1
|
Muñoz-Sánchez JC, Lázaro JT, Hillung J, Olmo-Uceda MJ, Sardanyés J, Elena SF. Quasineutral multistability in an epidemiological-like model for defective-helper betacoronavirus infection in cell cultures. APPLIED MATHEMATICAL MODELLING 2025; 137:115673. [DOI: 10.1016/j.apm.2024.115673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Yovcheva M, Thompson KW. Optimized Workflow from Gene to Product. Methods Mol Biol 2024; 2829:49-66. [PMID: 38951326 DOI: 10.1007/978-1-0716-3961-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
This chapter outlines the workflow using the ExpiSf™ Expression System designed for high-density infection of suspension ExpiSf9™ cells. The system utilizes a chemically defined, serum-free, protein-free, and animal origin free medium, making it suitable for recombinant protein expression experiments. The ExpiSf™ chemically defined medium allows efficient transfection and baculovirus production directly within the same culture medium. The ExpiSf™ Expression System Starter Kit provides all necessary components, including cells, culture medium, and reagents needed to infect one (1) liter of cell culture. The system's versatility and animal origin free nature make it a valuable tool for various protein expression studies and biotechnological applications.
Collapse
|
3
|
Coocclusion of Helicoverpa armigera Single Nucleopolyhedrovirus (HearSNPV) and Helicoverpa armigera Multiple Nucleopolyhedrovirus (HearMNPV): Pathogenicity and Stability in Homologous and Heterologous Hosts. Viruses 2022; 14:v14040687. [PMID: 35458418 PMCID: PMC9025457 DOI: 10.3390/v14040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022] Open
Abstract
Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) is a virulent pathogen of lepidopterans in the genera Heliothis and Helicoverpa, whereas Helicoverpa armigera multiple nucleopolyhedrovirus (HearSNPV) is a different virus species with a broader host range. This study aimed to examine the consequences of coocclusion of HearSNPV and HearMNPV on the pathogenicity, stability and host range of mixed-virus occlusion bodies (OBs). HearSNPV OBs were approximately 6-fold more pathogenic than HearMNPV OBs, showed faster killing by approximately 13 h, and were approximately 45% more productive in terms of OB production per larva. For coocclusion, H. armigera larvae were first inoculated with HearMNPV OBs and subsequently inoculated with HearSNPV OBs at intervals of 0–72 h after the initial inoculation. When the interval between inoculations was 12–24 h, OBs collected from virus-killed insects were found to comprise 41–57% of HearSNPV genomes, but the prevalence of HearSNPV genomes was greatly reduced (3–4%) at later time points. Quantitative PCR (qPCR) analysis revealed the presence of HearSNPV genomes in a small fraction of multinucleocapsid ODVs representing 0.47–0.88% of the genomes quantified in ODV samples, indicating that both viruses had replicated in coinfected host cells. End-point dilution assays on ODVs from cooccluded mixed-virus OBs confirmed the presence of both viruses in 41.9–55.6% of wells that were predicted to have been infected by a single ODV. A control experiment indicated that this result was unlikely to be due to the adhesion of HearSNPV ODVs to HearMNPV ODVs or accidental contamination during ODV band extraction. Therefore, the disparity between the qPCR and end-point dilution estimates of the prevalence of mixed-virus ODVs likely reflected virus-specific differences in replication efficiency in cell culture and the higher infectivity of pseudotyped ODVs that were produced in coinfected parental cells. Bioassays on H. armigera, Spodoptera frugiperda and Mamestra brassicae larvae revealed that mixed-virus OBs were capable of infecting heterologous hosts, but relative potency values largely reflected the proportion of HearMNPV present in each mixed-virus preparation. The cooccluded mixtures were unstable in serial passage; HearSNPV rapidly dominated during passage in H. armigera whereas HearMNPV rapidly dominated during passage in the heterologous hosts. We conclude that mixed-virus coocclusion technology may be useful for producing precise mixtures of viruses with host range properties suitable for the control of complexes of lepidopteran pests in particular crops, although this requires validation by field testing.
Collapse
|
4
|
Fatehi F, Bingham RJ, Dechant PP, Stockley PG, Twarock R. Therapeutic interfering particles exploiting viral replication and assembly mechanisms show promising performance: a modelling study. Sci Rep 2021; 11:23847. [PMID: 34903795 PMCID: PMC8668974 DOI: 10.1038/s41598-021-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Defective interfering particles arise spontaneously during a viral infection as mutants lacking essential parts of the viral genome. Their ability to replicate in the presence of the wild-type (WT) virus (at the expense of viable viral particles) is mimicked and exploited by therapeutic interfering particles. We propose a strategy for the design of therapeutic interfering RNAs (tiRNAs) against positive-sense single-stranded RNA viruses that assemble via packaging signal-mediated assembly. These tiRNAs contain both an optimised version of the virus assembly manual that is encoded by multiple dispersed RNA packaging signals and a replication signal for viral polymerase, but lack any protein coding information. We use an intracellular model for hepatitis C viral (HCV) infection that captures key aspects of the competition dynamics between tiRNAs and viral genomes for virally produced capsid protein and polymerase. We show that only a small increase in the assembly and replication efficiency of the tiRNAs compared with WT virus is required in order to achieve a treatment efficacy greater than 99%. This demonstrates that the proposed tiRNA design could be a promising treatment option for RNA viral infections.
Collapse
Affiliation(s)
- Farzad Fatehi
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
| | - Richard J Bingham
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Pierre-Philippe Dechant
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
- School of Science, Technology and Health, York St John University, York, YO31 7EX, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Reidun Twarock
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK.
- Department of Mathematics, University of York, York, YO10 5DD, UK.
- Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Pijlman GP, Grose C, Hick TAH, Breukink HE, van den Braak R, Abbo SR, Geertsema C, van Oers MM, Martens DE, Esposito D. Relocation of the attTn7 Transgene Insertion Site in Bacmid DNA Enhances Baculovirus Genome Stability and Recombinant Protein Expression in Insect Cells. Viruses 2020; 12:v12121448. [PMID: 33339324 PMCID: PMC7765880 DOI: 10.3390/v12121448] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
Baculovirus expression vectors are successfully used for the commercial production of complex (glyco)proteins in eukaryotic cells. The genome engineering of single-copy baculovirus infectious clones (bacmids) in E. coli has been valuable in the study of baculovirus biology, but bacmids are not yet widely applied as expression vectors. An important limitation of first-generation bacmids for large-scale protein production is the rapid loss of gene of interest (GOI) expression. The instability is caused by the mini-F replicon in the bacmid backbone, which is non-essential for baculovirus replication in insect cells, and carries the adjacent GOI in between attTn7 transposition sites. In this paper, we test the hypothesis that relocation of the attTn7 transgene insertion site away from the mini-F replicon prevents deletion of the GOI, thereby resulting in higher and prolonged recombinant protein expression levels. We applied lambda red genome engineering combined with SacB counterselection to generate a series of bacmids with relocated attTn7 sites and tested their performance by comparing the relative expression levels of different GOIs. We conclude that GOI expression from the odv-e56 (pif-5) locus results in higher overall expression levels and is more stable over serial passages compared to the original bacmid. Finally, we evaluated this improved next-generation bacmid during a bioreactor scale-up of Sf9 insect cells in suspension to produce enveloped chikungunya virus-like particles as a model vaccine.
Collapse
Affiliation(s)
- Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; (T.A.H.H.); (H.E.B.); (R.v.d.B.); (S.R.A.); (C.G.); (M.M.v.O.)
- Correspondence: ; Tel.: +31-317-484498
| | - Carissa Grose
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702, USA; (C.G.); (D.E.)
| | - Tessy A. H. Hick
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; (T.A.H.H.); (H.E.B.); (R.v.d.B.); (S.R.A.); (C.G.); (M.M.v.O.)
| | - Herman E. Breukink
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; (T.A.H.H.); (H.E.B.); (R.v.d.B.); (S.R.A.); (C.G.); (M.M.v.O.)
| | - Robin van den Braak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; (T.A.H.H.); (H.E.B.); (R.v.d.B.); (S.R.A.); (C.G.); (M.M.v.O.)
| | - Sandra R. Abbo
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; (T.A.H.H.); (H.E.B.); (R.v.d.B.); (S.R.A.); (C.G.); (M.M.v.O.)
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; (T.A.H.H.); (H.E.B.); (R.v.d.B.); (S.R.A.); (C.G.); (M.M.v.O.)
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; (T.A.H.H.); (H.E.B.); (R.v.d.B.); (S.R.A.); (C.G.); (M.M.v.O.)
| | - Dirk E. Martens
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands;
| | - Dominic Esposito
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702, USA; (C.G.); (D.E.)
| |
Collapse
|
6
|
Das A, Dutta S, Sen M, Saxena A, Kumar J, Giri L, Murhammer DW, Chakraborty J. A detailed model and Monte Carlo simulation for predicting DIP genome length distribution in baculovirus infection of insect cells. Biotechnol Bioeng 2020; 118:238-252. [PMID: 32936454 DOI: 10.1002/bit.27566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 01/14/2023]
Abstract
Baculoviruses have enormous potential for use as biopesticides to control insect pest populations without the adverse environmental effects posed by the widespread use of chemical pesticides. However, continuous baculovirus production is susceptible to DNA mutation and the subsequent production of defective interfering particles (DIPs). The amount of DIPs produced and their genome length distribution are of great interest not only for baculoviruses but for many other DNA and RNA viruses. In this study, we elucidate this aspect of virus replication using baculovirus as an example system and both experimental and modeling studies. The existing mathematical models for the virus replication process consider DIPs as a lumped quantity and do not consider the genome length distribution of the DIPs. In this study, a detailed population balance model for the cell-virus culture is presented, which predicts the genome length distribution of the DIP population along with their relative proportion. The model is simulated using the kinetic Monte Carlo algorithm, and the results agree well with the experimental results. Using this model, a practical strategy to maintain the DIP fraction to near to its maximum and minimum limits has been demonstrated.
Collapse
Affiliation(s)
- Ashok Das
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Soumajit Dutta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | - Abha Saxena
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, India
| | - Jitendra Kumar
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, India
| | - David W Murhammer
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, California, USA
| | - Jayanta Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
7
|
Genetic Variation and Biological Activity of Two Closely Related Alphabaculoviruses during Serial Passage in Permissive and Semi-Permissive Heterologous Hosts. Viruses 2019; 11:v11070660. [PMID: 31323893 PMCID: PMC6669732 DOI: 10.3390/v11070660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/12/2023] Open
Abstract
Phylogenetic analyses suggest that Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) may be strains of the same virus species. Most of the studies comparing their biological activities have been performed in their homologous hosts. A comparison of host range and stability in alternative hosts was performed. The host range of these viruses was compared using high concentrations of inoculum to inoculate second instars of six species of Lepidoptera. One semi-permissive host (Spodoptera littoralis) and one permissive host (S. exigua) were then selected and used to perform six serial passages involving a concentration corresponding to the ~25% lethal concentration for both viruses. Restriction endonuclease analysis showed fragment length polymorphisms in every host-virus system studied. In S. littoralis, serial passage of MbMNPV resulted in decreased pathogenicity and an increase in speed-of-kill, whereas no significant changes were detected for HearMNPV with respect to the initial inoculum. In contrast, both viruses showed a similar trend in S. exigua. These results highlight the low genetic diversity and a high phenotypic stability of HearMNPV with respect to the original inoculum after six successive passages in both insect hosts. This study concludes that host-baculovirus interactions during serial passage are complex and the process of adaptation to a novel semi-permissive host is far from predictable.
Collapse
|
8
|
Saxena A, Byram PK, Singh SK, Chakraborty J, Murhammer D, Giri L. A structured review of baculovirus infection process: integration of mathematical models and biomolecular information on cell–virus interaction. J Gen Virol 2018; 99:1151-1171. [DOI: 10.1099/jgv.0.001108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Abha Saxena
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Prasanna Kumar Byram
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Suraj Kumar Singh
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Jayanta Chakraborty
- 2Indian Institute of Technology Kharagpur, Chemical Engineering, Kharagpur, West Bengal 721302, India
| | - David Murhammer
- 3The University of Iowa, Department of Chemical and Biochemical Engineering, Iowa City, IA 52242-1527, USA
| | - Lopamudra Giri
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| |
Collapse
|
9
|
van Dijk T, Hwang S, Krug J, de Visser JAGM, Zwart MP. Mutation supply and the repeatability of selection for antibiotic resistance. Phys Biol 2017; 14:055005. [PMID: 28699625 DOI: 10.1088/1478-3975/aa7f36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whether evolution can be predicted is a key question in evolutionary biology. Here we set out to better understand the repeatability of evolution, which is a necessary condition for predictability. We explored experimentally the effect of mutation supply and the strength of selective pressure on the repeatability of selection from standing genetic variation. Different sizes of mutant libraries of antibiotic resistance gene TEM-1 β-lactamase in Escherichia coli, generated by error-prone PCR, were subjected to different antibiotic concentrations. We determined whether populations went extinct or survived, and sequenced the TEM gene of the surviving populations. The distribution of mutations per allele in our mutant libraries followed a Poisson distribution. Extinction patterns could be explained by a simple stochastic model that assumed the sampling of beneficial mutations was key for survival. In most surviving populations, alleles containing at least one known large-effect beneficial mutation were present. These genotype data also support a model which only invokes sampling effects to describe the occurrence of alleles containing large-effect driver mutations. Hence, evolution is largely predictable given cursory knowledge of mutational fitness effects, the mutation rate and population size. There were no clear trends in the repeatability of selected mutants when we considered all mutations present. However, when only known large-effect mutations were considered, the outcome of selection is less repeatable for large libraries, in contrast to expectations. We show experimentally that alleles carrying multiple mutations selected from large libraries confer higher resistance levels relative to alleles with only a known large-effect mutation, suggesting that the scarcity of high-resistance alleles carrying multiple mutations may contribute to the decrease in repeatability at large library sizes.
Collapse
Affiliation(s)
- Thomas van Dijk
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands. These authors contributed equally
| | | | | | | | | |
Collapse
|
10
|
Chao L, Elena SF. Nonlinear trade-offs allow the cooperation game to evolve from Prisoner's Dilemma to Snowdrift. Proc Biol Sci 2017; 284:20170228. [PMID: 28490625 PMCID: PMC5443946 DOI: 10.1098/rspb.2017.0228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
The existence of cooperation, or the production of public goods, is an evolutionary problem. Cooperation is not favoured because the Prisoner's Dilemma (PD) game drives cooperators to extinction. We have re-analysed this problem by using RNA viruses to motivate a model for the evolution of cooperation. Gene products are the public goods and group size is the number of virions co-infecting the same host cell. Our results show that if the trade-off between replication and production of gene products is linear, PD is observed. However, if the trade-off is nonlinear, the viruses evolve into separate lineages of ultra-defectors and ultra-cooperators as group size is increased. The nonlinearity was justified by the existence of real viral ultra-defectors, known as defective interfering particles, which gain a nonlinear advantage by being smaller. The evolution of ultra-defectors and ultra-cooperators creates the Snowdrift game, which promotes high-level production of public goods.
Collapse
Affiliation(s)
- Lin Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Instituto de Biología Integrativa y de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Catedrático Agustín Escardino 9, 46182 Paterna, Valencia, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
11
|
Collective Infectious Units in Viruses. Trends Microbiol 2017; 25:402-412. [PMID: 28262512 DOI: 10.1016/j.tim.2017.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/15/2023]
Abstract
Increasing evidence indicates that viruses do not simply propagate as independent virions among cells, organs, and hosts. Instead, viral spread is often mediated by structures that simultaneously transport groups of viral genomes, such as polyploid virions, aggregates of virions, virion-containing proteinaceous structures, secreted lipid vesicles, and virus-induced cell-cell contacts. These structures increase the multiplicity of infection, independently of viral population density and transmission bottlenecks. Collective infectious units may contribute to the maintenance of viral genetic diversity, and could have implications for the evolution of social-like virus-virus interactions. These may include various forms of cooperation such as immunity evasion, genetic complementation, division of labor, and relaxation of fitness trade-offs, but also noncooperative interactions such as negative dominance and interference, potentially leading to conflict.
Collapse
|
12
|
Zwart MP, Elena SF. Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annu Rev Virol 2016; 2:161-79. [PMID: 26958911 DOI: 10.1146/annurev-virology-100114-055135] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For virus infections of multicellular hosts, narrow genetic bottlenecks during transmission and within-host spread appear to be widespread. These bottlenecks will affect the maintenance of genetic variation in a virus population and the prevalence of mixed-strain infections, thereby ultimately determining the strength with which different random forces act during evolution. Here we consider different approaches for estimating bottleneck sizes and weigh their merits. We then review quantitative estimates of bottleneck size during cellular infection, within-host spread, horizontal transmission, and finally vertical transmission. In most cases we find that bottlenecks do regularly occur, although in many cases they appear to be virion-concentration dependent. Finally, we consider the evolutionary implications of genetic bottlenecks during virus infection. Although on average strong bottlenecks will lead to declines in fitness, we consider a number of scenarios in which bottlenecks could also be advantageous for viruses.
Collapse
Affiliation(s)
- Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany;
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
13
|
Quantitative characterization of defective virus emergence by deep sequencing. J Virol 2013; 88:2623-32. [PMID: 24352442 DOI: 10.1128/jvi.02675-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Populations of RNA viruses can spontaneously produce variants that differ in genome size, sequence, and biological activity. Defective variants that lack essential genes can nevertheless reproduce by coinfecting cells with viable virus, a process that interferes with virus growth. How such defective interfering particles (DIPs) change in abundance and biological activity within a virus population is not known. Here, a prototype RNA virus, vesicular stomatitis virus (VSV), was cultured for three passages on BHK host cells, and passages were subjected to Illumina sequencing. Reads from the initial population, when aligned to the full-length viral sequence (11,161 nucleotides [nt]), distributed uniformly across the genome. However, during passages two plateaus in read counts appeared toward the 5' end of the negative-sense viral genome. Analysis by normalization and a simple sliding-window approach revealed plateau boundaries that suggested the emergence and enrichment of at least two truncated species having medium (∼5,900 nt) and short (∼4,000 nt) genomes. Relative measures of full-length and truncated species based on read counts were validated by quantitative reverse transcription-PCR (qRT-PCR). Limit-of-detection analysis suggests that deep sequencing can be more sensitive than complementary measures for detecting and quantifying defective particles in a population. Further, particle counts from transmission electron microscopy, coupled with infectivity assays, linked the rise in smaller genomes with an increase in truncated particles and interference activity. In summary, variation in deep sequencing coverage simultaneously shows the size, location, and relative level of truncated-genome variants, revealing a level of population heterogeneity that is masked by other measures of viral genomes and particles. IMPORTANCE We show how deep sequencing can be used to characterize the emergence, diversity, and relative abundance of truncated virus variants in virus populations. Adaptation of this approach to natural isolates may elucidate factors that influence the stability and persistence of virus populations in nature.
Collapse
|