1
|
Solid state ionics enabled ultra-sensitive detection of thermal trace with 0.001K resolution in deep sea. Nat Commun 2023; 14:170. [PMID: 36635278 PMCID: PMC9837202 DOI: 10.1038/s41467-022-35682-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
The deep sea remains the largest uncharted territory on Earth because it's eternally dark under high pressure and the saltwater is corrosive and conductive. The harsh environment poses great difficulties for the durability of the sensing method and the device. Sea creatures like sharks adopt an elegant way to detect objects by the tiny temperature differences in the seawater medium using their extremely thermo-sensitive thermoelectric sensory organ on the nose. Inspired by shark noses, we designed and developed an elastic, self-healable and extremely sensitive thermal sensor which can identify a temperature difference as low as 0.01 K with a resolution of 0.001 K. The sensor can work reliably in seawater or under a pressure of 110 MPa without any encapsulation. Using the integrated temperature sensor arrays, we have constructed a model of an effective deep water mapping and detection device.
Collapse
|
2
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
3
|
Bottaro M. Sixth sense in the deep-sea: the electrosensory system in ghost shark Chimaera monstrosa. Sci Rep 2022; 12:9848. [PMID: 35701513 PMCID: PMC9198096 DOI: 10.1038/s41598-022-14076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Animals that continually live in deep sea habitats face unique challenges and require adaptive specializations solutions in order to locate and identify food, predators, and conspecifics. The Ampullae of Lorenzini are specialized electroreceptors used by chondrichthyans for important biological functions. Ampullary organs of the ghost shark Chimaera monstrosa, a deep-sea species commonly captured as by-catch in the bottom trawl fishery, are here described for the first time using macroscopic, ultrastructural and histological approaches. The number of ampullary pores in C. monstrosa is about 700, distributed into the whole cephalic section of C. monstrosa, and organized in12 pore clusters and they are arranged into different configurations and form a distinct morphological pattern for this species, showing some anatomical peculiarities never described before in others cartilaginous fishes and may constitute an evolutionary adaptation of this ancient chondrichthyan species to the extreme environmental conditions of its deep sea niche.
Collapse
Affiliation(s)
- Massimiliano Bottaro
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn - Italian National Institute of Marine Biology, Ecology and Biotechnology, Villa del Principe, Piazza del Principe 4, 16126, Genoa, Italy.
| |
Collapse
|
4
|
Di Lecce S, Bresme F. Thermal Polarization of Water Influences the Thermoelectric Response of Aqueous Solutions. J Phys Chem B 2018; 122:1662-1668. [PMID: 29293343 DOI: 10.1021/acs.jpcb.7b10960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aqueous solutions under thermal gradients feature thermodiffusion (Ludwig-Soret) and thermoelectric (Seebeck) effects, whereby the thermal fields build concentration and charge density gradients. Recently, it has been shown that thermal gradients induce polarization fields in water. We use non-equilibrium molecular simulations to quantify the thermoelectric Seebeck coefficient of alkali halide aqueous solutions. We examine the dependence of the coefficient on temperature and salt concentration and show that the thermal polarization of water plays a key role in determining the magnitude of the thermoelectric behavior of the solution.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| | - Fernando Bresme
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
5
|
Josberger EE, Hassanzadeh P, Deng Y, Sohn J, Rego MJ, Amemiya CT, Rolandi M. Proton conductivity in ampullae of Lorenzini jelly. SCIENCE ADVANCES 2016; 2:e1600112. [PMID: 27386543 PMCID: PMC4928922 DOI: 10.1126/sciadv.1600112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/11/2016] [Indexed: 05/20/2023]
Abstract
In 1678, Stefano Lorenzini first described a network of organs of unknown function in the torpedo ray-the ampullae of Lorenzini (AoL). An individual ampulla consists of a pore on the skin that is open to the environment, a canal containing a jelly and leading to an alveolus with a series of electrosensing cells. The role of the AoL remained a mystery for almost 300 years until research demonstrated that skates, sharks, and rays detect very weak electric fields produced by a potential prey. The AoL jelly likely contributes to this electrosensing function, yet the exact details of this contribution remain unclear. We measure the proton conductivity of the AoL jelly extracted from skates and sharks. The room-temperature proton conductivity of the AoL jelly is very high at 2 ± 1 mS/cm. This conductivity is only 40-fold lower than the current state-of-the-art proton-conducting polymer Nafion, and it is the highest reported for a biological material so far. We suggest that keratan sulfate, identified previously in the AoL jelly and confirmed here, may contribute to the high proton conductivity of the AoL jelly with its sulfate groups-acid groups and proton donors. We hope that the observed high proton conductivity of the AoL jelly may contribute to future studies of the AoL function.
Collapse
Affiliation(s)
- Erik E. Josberger
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Pegah Hassanzadeh
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Yingxin Deng
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joel Sohn
- Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Chris T. Amemiya
- Benaroya Research Institute, Seattle, WA 98101, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marco Rolandi
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Corresponding author.
| |
Collapse
|
6
|
Fan C, Zou S, Wang J, Zhang B, Song J. Neomycin damage and regeneration of hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval Siberian sturgeon (Acipenser baerii
). J Comp Neurol 2015; 524:1443-56. [DOI: 10.1002/cne.23918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education; Shanghai China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University; Shanghai China
| | - Sha Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education; Shanghai China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University; Shanghai China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education; Shanghai China
| | - Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education; Shanghai China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University; Shanghai China
| | - Jiakun Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education; Shanghai China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University; Shanghai China
| |
Collapse
|
7
|
|
8
|
Jordan LK, Mandelman JW, McComb DM, Fordham SV, Carlson JK, Werner TB. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: a review with new directions for research. CONSERVATION PHYSIOLOGY 2013; 1:cot002. [PMID: 27293586 PMCID: PMC4732448 DOI: 10.1093/conphys/cot002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
Incidental capture, or bycatch, in fisheries represents a substantial threat to the sustainability of elasmobranch populations worldwide. Consequently, researchers are increasingly investigating elasmobranch bycatch reduction methods, including some focused on these species' sensory capabilities, particularly their electrosensory systems. To guide this research, we review current knowledge of elasmobranch sensory biology and feeding ecology with respect to fishing gear interactions and include examples of bycatch reduction methods used for elasmobranchs as well as other taxonomic groups. We discuss potential elasmobranch bycatch reduction strategies for various fishing gear types based on the morphological, physiological, and behavioural characteristics of species within this diverse group. In select examples, we indicate how an understanding of the physiology and sensory biology of vulnerable, bycatch-prone, non-target elasmobranch species can help in the identification of promising options for bycatch reduction. We encourage collaboration among researchers studying bycatch reduction across taxa to provide better understanding of the broad effects of bycatch reduction methods.
Collapse
Affiliation(s)
- Laura K. Jordan
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author: Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA. Tel: +1 909 240 9703.
| | - John W. Mandelman
- John H. Prescott Marine Laboratory, New England Aquarium, Boston, MA 02110, USA
| | | | - Sonja V. Fordham
- Shark Advocates International, a project of The Ocean Foundation, Washington, DC 20036, USA
| | - John K. Carlson
- Southeast Fisheries Science Center, NOAA Fisheries Service, Panama City, FL 32408, USA
| | - Timothy B. Werner
- Consortium for Wildlife Bycatch Reduction, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|