1
|
Gowda NC, Aggarwal A. 38.3 Primary Immunodeficiencies: When is it not just "JIA". Best Pract Res Clin Rheumatol 2024; 38:101960. [PMID: 38851969 DOI: 10.1016/j.berh.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Juvenile Idiopathic Arthritis (JIA) is sometimes considered a diagnosis of exclusion as the name signifies that no cause is evident for this form of arthritis. Despite this JIA has some classical clinical features and many categories are defined based on the phenotype. Since there is no diagnostic test for JIA, diseases that can mimic JIA, including Primary Immunodeficiencies (PID) can sometimes be misdiagnosed as JIA. The clues to suspecting PIDs are early age of onset, presence of family history, increased susceptibility to infections, unusual features like urticaria, interstitial lung disease, sensorineural hearing loss and poor response to conventional therapy, amongst others. This review will highlight the basics of PIDs and will discuss PIDs that can present with arthritis and hence can be confused with JIA.
Collapse
Affiliation(s)
- Nikhil C Gowda
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
2
|
Delavari S, Rasouli SE, Fekrvand S, Chavoshzade Z, Mahdaviani SA, Shirmast P, Sharafian S, Sherkat R, Momen T, Aleyasin S, Ahanchian H, Sadeghi-Shabestari M, Esmaeilzadeh H, Barzamini S, Tarighatmonfared F, Salehi H, Esmaeili M, Marzani Z, Fathi N, Abolnezhadian F, Rad MK, Saeedi-Boroujeni A, Shirkani A, Bagheri Z, Salami F, Shad TM, Marzbali MY, Mojtahedi H, Razavi A, Tavakolinia N, Cheraghi T, Tavakol M, Shafiei A, Behniafard N, Ebrahimi SS, Sepahi N, Ghaneimoghadam A, Rezaei A, Kalantari A, Abolhassani H, Rezaei N. Clinical heterogeneity in families with multiple cases of inborn errors of immunity. Clin Immunol 2024; 259:109896. [PMID: 38184287 DOI: 10.1016/j.clim.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are a diverse range of genetic immune system illnesses affecting the innate and/or adaptive immune systems. Variable expressivity and incomplete penetrance have been reported in IEI patients with similar clinical diagnoses or even the same genetic mutation. METHODS Among all recorded patients in the national IEI registry, 193 families with multiple cases have been recognized. Clinical, laboratory and genetic variability were compared between 451 patients with different IEI entities. RESULTS The diagnosis of the first children led to the earlier diagnosis, lower diagnostic delay, timely treatment and improved survival in the second children in the majority of IEI. The highest discordance in familial lymphoproliferation, autoimmunity and malignancy were respectively observed in STK4 deficiency, DNMT3B deficiency and ATM deficiency. Regarding immunological heterogeneity within a unique family with multiple cases of IEI, the highest discordance in CD3+, CD4+, CD19+, IgM and IgA levels was observed in syndromic combined immunodeficiencies (CID), while non-syndromic CID particularly severe combined immunodeficiency (SCID) manifested the highest discordance in IgG levels. Identification of the first ATM-deficient patient can lead to improved care and better survival in the next IEI children from the same family. CONCLUSION Intrafamilial heterogeneity in immunological and/or clinical features could be observed in families with multiple cases of IEI indicating the indisputable role of appropriate treatment and preventive environmental factors besides specific gene mutations in the variable observed penetrance or expressivity of the disease. This also emphasizes the importance of implementing genetic evaluation in all members of a family with a history of IEI even if there is no suspicion of an underlying IEI as other factors besides the underlying genetic defects might cause a milder phenotype or delay in presentation of clinical features. Thus, affected patients could be timely diagnosed and treated, and their quality of life and survival would improve.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Erfan Rasouli
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saba Fekrvand
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Chavoshzade
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Shirmast
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tooba Momen
- Department of Asthma, Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute of Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Sahar Barzamini
- Department of Rheumatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Tarighatmonfared
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Marzani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Fathi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Mina Kianmanesh Rad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | - Zahra Bagheri
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Yousefpour Marzbali
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Taher Cheraghi
- Department of Pediatrics, Guilan University of Medical Sciences, 17 Shahrivar Children's Hospital, Rasht, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sare Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Arezou Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Nima Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Al-Herz W, Ziyab AH, Adeli M, Al Farsi T, Al-Hammadi S, Al Kuwaiti AA, Al-Nesf M, Al Sukaiti N, Al-Tamemi S, Shendi H. Epidemiology of combined immunodeficiencies affecting cellular and humoral immunity- a multicentric retrospective cohort study from the Arabian Peninsula. Clin Immunol 2023; 254:109696. [PMID: 37481010 DOI: 10.1016/j.clim.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
AIMS To understand the characteristics of combined immunodeficiency disorders that affect cellular and humoral immunity (CID) in the Arabian Peninsula. METHODS Retrospective study of 236 patients with CID from the region were enrolled from 2004 to 2022. RESULTS 236 patients were included with a majority being profound CID. Among patients with a family history of CID, the ages at onset and diagnosis, and the delay in diagnosis were lower compared to those with no family history of CID, but this did not affect time to transplant. HSCT was performed for 51.27% of the patients with median time from diagnosis to HSCT of 6.36 months. On multivariate analysis, patients who underwent early transplant had increased odds of having CD3 count ≤1000 cell/μl, diagnosed by screening or erythroderma. CONCLUSION There is a delay in diagnosis and treatment of CID in our region. Establishing newborn screening programs and HSCT units in our region are the urgent need.
Collapse
Affiliation(s)
- Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait; Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait.
| | - Ali H Ziyab
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mehdi Adeli
- Division of Immunology and Allergy, Sidra Medicine and Hamad Medical Corporation, Doha, Qatar
| | - Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Suleiman Al-Hammadi
- College of Medicine, Mohammed Bin Rashid University for Medicine and Health Sciences, Dubai, United Arab Emirates; Al Jalila Children's Hospital, Dubai, United Arab Emirates
| | - Amna Ali Al Kuwaiti
- Division of Paediatric Allergy and Immunology, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Maryam Al-Nesf
- Division of Allergy and Immunology, Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Hiba Shendi
- Division of Paediatric Allergy and Immunology, Tawam Hospital, Al-Ain, United Arab Emirates
| |
Collapse
|
4
|
Baris S, Abolhassani H, Massaad MJ, Al-Nesf M, Chavoshzadeh Z, Keles S, Reisli I, Tahiat A, Shendi HM, Elaziz DA, Belaid B, Al Dhaheri F, Haskologlu S, Dogu F, Ben-Mustapha I, Sobh A, Galal N, Meshaal S, Elhawary R, El-Marsafy A, Alroqi FJ, Al-Saud B, Al-Ahmad M, Al Farsi T, Al Sukaiti N, Al-Tamemi S, Mehawej C, Dbaibo G, ElGhazali G, Kilic SS, Genel F, Kiykim A, Musabak U, Artac H, Guner SN, Boukari R, Djidjik R, Kechout N, Cagdas D, El-Sayed ZA, Karakoc-Aydiner E, Alzyoud R, Barbouche MR, Adeli M, Wakim RH, Reda SM, Ikinciogullari A, Ozen A, Bousfiha A, Al-Mousa H, Rezaei N, Al-Herz W, Geha RS. The Middle East and North Africa Diagnosis and Management Guidelines for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:158-180.e11. [PMID: 36265766 DOI: 10.1016/j.jaip.2022.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Human inborn errors of immunity (IEI) are a group of 485 distinct genetic disorders affecting children and adults. Signs and symptoms of IEI are heterogeneous, and accurate diagnosis can be challenging and depends on the available human expertise and laboratory resources. The Middle East and North Africa (MENA) region has an increased prevalence of IEI because of the high rate of consanguinity with a predominance of autosomal recessive disorders. This area also exhibits more severe disease phenotypes compared with other regions, probably due to the delay in diagnosis. The MENA-IEI registry network has designed protocols and guidelines for the diagnosis and treatment of IEI, taking into consideration the variable regional expertise and resources. These guidelines are primarily meant to improve the care of patients within the region, but can also be followed in other regions with similar patient populations.
Collapse
Affiliation(s)
- Safa Baris
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Maryam Al-Nesf
- Allergy and Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Zahra Chavoshzadeh
- Allergy and Clinical Immunology Department, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Azzeddine Tahiat
- Laboratory of Immunology, Department of Medical Biology, University of Algiers, Rouiba Hospital, Algiers, Algeria
| | - Hiba Mohammad Shendi
- Division of Pediatric Allergy and Immunology, Tawam Hospital, Abu Dhabi, United Arab Emirates
| | - Dalia Abd Elaziz
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Brahim Belaid
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Fatima Al Dhaheri
- Department of Pediatrics, Pediatric Infectious Diseases, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Imen Ben-Mustapha
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Meshaal
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab Elhawary
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aisha El-Marsafy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fayhan J Alroqi
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mona Al-Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait
| | - Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Gehad ElGhazali
- Department of Immunology, Sheikh Khalifa Medical City-Union 71-Purehealth, Abu Dhabi, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ferah Genel
- Department of Pediatric Immunology and Allergy, University of Health Sciences Dr. Behcet Uz Children's Hospital, İzmir, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ugur Musabak
- Department of Internal Medicine, Division of Immunology and Allergy, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Hasibe Artac
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Rachida Boukari
- Department of Pediatrics, Mustapha Pacha Faculty of Medicine, Algiers University, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Nadia Kechout
- Department of Immunology, Pasteur Institute of Algeria, Faculty of Medicine, Algiers, Algeria
| | - Deniz Cagdas
- Department of Pediatrics, Section of Pediatric Immunology, Ihsan Dogramaci Children's Hospital, Institute of Child Health, Hacettepe University Medical School, Ankara, Turkey
| | - Zeinab Awad El-Sayed
- Pediatric Allergy, Immunology and Rheumatology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Raed Alzyoud
- Section of Immunology, Allergy and Rheumatology, Queen Rania Children Hospital, Amman, Jordan
| | - Mohamed Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Mehdi Adeli
- Department of Immunology, Sidra Medicine, Ar-Rayyan, Qatar
| | - Rima Hanna Wakim
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Shereen M Reda
- Pediatric Allergy, Immunology and Rheumatology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Ahmet Ozen
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, Department of pediatric infectious and immunological diseases, Ibn Rushd Children Hospital, King Hassan II University, Casablanca, Morocco
| | - Hamoud Al-Mousa
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait City, Kuwait; Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
5
|
Clinical, immunologic, and genetic spectrum of 696 patients with combined immunodeficiency. J Allergy Clin Immunol 2017; 141:1450-1458. [PMID: 28916186 DOI: 10.1016/j.jaci.2017.06.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/16/2017] [Accepted: 06/26/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Combined immunodeficiencies (CIDs) are diseases of defective adaptive immunity with diverse clinical phenotypes. Although CIDs are more prevalent in the Middle East than Western countries, the resources for genetic diagnosis are limited. OBJECTIVES This study aims to characterize the categories of patients with CIDs in Iran clinically and genetically. METHODS Clinical and laboratory data were obtained from 696 patients with CIDs. Patients were subdivided into those with syndromic (344 patients) and nonsyndromic (352 patients) CIDs. Targeted DNA sequencing was performed on 243 (34.9%) patients. RESULTS The overall diagnostic yield of the 243 sequenced patients was 77.8% (189 patients). The clinical diagnosis of hyper-IgE syndrome (P < .001), onset of disease at greater than 5 years (P = .02), and absence of multiple affected family members (P = .04) were significantly more frequent in the patients without a genetic diagnosis. An autosomal recessive disease was found in 62.9% of patients, reflecting the high rate of consanguinity in this cohort. Mutations impairing VDJ recombination and DNA repair were the most common underlying causes of CIDs. However, in patients with syndromic CIDs, autosomal recessive mutations in ataxia-telangiectasia mutated (ATM), autosomal dominant mutations in signal transducer and activator of transcription 3 (STAT3), and microdeletions in 22q11.21 were the most commonly affected genomic loci. Patients with syndromic CIDs had a significantly lower 5-year survival rate rather than those with nonsyndromic CIDs. CONCLUSIONS This study provides proof of principle for the application of targeted next-generation sequencing panels in countries with limited diagnostic resources. The effect of genetic diagnosis on clinical care requires continued improvements in therapeutic resources for these patients.
Collapse
|
6
|
Azarsiz E, Karaca N, Ergun B, Durmuscan M, Kutukculer N, Aksu G. In vitro T lymphocyte proliferation by carboxyfluorescein diacetate succinimidyl ester method is helpful in diagnosing and managing primary immunodeficiencies. J Clin Lab Anal 2017; 32. [PMID: 28383134 DOI: 10.1002/jcla.22216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/28/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Functional studies besides routine laboratory tests for the definitive diagnosis of T lymphocyte disorders with isolated T or combined T/B-cell immunodeficiencies are important. We hereby summarized our experience with a carboxyfluorescein diacetate succinimidyl ester (CFSE)-based assay for the assessment of mitogenic T-cell proliferation responses in primary immunodeficiency (PID) patients who have not been diagnosed yet or genetically analyzed, but classified as probably having T-cell defects. METHODS Unclassified patients (n=46) and controls (n=25) were evaluated for T-cell disorders with CFSE-based assay. RESULTS CD3+ blast cells after PHA-L stimulation were significantly lower in patients (31.1±28.8) than controls (67.9±8.79; P<.001). Nine patients with low and four patients with normal CD3 values had severely decreased blastic transformation. The proliferation response decreased mostly in combined immunodeficiency group. Sixteen of them had impaired proliferation responses. Appropriate molecular genetical analyses were planned after thorough evaluation of each patient. CONCLUSIONS In vitro lymphocyte cell proliferation analysis by CFSE method is a reliable and practical choice for the assessment of mitogenic T lymphocyte responses in yet unclassified PID patients for targeting further genetical analyses.
Collapse
Affiliation(s)
- Elif Azarsiz
- Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Neslihan Karaca
- Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Birgul Ergun
- Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Mehmet Durmuscan
- Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Guzide Aksu
- Department of Pediatric Immunology, Ege University, Izmir, Turkey
| |
Collapse
|
7
|
Galal N, Meshaal S, Elhawary R, ElAziz DA, Alkady R, Lotfy S, Eldash A, Boutros J, Elmarsafy A. Patterns of Primary Immunodeficiency Disorders Among a Highly Consanguineous Population: Cairo University Pediatric Hospital's 5-Year Experience. J Clin Immunol 2016; 36:649-55. [PMID: 27484503 DOI: 10.1007/s10875-016-0314-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Primary immunodeficiency disorders (PIDs) are heterogeneous disorders that mainly present with severe, persistent, unusual, or recurrent infections in childhood. Reports from different parts of the world indicate a difference between Western and Eastern populations. AIM The aim of this study was to report on the different patterns of PIDs and identify subgroup characteristics in a highly consanguineous population in Egypt. METHODS We performed a retrospective chart review for children below 18 years diagnosed with PID at Cairo University Pediatric Hospital from 2010 to 2014. RESULTS Four hundred seventy-six children were diagnosed with PID disorders. Major categories included combined immunodeficiency disorders, which constituted a large proportion (30 %) of cases, along with predominantly antibody disorders (18 %) followed by syndromic combined disorders (16.8 %), phagocytic disorders (13.2 %), immune dysregulation disorders (10.5 %), and autoinflammatory disorders (9 %). CONCLUSION PIDs have different patterns within inbred populations with high consanguinity.
Collapse
Affiliation(s)
- Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Safa Meshaal
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab Elhawary
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Abd ElAziz
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Radwa Alkady
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sohilla Lotfy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alia Eldash
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jeanette Boutros
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aisha Elmarsafy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Patiroglu T, Akar HH, Unal E, Ozdemir MA, Karakukcu M. Hematopoietic Stem Cell Transplant for Primary Immunodeficiency Diseases: A Single-Center Experience. EXP CLIN TRANSPLANT 2016; 15:337-343. [PMID: 27001505 DOI: 10.6002/ect.2015.0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The only curative treatment for many patients with primary immunodeficiency disease is hematopoietic stem cell transplant. In this study, we report the transplant outcomes of patients with primary immunodeficiency diseases. MATERIALS AND METHODS Herein, we present the transplant outcomes of 20 patients with primary immunodeficiency disease seen at our center in Kayseri, Turkey, from 2010 to 2015. RESULTS The disease distribution of the 20 patients were as follows: 6 patients with severe combined immunodeficiency, 4 patients with hemophagocytic lymphohistiocytosis, 2 patients with chronic granulomatous disease, 2 patients with type 2 Griscelli syndrome, 2 patients with B-cell deficiency plus bone marrow failure, 1 patient with severe congenital neutropenia, 1 patient with X-linked lymphoproliferative disease, 1 patient with T-cell deficiency plus relapsed non-Hodgkin lymphoma, and 1 patient with type 1 leukocyte adhesion deficiency. Of the 20 patients, 11 received related HLA-matched, 6 received haploidentical, 2 received unrelated HLA-matched, and 1 received HLA-mismatched transplant. The median age at transplant was 21 months, and median follow-up was 5 months. Overall survival rate was 65%. Mean engraftment times for neutrophils and platelets were 14.25 ± 3.08 and 24.7 ± 11.4 days. Graft-versus-host disease was observed in 30% of patients. CONCLUSIONS Patients with primary immunodeficiency disease treated at our center had acceptable transplant outcomes. This study supports the use of hematopoietic stem cell transplant in patients with primary immunodeficiency disease.
Collapse
Affiliation(s)
- Turkan Patiroglu
- From the Department of Pediatric Immunology, and the Department of Pediatric Hematology and Oncology, Erciyes University School of Medicine, Kayseri, Turkey
| | | | | | | | | |
Collapse
|
9
|
Combined immunodeficiencies: twenty years experience from a single center in Turkey. Cent Eur J Immunol 2016; 41:107-15. [PMID: 27095930 PMCID: PMC4829808 DOI: 10.5114/ceji.2015.56168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 12/24/2022] Open
Abstract
Combined immunodeficiencies (CIDs) include a group of inherited monogenic disorders. CIDs are characterized by defective cellular and humoral immunities that lead to severe infections. CIDs can be classified according to immunologic phenotypes as T–B–NK– CID, T–B–NK+ CID, T–B+NK– CID and T–B+NK+ CID. In a 20-year period, from 1994 to 2014, a total of 40 CID patients were diagnosed at the Pediatric Immunology of Erciyes University Medical Faculty in Kayseri, Turkey. The gender ratio (F/M) was 3/5. The median age at the onset of symptoms was 2 months (range, 15 days – 15 years). Of the 14 T–B–NK– CIDs, 6, 2 (siblings), 1, 1 and 4 had a mutation in the ADA, PNP, Artemis, RAG1 genes and unknown genetic diagnosis respectively. Of the 15 T–B–NK+ CIDs, 3, 2 (siblings) and 10 had a mutation in the RAG1, XLF/Cernunnos genes and unknown genetic diagnosis respectively. Of the 9 T–B+NK– CIDs, 2 siblings, 1, 1 and 5 had a mutation in the ZAP70, IL2RG, DOCK8 genes and unknown genetic diagnosis respectively. Of the 2 T–B+NK+ CIDs, 2 had a mutation in the MAGT1 and ZAP70 genes respectively. Of the 40 CIDs, 26 (65%) were died and 14 (35%) are alive. Eight patients received HSCT (hematopoietic stem cell transplantation) with 62.5% survival rate. As a result, patients presented with severe infections in the first months of life have to be examined for CIDs. Shortening time of diagnosis would increase chance of HSCT as life-saving treatment in the CID patients.
Collapse
|
10
|
Combined immunodeficiency in the United States and Kuwait: Comparison of patients' characteristics and molecular diagnosis. Clin Immunol 2015; 161:170-3. [PMID: 26248333 DOI: 10.1016/j.clim.2015.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
AIM To compare different variables among (S)CID patients diagnosed in the USA and Kuwait. METHODS Review of patients registered in The US Immune Deficiency Network registry or Kuwait National PID Registry between 2004 and 2014. RESULTS Totals of 98 and 69 (S)CID patients were registered during the study period in the USIDNET registry and the KNPIDR, respectively. The average annual incidence rate for the period 2004-2014 of (S)CID in children in Kuwait was 13.01/100,000 children, with an estimated occurrence of 1/7500 live births. There were differences between the two countries in the following variables: age at onset and diagnosis, family history of (S)CID, parental consanguinity, and outcome. More than 14% of (S)CID patients from USIDNET registry were diagnosed through newborn screening. CONCLUSIONS Patients' characteristics and molecular causes of S(CID) are different between USA and Kuwait. NBS for SCID should be started in countries where the incidence of (S)CID is high.
Collapse
|
11
|
The Value of Family History in Diagnosing Primary Immunodeficiency Disorders. Case Rep Pediatr 2014; 2014:516256. [PMID: 25161792 PMCID: PMC4137698 DOI: 10.1155/2014/516256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/16/2014] [Indexed: 11/30/2022] Open
Abstract
Eliciting proper family medical history is critical in decreasing morbidity and mortality in patients with primary immunodeficiency disorders (PIDs). Communities with a common practice of consanguinity have a high rate of PIDs. We are presenting 2 cases where digging deeply into the family medical history resulted in the diagnosis of Omenn syndrome, a possibly fatal entity if not managed in a reasonable period.
Collapse
|
12
|
Abstract
The J Project physician education and clinical research collaboration program was launched in 2004 in Eastern and Central Europe (ECE). In less than 10 years, it has achieved remarkable success. This project aims to increase knowledge in the field of primary immunodeficiency disorders (PID), and to improve the diagnosis and treatment of patients worldwide, particularly in countries with limited economic resources, which currently report fewer such patients than expected. In most ECE countries, gene sequencing, which can provide a definitive diagnosis of PID, still remains unavailable. By contrast, such technology is used elsewhere to detect the more than 200 PID-causing genes that have been discovered in the last three decades. Thus, PID awareness programs like the J Project remain critically important, to improve diagnostic facilities and treatment and to promote clinical research collaboration. This paper highlights the achievements of the J Project and the spread of its concepts and spirit to the countries of Western Asia.
Collapse
|
13
|
Ehlayel M, Bener A, Laban MA. Effects of family history and consanguinity in primary immunodeficiency diseases in children in Qatar. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oji.2013.32008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Kutukculer N, Gulez N, Karaca NE, Aksu G, Berdeli A. Three different classifications, B lymphocyte subpopulations, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF13 (APRIL) gene mutations, CTLA-4 and ICOS gene polymorphisms in Turkish patients with common variable immunodeficiency. J Clin Immunol 2012; 32:1165-79. [PMID: 22699762 DOI: 10.1007/s10875-012-9717-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/30/2012] [Indexed: 12/22/2022]
Abstract
B lymphocyte subpopulations, previously defined classification schemes (Freiburg, Paris, EuroClass), TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF13 (APRIL) gene mutations, CTLA-4 and ICOS gene polymorphisms were analyzed in 25 common variable immunodeficiency (CVID) patients and 25 healthy controls. Patients were also divided into two subgroups due to some disease severity criteria. SG (severe disease group) (n:11) included patients who have splenomegaly and/or granulomatous diseases and/or bronchiectasis and/or lower baseline IgG values (<270 mg/dl). MG (moderate disease group) (n:14) patients diagnosed as having ESID/PAGID criteria but does not fulfill SG inclusion criteria. The onset of infectious symptoms and age at diagnosis were 50.0 ± 45.7 and 78.5 ± 54.5 months, respectively. Parental consanguinity rate was 54.5% in SG and 7.1% in MG. Switched-memory B cells (CD19 + 27 + IgD-IgM-) showed significant decrease in CVID patients and these cells were also significantly lower in SG compared to MG. CVID patients had significantly higher percentages of CD19 + κ + B cells and CD19 + λ + B cells than healthy controls. Freiburg classification: 87.5% of patients (n:21) were in group I and 12.5% were in Group II. Eighteen (75%) CVID patients with a low percentage of CD21(low) B cells were in Group Ib while three patients classified as Group Ia. The significantly lower levels of IgG and IgA in Group Ia is a novel finding. The percentages of patients for Paris Classification groups MB0, MB1, MB2 were 88%, 4% and 8%, respectively. There was a significant increase of splenomegaly, lymphadenopathy and autoimmune cytopenia in Group MB0. EuroClass: 45.8% of patients were smB+ and 54.2% were smB-. Splenomegaly and lymphadenopathy were significantly higher in smB- group. TACI: One patient carried heterozygous C104R mutation which was known as disease causing. APRIL: G67R and N96S SNPs were detected in most of the patients and healthy controls. BAFF-R: P21R/H159Y compound heterozygous mutation (n:1) and P21R heterozygous mutations (n:3) were detected. +49 A > G changes in exon 1 of CTLA-4 gene: GG and AG genotypes increase the risk of CVID development 1.32 and 2.18 fold, respectively. 1564 T > C polymorphisms on 3'UTR region in exon 2 of ICOS gene was not found to be significantly different in CVID patients. CVID classifications were not helpful in determining the genetic etiology of CVID.
Collapse
Affiliation(s)
- Necil Kutukculer
- Department of Pediatric Immunology, Ege University, Faculty of Medicine, 35100, Bornova, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
15
|
Patiroglu T, Ozdemir MA, Unal E, Altuner Torun Y, Coskun A, Menku A, Mutlu FT, Karakukcu M. Intracranial hemorrhage in children with congenital factor deficiencies. Childs Nerv Syst 2011; 27:1963-6. [PMID: 21748400 DOI: 10.1007/s00381-011-1519-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/28/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intracranial hemorrhage (ICH) is a life-threatening situation in childhood. Congenital factor deficiencies (CFD) like hemophilia may cause ICH, and ICH may be the initial presentation in some cases. METHODS From 2000 to 2010, 107 children with CFD from Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, were evaluated. The ICH episodes were identified by medical history, general physical examination, detailed neurological examination, and CT or MR scan. The management strategies, surgical intervention, and outcome were noted. RESULTS Twenty-one episodes of ICH were seen in 18 patients (16.8%) out of 107 CFD patients. The mean age of the patients was 42.1 months. Fourteen out of 18 patients were male, and four were female. Twelve (57.1%) out of 21 ICH episodes were caused by trauma, and nine (42.9%) were non-trauma related. Epidural hematoma was most frequently observed. All patients survived, but four had decrease in intellectual capacity and motor deficit. CONCLUSION The optimal management of ICH in children with CFD depends on immediate recognition and prompt replacement therapy to ensure hemostatic balance with adequate surgical intervention.
Collapse
Affiliation(s)
- Turkan Patiroglu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Talas, Kayseri, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Current world literature. Curr Opin Allergy Clin Immunol 2011; 11:594-8. [PMID: 22027954 DOI: 10.1097/aci.0b013e32834d9a9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|