1
|
Wrobel ER, Jackson J, Abraham M, He B. Regulation of host gene expression by J paramyxovirus. PLoS One 2023; 18:e0294173. [PMID: 37963152 PMCID: PMC10645344 DOI: 10.1371/journal.pone.0294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Paramyxoviruses are negative-sense, single-stranded RNA viruses that are associated with numerous diseases in humans and animals. J paramyxovirus (JPV) was first isolated from moribund mice (Mus musculus) with hemorrhagic lung lesions in Australia in 1972. In 2016, JPV was classified into the newly established genus Jeilongvirus. Novel jeilongviruses are being discovered worldwide in wildlife populations. However, the effects of jeilongvirus infection on host gene expression remains uncharacterized. To address this, cellular RNA from JPV-infected mouse fibroblasts was collected at 2, 4, 8, 12, 16, 24, and 48 hours post-infection (hpi) and were sequenced using single-end 75 base pairs (SE75) sequencing chemistry on an Illumina NextSeq platform. Differentially expressed genes (DEGs) between the virus-infected replicates and mock replicates at each timepoint were identified using the Tophat2-Cufflinks-Cuffdiff protocol. At 2 hpi, 11 DEGs were identified in JPV-infected cells, while 1,837 DEGs were detected at 48 hpi. A GO analysis determined that the genes at the earlier timepoints were involved in interferon responses, while there was a shift towards genes that are involved in antigen processing and presentation processes at the later timepoints. At 48 hpi, a KEGG analysis revealed that many of the DEGs detected were involved in pathways that are important for immune responses. qRT-PCR verified that Rtp4, Ifit3, Mx2, and Stat2 were all upregulated during JPV infection, while G0s2 was downregulated. After JPV infection, the expression of inflammatory and antiviral factors in mouse fibroblasts changes significantly. This study provides crucial insight into the different arms of host immunity that mediate Jeilongvirus infection. Understanding the pathogenic mechanisms of Jeilongvirus will lead to better strategies for the prevention and control of potential diseases that may arise from this group of viruses.
Collapse
Affiliation(s)
- Elizabeth R. Wrobel
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jared Jackson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mathew Abraham
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Ghetia C, Bhatt P, Mukhopadhyay C. Association of dengue virus non-structural-1 protein with disease severity: a brief review. Trans R Soc Trop Med Hyg 2022; 116:986-995. [PMID: 36125197 DOI: 10.1093/trstmh/trac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
Dengue virus (DENV) was discovered by P. M. Ashburn and Charles F. Craig in 1907. Evidence of dengue-like illness was observed before 1907 and DENV epidemics have been reported from different parts of the world since then, with increased morbidity rates every year. DENV typically causes a febrile illness that ranges from mild asymptomatic infection to fatal dengue haemorrhagic fever (DHF) and/or dengue shock syndrome (DSS). Host mechanisms through which mild infection progresses to the fatal forms are still unknown. Few factors have been associated to aid severe disease acquisition, DENV non-structural 1 (NS1) protein being one of them. NS1 is a highly conserved glycoprotein among the Flavivirus and is often used as a biomarker for dengue diagnosis. This review focuses on assessing the role of NS1 in severe dengue. In this review, hospital-based studies on the association of dengue NS1 with severe dengue from all over the world have been assessed and analysed and the majority of the studies positively correlate high NS1 levels with DHF/DSS acquisition. The review also discusses a few experimental studies on NS1 that have shown it contributes to dengue pathogenesis. This review assesses the role of NS1 and disease severity from hospital-based studies and aims to provide better insights on the kinetics and dynamics of DENV infection with respect to NS1 for a better understanding of the role of NS1 in dengue.
Collapse
Affiliation(s)
- Charmi Ghetia
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
3
|
Tao Y, Han X, Liu N, Shi L, Shi L, Liu S, Yao Y. Association study of TAP and HLA-I gene combination with chronic hepatitis C virus infection in a Han population in China. Int J Immunogenet 2022; 49:169-180. [PMID: 35485366 DOI: 10.1111/iji.12574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
Abstract
Host immune system genes play key roles in the progression of chronic hepatitis C virus (HCV) infection. Transporters associated with antigen processing (TAP) play an important role in the loading of viral peptides onto MHC class I molecules. This study aimed to investigate the association between TAP gene polymorphisms and chronic HCV in a Chinese Han population. A total of 232 chronic hepatitis C (CHC) patients and 362 healthy individuals were recruited from the Han population in Yunnan province in southwest China, and a TaqMan SNP genotyping assay was used to detect six single nucleotide polymorphisms (SNPs) of TAP1 and three SNPs of TAP2 genes. The association of the TAP gene with CHC was analysed at the allele, genotype, and haplotype levels. There were no significant differences in the allele and genotype frequencies of these SNPs in the TAP gene between CHC patients and controls after Bonferroni correction. A novel TAP1 allele (TAP1*unknown_1: rs41555220-rs41549617-rs1057141-rs1135216-rs1057149-rs41551515: G-G-A-G-G-G) was only present in the CHC group, and this allele significantly increased susceptibility to CHC (p = .005, odds ratio [OR] = 11.105. 95% confidence interval [CI]: 1.362-90.558). Homozygous TAP1*03:01/TAP1*03:01 was observed only in the CHC group that exhibited an obvious risk for CHC (p = .002, OR = 9.637, 95% CI: 1.153-80.574). And the haplotype TAP1*unknown_1-TAP2*01:01 was only present in the CHC group and indicated a significant risk for CHC (p = .002, OR = 9.498, 95% CI: 1.140-79.149). We observed significant interactions among HLA-A, -B,C, TAP1, and TAP2 alleles, and combination analysis revealed that the combination of TAP1*01:01-TAP2*01:01-HLA-B*35:01 was only present in the control group (2.2%) and resulted in significantly increased resistance to CHC (p = .002, OR = 0.096, 95% CI: 0.012-0.759). Whereas, the combination of TAP1*01:01-TAP2*01:01-HLA-C*07:02 and TAP1*03:01-TAP2*01:01-HLA-C*01:02 increased the susceptibility to CHC significantly (p = .001, OR = 2.016, 95% CI: 1.309-3.106 and p = .002, OR = 8.070, 95% CI: 1.018-63.997, respectively). Our results indicated that TAP and HLA-I may exert a combined effect on CHC susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Yufen Tao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Nannan Liu
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Lei Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
4
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
5
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
6
|
Analysis of transporter associated with antigen presentation (TAP) genes polymorphisms with HIV-1 infection. Mol Cell Biochem 2019; 464:65-71. [PMID: 31732831 PMCID: PMC6949311 DOI: 10.1007/s11010-019-03649-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/03/2019] [Indexed: 01/02/2023]
Abstract
Human leukocyte antigen (HLA) class I molecules of the human major histocompatibility complex (MHC) play an important role in modulating immune response. HLA class I molecules present antigenic peptides to CD8+ T cells and thereby play a role in the immune surveillance of cells infected with viruses. TAP1 and TAP2 are MHC-II-encoded genes necessary for the generation of a cellular immune response and polymorphism of these genes can influence the specificity of peptides preferentially presented by the MHC class I molecules and the outcome of the immune response. Several studies implicated genetic variation in TAP genes to various immune-mediated and infectious diseases. To determine the correlation between HIV-1 infection and the TAP1 and TAP2 genes polymorphisms, we performed PCR–RFLP assay of these genes in 500 HIV-1 seropositives and the matched seronegative individuals. Statistical analysis of the data disclosed no correlation between TAP1 (C/T intron 7) gene polymorphism and HIV-1/AIDS disease. However, the current results demonstrated that the heterozygous A/G [OR (95% CI) 1.39 (1.06–1.83), P = 0.0171] and homozygous G/G [OR (95% CI) 3.38(1.56–7.46), P = 0.0010] variants of TAP2 (A/G exon 11) (T665A) gene are positively associated with an increased risk of HIV-1/AIDS infection. This case–control analysis might suggest a possible role of TAP2 (A/G exon 11) (T665A) gene in the susceptibility to HIV-1 infection and disease outcome among North Indian patients.
Collapse
|
7
|
Cahill ME, Conley S, DeWan AT, Montgomery RR. Identification of genetic variants associated with dengue or West Nile virus disease: a systematic review and meta-analysis. BMC Infect Dis 2018; 18:282. [PMID: 29929468 PMCID: PMC6014009 DOI: 10.1186/s12879-018-3186-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dengue and West Nile viruses are highly cross-reactive and have numerous parallels in geography, potential vector host (Aedes family of mosquitoes), and initial symptoms of infection. While the vast majority (> 80%) of both dengue and West Nile virus infections result in asymptomatic infections, a minority of individuals experience symptomatic infection and an even smaller proportion develop severe disease. The mechanisms by which these infections lead to severe disease in a subset of infected individuals is incompletely understood, but individual host differences including genetic factors and immune responses have been proposed. We sought to identify genetic risk factors that are associated with more severe disease outcomes for both viruses in order to shed light on possible shared mechanisms of resistance and potential therapeutic interventions. METHODS We applied a search strategy using four major databases (Medline, PubMed, Embase, and Global Health) to find all known genetic associations identified to date with dengue or West Nile virus disease. Here we present a review of our findings and a meta-analysis of genetic variants identified. RESULTS We found genetic variations that are significantly associated with infections of these viruses. In particular we found variation within the OAS1 (meta-OR = 0.83, 95% CI: 0.69-1.00) and CCR5 (meta-OR = 1.29, 95% CI: 1.08-1.53) genes is significantly associated with West Nile virus disease, while variation within MICB (meta-OR = 2.35, 95% CI: 1.68-3.29), PLCE1 (meta-OR = 0.55, 95% CI: 0.42-0.71), MBL2 (meta-OR = 1.54, 95% CI: 1.02-2.31), and IFN-γ (meta-OR = 2.48, 95% CI: 1.30-4.71), is associated with dengue disease. CONCLUSIONS Despite substantial heterogeneity in populations studied, genes examined, and methodology, significant associations with genetic variants were found across studies within both diseases. These gene associations suggest a key role for immune mechanisms in susceptibility to severe disease. Further research is needed to elucidate the role of these genes in disease pathogenesis and may reveal additional genetic factors associated with disease severity.
Collapse
Affiliation(s)
- Megan E Cahill
- Yale University School of Public Health, New Haven, CT, USA
| | | | - Andrew T DeWan
- Yale University School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
8
|
Ng D, Ghosh A, Jit M, Seneviratne SL. Mini-review: Can non-human leucocyte antigen genes determine susceptibility to severe dengue syndromes? Trans R Soc Trop Med Hyg 2018; 111:384-392. [DOI: 10.1093/trstmh/trx075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
|
9
|
Zou N, Yang L, Chen L, Li T, Jin T, Peng H, Zhang S, Wang D, Li R, Liu C, Jiang J, Wang L, Liang W, Hu J, Li S, Wu C, Cui X, Chen Y, Li F. Heterozygote of TAP1 Codon637 decreases susceptibility to HPV infection but increases susceptibility to esophageal cancer among the Kazakh populations. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015. [PMID: 26205887 PMCID: PMC4514451 DOI: 10.1186/s13046-015-0185-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The role of human papillomavirus (HPV) may be involved in the development of esophageal cancer (EC) and the polymorphic immune response gene transporter associated with antigen processing (TAP) may be involved in HPV persistence and subsequent cancer carcinogenesis. The current study aims to provide association evidence for HPV with EC, to investigate TAP1 polymorphisms in EC and assess its association with HPV statuses and EC in Kazakhs. Methods The HPV genotypes in 361 patients with EC and 66 controls selected from Kazakh population were evaluated using PCR. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to detect two SNPs of TAP1 in 150 cases comprised of 75 HPV+ and 75 HPV- patients and 283 pure ethnic population of Kazakh and evaluate their associations with susceptibility to EC. A case-to-case comparison based on the genotyping results was conducted to address the function of TAP1 variants in the involvement of HPV. Results The presence of four HPV genotypes in EC tissues ― including HPV 16, 18, 31, 45 ― was significantly higher at 64.6 % than those in controls at 18.2 % (P < 0.001). Such presence was strongly associated with increased risk of EC (OR 8.196; 95 % CI 4.280–15.964). The infection of HPV16, and multi-infection of 16 and 18 significantly increase the risk for developing EC (OR 4.616, 95 % CI 2.099–10.151; and OR 6.029, 95 % CI 1.395–26.057 respectively). Heterozygote of TAP1 D637G had a significantly higher risk for developing EC (OR 1.626; 95 % CI 1.080–2.449). The odds ratio for HPV infection was significantly lower among carriers of TAP1 D637G polymorphism (OR 0.281; 95 % CI 0.144–0.551). Conclusions HPV infection exhibits a strong positive association with the risk of EC in Kazakhs. Heterozygote of TAP1 D637G decreases susceptibility to HPV infection in patients with EC but increases susceptibility to EC among the Kazakh populations.
Collapse
Affiliation(s)
- Ningjing Zou
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Ling Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Tingting Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Tingting Jin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Shumao Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Dandan Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Ranran Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Jinfang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Lianghai Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Weihua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Shugang Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China.
| | - Chuanyue Wu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, Shihezi, Xinjiang, 832002, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Ramakrishnan L, Pillai MR, Nair RR. Dengue vaccine development: strategies and challenges. Viral Immunol 2014; 28:76-84. [PMID: 25494228 DOI: 10.1089/vim.2014.0093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infection with dengue virus may result in dengue fever or a more severe outcome, such as dengue hemorrhagic syndrome/shock. Dengue virus infection poses a threat to endemic regions for four reasons: the presence of four serotypes, each with the ability to cause a similar disease outcome, including fatality; difficulties related to vector control; the lack of specific treatment; and the nonavailability of a suitable vaccine. Vaccine development is considered challenging due to the severity of the disease observed in individuals who have acquired dengue-specific immunity, either passively or actively. Therefore, the presence of vaccine-induced immunity against a particular serotype may prime an individual to severe disease on exposure to dengue virus. Vaccine development strategies include live attenuated vaccines, chimeric, DNA-based, subunit, and inactivated vaccines. Each of the candidates is in various stages of preclinical and clinical development. Issues pertaining to selection pressures, viral interaction, and safety still need to be evaluated in order to induce a complete protective immune response against all four serotypes. This review highlights the various strategies that have been employed in vaccine development, and identifies the obstacles to producing a safe and effective vaccine.
Collapse
Affiliation(s)
- Lakshmy Ramakrishnan
- 1 Laboratory Medicine and Molecular Diagnostics, Rajiv Gandhi Centre for Biotechnology , Trivandrum, India
| | | | | |
Collapse
|
11
|
Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacol Ther 2013; 137:266-82. [DOI: 10.1016/j.pharmthera.2012.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022]
|
12
|
Non-HLA gene polymorphisms and their implications on dengue virus infection. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2012.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
13
|
Qiu B, Huang B, Wang X, Liang J, Feng J, Chang Y, Li D. Association of TAP1 and TAP2 polymorphisms with the outcome of persistent HBV infection in a northeast Han Chinese population. Scand J Gastroenterol 2012; 47:1368-74. [PMID: 22989262 DOI: 10.3109/00365521.2012.725090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Transporter associated with antigen processing (TAP) plays a central role in a cellular immune response against HBV. Polymorphisms exist at the coding region of TAP and alter its structure and function. The aim of this study was to evaluate the potential relationship between polymorphisms of TAP and different outcomes of persistent HBV infection in a Han population in northeastern China. MATERIAL AND METHODS 189 HBV spontaneously recovered (SR) subjects, 571 HBV-infected patients including 180 chronic hepatitis B (CHB), 196 liver cirrhosis (LC) and 195 hepatocellular carcinoma (HCC) individuals were included in this study. TAP1-333 Ile/Val and -637 Asp/Gly, TAP2-651 Arg/Cys and -687 Stop/Gln were genotyped in all the samples by using a PCR-RFLP method. RESULTS The frequency of TAP1-637-Gly (allele G) was significantly higher in persistently HBV-infected individuals (CHB and LC) than that of SR subjects (OR = 1.58, 95% CI 1.12-2.45, p = 0.024; OR = 1.78, 95% CI 1.27-2.68, p = 0.002) by a logistic regression analysis. In addition, the statistically significant difference in the distribution of TAP2-651-Cys (allele T) was observed between HCC cases and SR controls (OR = 2.30, 95% CI 1.51-3.72, p < 0.001), and TAP2-687-Gln (allele C) in CHB patients was more common than that in SR subjects (OR = 1.41, 95% CI 1.13-1.97, p = 0.021). The data also revealed that haplotype 687 Gln-651 Cys-637 Gly-333 Ile was strongly associated with persistent HBV infection (CHB, LC and HCC) (p < 0.001, < 0.05 and < 0.001, respectively). CONCLUSION These results suggested that TAP variants were likely to play a substantial role in different outcomes of persistent HBV infection in the studied population.
Collapse
Affiliation(s)
- Bing Qiu
- Department of Gastroenterology, Heilongjiang Province Hospital, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Fang X, Hu Z, Shang W, Zhu J, Xu C, Rao X. Genetic polymorphisms of molecules involved in host immune response to dengue virus infection. ACTA ACUST UNITED AC 2012; 66:134-46. [DOI: 10.1111/j.1574-695x.2012.00995.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/29/2012] [Accepted: 05/22/2012] [Indexed: 01/06/2023]
|
15
|
Abstract
The relationship of this country with dengue has been long and intense. The ?rst recorded epidemic of clinically dengue-like illness occurred at Madras in 1780 and the dengue virus was isolated for the ?rst time almost simultaneously in Japan and Calcutta in 1943-1944. After the ?rst virologically proved epidemic of dengue fever along the East Coast of India in 1963-1964, it spread to allover the country.The ?rst full-blown epidemic of the severe form of the illness,the dengue haemorrhagic fever/dengue shock syndrome occurred in North India in 1996. Aedes aegypti is the vector for transmission of the disease. Vaccines or antiviral drugs are not available for dengue viruses; the only effective way to prevent epidemic degure fever/dengue haemorrhagic fever (DF/DHF) is to control the mosquito vector, Aedes aegypti and prevent its bite. This country has few virus laboratories and some of them have done excellent work in the area of molecular epidemiology,immunopathology and vaccine development. Selected work done in this country on the problems of dengue is presented here.
Collapse
Affiliation(s)
- U C Chaturvedi
- Department of Microbiology, CSM Medical University, Lucknow 226 003, India.
| | | |
Collapse
|