1
|
Determining T-cell specificity to understand and treat disease. Nat Biomed Eng 2017; 1:784-795. [DOI: 10.1038/s41551-017-0143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
|
2
|
Mazor R, Addissie S, Jang Y, Tai CH, Rose J, Hakim F, Pastan I. Role of HLA-DP in the Presentation of Epitopes from the Truncated Bacterial PE38 Immunotoxin. AAPS J 2017; 19:117-129. [PMID: 27796910 PMCID: PMC7900900 DOI: 10.1208/s12248-016-9986-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Identification of helper T-cell epitopes is important in many fields of medicine. We previously used an experimental approach to identify T-cell epitopes in PE38, a truncated bacterial toxin used in immunotoxins. Here, we evaluated the ability of antibodies to DR, DP, or DQ to block T-cell responses to PE38 epitopes in 36 PBMC samples. We predicted the binding affinities of peptides to DR, DP, and DQ alleles using computational tools and analyzed their ability to predict the T-cell epitopes. We found that HLA-DR is responsible for 65% of the responses, DP 24%, and DQ 4%. One epitope that is presented in 20% of the samples (10/50) is entirely DP restricted and was not predicted to bind to DR or DP reference alleles using binding algorithms. We conclude that DP has an important role in helper T-cell response to PE38.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Selamawit Addissie
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Youjin Jang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA
| | - Jeremy Rose
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fran Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, Maryland, 20892-4264, USA.
| |
Collapse
|
3
|
Immunodominant CD4+ T-cell responses to influenza A virus in healthy individuals focus on matrix 1 and nucleoprotein. J Virol 2014; 88:11760-73. [PMID: 25078703 DOI: 10.1128/jvi.01631-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific CD4(+) T cells are essential for effective virus-specific host responses, with recent human challenge studies (in volunteers) establishing their importance for influenza A virus (IAV)-specific immunity. However, while many IAV CD4(+) T cell epitopes have been identified, few are known to stimulate immunodominant CD4(+) T cell responses. Moreover, much remains unclear concerning the major antigen(s) responded to by the human CD4(+) T cells and the extents and magnitudes of these responses. We initiated a systematic screen of immunodominant CD4(+) T cell responses to IAV in healthy individuals. Using in vitro expanded-multispecificity IAV-specific T cell lines and individual IAV protein antigens produced by recombinant vaccinia viruses, we found that the internal matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of CD4(+) T cell responses. Ten epitopes derived from M1 and NP were definitively characterized. Furthermore, epitope sequence conservation analysis established that immunodominance correlated with an increased frequency of mutations, reflecting the fact that these prominent epitopes are under greater selective pressure. Such evidence that particular CD4(+) T cells are important for protection/recovery is of value for the development of novel IAV vaccines and for our understanding of different profiles of susceptibility to these major pathogens. Importance: Influenza virus causes half a million deaths annually. CD4(+) T cell responses have been shown to be important for protection against influenza and for recovery. CD4(+) T cell responses are also critical for efficient CD8(+) T cell response and antibody response. As immunodominant T cells generally play a more important role, characterizing these immunodominant responses is critical for influenza vaccine development. We show here that the internal matrix protein 1 (M1) and nucleoprotein (NP), rather than the surface proteins reported previously, are the immunodominant targets of CD4(+) T cell responses. Interestingly, these immunodominant epitope regions accumulated many mutations over time, which likely indicates increased immune pressure. These findings have significant implications for the design of T cell-based influenza vaccines.
Collapse
|
4
|
HLA-DR and HLA-DP restricted epitopes from human cytomegalovirus glycoprotein B recognized by CD4+ T-cell clones from chronically infected individuals. J Clin Immunol 2012; 32:1305-16. [PMID: 22797815 PMCID: PMC3528953 DOI: 10.1007/s10875-012-9732-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/21/2012] [Indexed: 12/04/2022]
Abstract
Purpose Helper CD4+ T cells presumably play a major role in controlling cytomegalovirus (CMV) by providing help to specific B and CD8+ cytotoxic T cells, as well as through cytotoxicity-mediated mechanisms. Since CMV glycoprotein B (gB) is a major candidate for a subunit vaccine against CMV, we searched for gB-epitopes presented by human leukocyte antigen (HLA)-class II molecules. Methods Dendritic cells obtained from CMV-seropositive donors were loaded with a recombinant gB and co-cultured with autologous CD4+ T cells. Microcultures that specifically recognized gB were cloned by limiting dilution using autologous Epstein-Barr virus (EBV)-immortalized B cells pulsed with gB as antigen-presenting cells. To pinpoint precisely the region encoding the natural epitope recognized by a given CD4+ clone, we assessed the recognition of recombinant Escherichia coli expressing gB-overlapping polypeptides after their processing by autologous EBV-B cells. Results We isolated several gB-specific CD4+ T-cell clones directed against peptides gB190-204, gB396-410, gB22-36 and gB598-617 presented by HLA-DR7, HLA-DP10 and HLA-DP2. While their precise role in controlling CMV infection remains to be established, gB-specific CD4+ T cells are likely to act by directly targeting infected HLA-class II cells in vivo, as suggested by their recognition of EBV-B cells infected by the Towne CMV strain. Conclusions The characterization of such gB-epitopes presented by HLA-class II should help to understand the contribution of CD4+ T-cell responses to CMV and may be of importance both in designing a vaccine against CMV infection and in immunomonitoring of subjects immunized with recombinant gB or with vectors encoding gB.
Collapse
|
5
|
A simple competitive assay to determine peptide affinity for HLA class II molecules: A useful tool for epitope prediction. J Immunol Methods 2011; 371:97-105. [DOI: 10.1016/j.jim.2011.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/23/2022]
|
6
|
Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2492-503. [PMID: 20139279 PMCID: PMC2935290 DOI: 10.4049/jimmunol.0903655] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compared with DR and DQ, knowledge of the binding repertoires and specificities of HLA-DP alleles is somewhat limited. However, a growing body of literature has indicated the importance of DP-restricted responses in the context of cancer, allergy, and infectious disease. In the current study, we developed high-throughput binding assays for the five most common HLA-DPB1 alleles in the general worldwide population. Using these assays on a comprehensive panel of single-substitution analogs and large peptide libraries, we derived novel detailed binding motifs for DPB1*0101 and DPB1*0501. We also derived more detailed quantitative motifs for DPB1*0201, DPB1*0401, and DPB1*0402, which were previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. Unexpectedly, all five DP molecules, originally selected only on the basis of their frequency in human populations, were found to share largely overlapping peptide motifs. Testing panels of known DP epitopes and a panel of peptides spanning a set of Phleum pratense Ags revealed that these molecules also share largely overlapping peptide-binding repertoires. This demonstrates that a previously hypothesized DP supertype extends far beyond what was originally envisioned and includes at least three additional very common DP specificities. Taken together, these DP supertype molecules are found in >90% of the human population. Thus, these findings have important implications for epitope-identification studies and monitoring of human class II-restricted immune responses.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Justesen S, Harndahl M, Lamberth K, Nielsen LLB, Buus S. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Immunome Res 2009; 5:2. [PMID: 19416502 PMCID: PMC2690590 DOI: 10.1186/1745-7580-5-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged. RESULTS We generated alpha and beta MHC-II chain constructs, where the membrane-spanning regions were replaced by dimerization motifs, and the C-terminal of the beta chains was fused to a biotinylation signal peptide (BSP) allowing for in vivo biotinylation. These chains were produced separately as inclusion bodies in E. coli , extracted into urea, and purified under denaturing and non-reducing conditions using conventional column chromatography. Subsequently, diluting the two chains into a folding reaction with appropriate peptide resulted in efficient peptide-MHC-II complex formation. Several different formats of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both alpha and beta chains are polymorphic, illustrating the advantages of producing the two chains separately. CONCLUSION We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools.
Collapse
Affiliation(s)
- Sune Justesen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
8
|
Vollers SS, Stern LJ. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 2008; 123:305-13. [PMID: 18251991 DOI: 10.1111/j.1365-2567.2007.02801.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The use of major histocompatibility complex (MHC) tetramers in the detection and analysis of antigen-specific T cells has become more widespread since its introduction 11 years ago. Early challenges in the application of tetramer staining to CD4+ T cells centred around difficulties in the expression of various class II MHC allelic variants and the detection of low-frequency T cells in mixed populations. As many of the technical obstacles to class II MHC tetramer staining have been overcome, the focus has returned to uncertainties concerning how oligomer valency and T-cell receptor/MHC affinity affect tetramer binding. Such issues have become more important with an increase in the number of studies relying on direct ex vivo analysis of antigen-specific CD4+ T cells. In this review we discuss which problems in class II MHC tetramer staining have been solved to date, and which matters remain to be considered.
Collapse
Affiliation(s)
- Sabrina S Vollers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
9
|
Yang J, James EA, Huston L, Danke NA, Liu AW, Kwok WW. Multiplex mapping of CD4 T cell epitopes using class II tetramers. Clin Immunol 2006; 120:21-32. [PMID: 16677863 DOI: 10.1016/j.clim.2006.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
With the advent of class II tetramer technology, a tetramer-guided epitope mapping (TGEM) technique was developed for the identification of CD4+ T cell epitopes. This allowed the direct identification of epitopes recognized by the responding T cells, which were restricted to the single MHC allele of interest. However, as each individual carries multiple class II alleles, it would be advantageous to design an approach to identify CD4+ epitopes presented by different class II alleles at the same time. In the present study, a multiplex TGEM approach was developed to identify antigenic epitopes presented by multiple HLA class II alleles simultaneously. In this new approach, CD4+ T cells were stained with multiple sets of MHC class II tetramers-each labeled with a unique fluorescent label. Using this multiplex approach, novel epitopes from influenza antigens hemagglutinin and matrix protein presented by multiple class II alleles were identified in a single experimental setting.
Collapse
Affiliation(s)
- Junbao Yang
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Ave. Seattle, WA 98101, USA
| | | | | | | | | | | |
Collapse
|