC3-mediated autophagy were greater under serum starvation in A172 cells compared with U87MG cells. Curcumin-induced A172 cell death was reduced by serum starvation. When both types of cells were transfected with LC3-GFP, the percentage of cell death was higher in A172 cells than that in U87MG cells. Taken together, the data demonstrate that curcumin-mediated tumor cell death is regulated by the basal level of autophagic flux in different glioblastoma cells. This suggests that prior to the use of various curcumin therapeutics, the level of basal or induced autophagic flux should be carefully examined in tumor cells for the best efficacy.
Collapse
Affiliation(s)
- Jong-Eun Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Sung Sik Yoon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
11
|
Alves de Souza CE, Pires ADRA, Cardoso CR, Carlos RM, Cadena SMSC, Acco A. Antineoplastic activity of a novel ruthenium complex against human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells. Heliyon 2020; 6:e03862. [PMID: 32405548 PMCID: PMC7210510 DOI: 10.1016/j.heliyon.2020.e03862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/21/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Novel metal complexes have received much attention recently because of their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternatives to the currently used platinum-based drugs for cancer therapy, with less toxicity and fewer side effects. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidative states, low toxicity, and high selectivity for cancer cells. The present study evaluated the cytotoxic effects of a ruthenium complex, namely cis-[Ru(1,10-phenanthroline)2(imidazole)2]2+ (RuC), on human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells and analyzed metabolic parameters. RuC reduced HepG2 and HeLa cell viability at all tested concentrations (10, 50, and 100 nmol/L) at 48 h of incubation, based on the MTT, Crystal violet, and neutral red assays. The proliferation capacity of HepG2 cells did not recover, whereas HeLa cell proliferation partially recovered after RuC treatment. RuC also inhibited all states of cell respiration and increased the levels of the metabolites pyruvate and lactate in both cell lines. The cytotoxicity of RuC was higher than cisplatin (positive control) in both lineages. These results indicate that RuC affects metabolic functions that are related to the energy provision and viability of HepG2 and HeLa cells and is a promising candidate for further investigations that utilize models of human cervical adenocarcinoma and mainly hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | - Rose Maria Carlos
- Department of Chemistry, Federal São Carlos University, São Carlos, Brazil
| | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
12
|
Rodríguez-Enríquez S, Marín-Hernández Á, Gallardo-Pérez JC, Pacheco-Velázquez SC, Belmont-Díaz JA, Robledo-Cadena DX, Vargas-Navarro JL, Corona de la Peña NA, Saavedra E, Moreno-Sánchez R. Transcriptional Regulation of Energy Metabolism in Cancer Cells. Cells 2019; 8:cells8101225. [PMID: 31600993 PMCID: PMC6830338 DOI: 10.3390/cells8101225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 01/17/2023] Open
Abstract
Cancer development, growth, and metastasis are highly regulated by several transcription regulators (TRs), namely transcription factors, oncogenes, tumor-suppressor genes, and protein kinases. Although TR roles in these events have been well characterized, their functions in regulating other important cancer cell processes, such as metabolism, have not been systematically examined. In this review, we describe, analyze, and strive to reconstruct the regulatory networks of several TRs acting in the energy metabolism pathways, glycolysis (and its main branching reactions), and oxidative phosphorylation of nonmetastatic and metastatic cancer cells. Moreover, we propose which possible gene targets might allow these TRs to facilitate the modulation of each energy metabolism pathway, depending on the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norma Angélica Corona de la Peña
- Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional Carlos McGregor-Sánchez, México CP 03100, Mexico.
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México 14080, Mexico.
| |
Collapse
|
13
|
Codrich M, Comelli M, Malfatti MC, Mio C, Ayyildiz D, Zhang C, Kelley MR, Terrosu G, Pucillo CEM, Tell G. Inhibition of APE1-endonuclease activity affects cell metabolism in colon cancer cells via a p53-dependent pathway. DNA Repair (Amst) 2019; 82:102675. [PMID: 31450087 PMCID: PMC7092503 DOI: 10.1016/j.dnarep.2019.102675] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
The pathogenesis of colorectal cancer (CRC) involves different mechanisms, such as genomic and microsatellite instabilities. Recently, a contribution of the base excision repair (BER) pathway in CRC pathology has been emerged. In this context, the involvement of APE1 in the BER pathway and in the transcriptional regulation of genes implicated in tumor progression strongly correlates with chemoresistance in CRC and in more aggressive cancers. In addition, the APE1 interactome is emerging as an important player in tumor progression, as demonstrated by its interaction with Nucleophosmin (NPM1). For these reasons, APE1 is becoming a promising target in cancer therapy and a powerful prognostic and predictive factor in several cancer types. Thus, specific APE1 inhibitors have been developed targeting: i) the endonuclease activity; ii) the redox function and iii) the APE1-NPM1 interaction. Furthermore, mutated p53 is a common feature of advanced CRC. The relationship between APE1 inhibition and p53 is still completely unknown. Here, we demonstrated that the inhibition of the endonuclease activity of APE1 triggers p53-mediated effects on cell metabolism in HCT-116 colon cancer cell line. In particular, the inhibition of the endonuclease activity, but not of the redox function or of the interaction with NPM1, promotes p53 activation in parallel to sensitization of p53-expressing HCT-116 cell line to genotoxic treatment. Moreover, the endonuclease inhibitor affects mitochondrial activity in a p53-dependent manner. Finally, we demonstrated that 3D organoids derived from CRC patients are susceptible to APE1-endonuclease inhibition in a p53-status correlated manner, recapitulating data obtained with HCT-116 isogenic cell lines. These findings suggest the importance of further studies aimed at testing the possibility to target the endonuclease activity of APE1 in CRC.
Collapse
Affiliation(s)
- Marta Codrich
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Marina Comelli
- Laboratory of Bioenergetics, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Catia Mio
- Institute of Medical Genetics, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and Pharmacology & Toxicology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Giovanni Terrosu
- General Surgery and Transplantation Unit, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Carlo E M Pucillo
- Laboratory of Immunology, Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, 33100, Italy.
| |
Collapse
|
14
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
15
|
Weinholdt C, Wichmann H, Kotrba J, Ardell DH, Kappler M, Eckert AW, Vordermark D, Grosse I. Prediction of regulatory targets of alternative isoforms of the epidermal growth factor receptor in a glioblastoma cell line. BMC Bioinformatics 2019; 20:434. [PMID: 31438847 PMCID: PMC6704634 DOI: 10.1186/s12859-019-2944-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background The epidermal growth factor receptor (EGFR) is a major regulator of proliferation in tumor cells. Elevated expression levels of EGFR are associated with prognosis and clinical outcomes of patients in a variety of tumor types. There are at least four splice variants of the mRNA encoding four protein isoforms of EGFR in humans, named I through IV. EGFR isoform I is the full-length protein, whereas isoforms II-IV are shorter protein isoforms. Nevertheless, all EGFR isoforms bind the epidermal growth factor (EGF). Although EGFR is an essential target of long-established and successful tumor therapeutics, the exact function and biomarker potential of alternative EGFR isoforms II-IV are unclear, motivating more in-depth analyses. Hence, we analyzed transcriptome data from glioblastoma cell line SF767 to predict target genes regulated by EGFR isoforms II-IV, but not by EGFR isoform I nor other receptors such as HER2, HER3, or HER4. Results We analyzed the differential expression of potential target genes in a glioblastoma cell line in two nested RNAi experimental conditions and one negative control, contrasting expression with EGF stimulation against expression without EGF stimulation. In one RNAi experiment, we selectively knocked down EGFR splice variant I, while in the other we knocked down all four EGFR splice variants, so the associated effects of EGFR II-IV knock-down can only be inferred indirectly. For this type of nested experimental design, we developed a two-step bioinformatics approach based on the Bayesian Information Criterion for predicting putative target genes of EGFR isoforms II-IV. Finally, we experimentally validated a set of six putative target genes, and we found that qPCR validations confirmed the predictions in all cases. Conclusions By performing RNAi experiments for three poorly investigated EGFR isoforms, we were able to successfully predict 1140 putative target genes specifically regulated by EGFR isoforms II-IV using the developed Bayesian Gene Selection Criterion (BGSC) approach. This approach is easily utilizable for the analysis of data of other nested experimental designs, and we provide an implementation in R that is easily adaptable to similar data or experimental designs together with all raw datasets used in this study in the BGSC repository, https://github.com/GrosseLab/BGSC. Electronic supplementary material The online version of this article (10.1186/s12859-019-2944-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Henri Wichmann
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johanna Kotrba
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany.,Institute for Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
| | - David H Ardell
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, USA
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander W Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Center of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Murph MM, Liu S, Jia W, Nguyen H, MacFarlane MA, Smyth SS, Kuppa SS, Dobbin KK. Diet-regulated behavior: FVB/N mice fed a lean diet exhibit increased nocturnal bouts of aggression between littermates. Lab Anim 2019; 54:159-170. [PMID: 30880558 DOI: 10.1177/0023677219834582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hyperactive FVB/N inbred mouse strain is widely used for transgenic research applications, although rarely for behavioral studies. These mice have visual impairments via retinal degeneration, but are considered highly intelligent and rely largely on olfaction. While investigating diet-induced obesity in autotaxin transgenic FVB/N mice, we observed an increase in the necessity for male, but not female, cage separations. Based on the observations, we hypothesized that feeding FVB/N mice a lean diet increases nocturnal bouts of aggression between male littermates. The diets of adult littermates were switched from normal chow to either ad libitum high-fat (45% fat) or lean (10% fat) matched diets for 27 weeks, whereby the mice reached an average of 43 g versus 35 g, respectively. Then, cage separations due to nocturnal bouts of aggression became mandatory, even though littermates peacefully cohabitated for 10-16 weeks previously. Since the data was of an unusual nature, it required uncommon statistical methods to be engendered to evaluate whether and where significance existed. Therefore, utilizing the randomization and population models, we established a methodology and postulated that either testosterone, the autotaxin transgene or diet alteration was the causal factor. Statistical evaluation demonstrated a significant correlation between cage separations and aggressive behavior associated with the lean-diet-fed mice, not autotaxin. Biochemical data did not appear to explain the behavior. In contrast, energy metabolism highlighted differences between the groups of normally hyperactive mice by diet. This characteristic makes FVB/N male mice unsuitable subjects for long-term studies with lean-diet modifications.
Collapse
Affiliation(s)
- Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, Athens, GA, USA
| | - Shuying Liu
- Department of Breast Medical Oncology, The University of Texas, Houston, TX, USA.,Department of Systems Biology, The University of Texas, Houston, TX, USA
| | - Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, Athens, GA, USA
| | - Ha Nguyen
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, Athens, GA, USA
| | - Megan A MacFarlane
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, Athens, GA, USA
| | - Susan S Smyth
- Division of Cardiovascular Medicine and Department of Pharmacology, The University of Kentucky, Lexington, KY, USA; Department of Veterans Affairs Medical Center, Lexington, KY, USA
| | - Sudeepti S Kuppa
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, Athens, GA, USA
| | - Kevin K Dobbin
- College of Public Health Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| |
Collapse
|
17
|
Mitochondrial enzyme GLUD2 plays a critical role in glioblastoma progression. EBioMedicine 2018; 37:56-67. [PMID: 30314897 PMCID: PMC6284416 DOI: 10.1016/j.ebiom.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Background Glioblastoma (GBM) is the most frequent and malignant primary brain tumor in adults and despite the progress in surgical procedures and therapy options, the overall survival remains very poor. Glutamate and α-KG are fundamental elements necessary to support the growth and proliferation of GBM cells. Glutamate oxidative deamination, catalyzed by GLUD2, is the predominant pathway for the production of α-KG. Methods GLUD2 emerged from the RNA-seq analysis of 13 GBM patients, performed in our laboratory and a microarray analysis of 77 high-grade gliomas available on the Geo database. Thereafter, we investigated GLUD2 relevance in cancer cell behavior by GLUD2 overexpression and silencing in two different human GBM cell lines. Finally, we overexpressed GLUD2 in-vivo by using zebrafish embryos and monitored the developing central nervous system. Findings GLUD2 expression was found associated to the histopathological classification, prognosis and survival of GBM patients. Moreover, through in-vitro functional studies, we showed that differences in GLUD2 expression level affected cell proliferation, migration, invasion, colony formation abilities, cell cycle phases, mitochondrial function and ROS production. In support of these findings, we also demonstrated, with in-vivo studies, that GLUD2 overexpression affects glial cell proliferation without affecting neuronal development in zebrafish embryos. Interpretation We concluded that GLUD2 overexpression inhibited GBM cell growth suggesting a novel potential drug target for control of GBM progression. The possibility to enhance GLUD2 activity in GBM could result in a blocked/reduced proliferation of GBM cells without affecting the survival of the surrounding neurons.
Collapse
|