1
|
Doskas T, Dardiotis E, Vavougios GD, Ntoskas KT, Sionidou P, Vadikolias K. Stroke risk in multiple sclerosis: a critical appraisal of the literature. Int J Neurosci 2023; 133:1132-1152. [PMID: 35369835 DOI: 10.1080/00207454.2022.2056459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Observational studies suggest that the occurrence of stroke on multiple sclerosis (MS) patients is higher compared to the general population. MS is a heterogeneous disease that involves an interplay of genetic, environmental and immune factors. The occurrence of stroke is subject to a wide range of both modifiable and non-modifiable, short- and long-term risk factors. Both MS and stroke share common risk factors. The immune mechanisms that underlie stroke are similar to neurodegenerative diseases and are attributed to neuroinflammation. The inflammation in autoimmune diseases may, therefore, predispose to an increased risk for stroke or potentiate the effect of conventional stroke risk factors. There are, however, additional determinants that contribute to a higher risk and incidence of stroke in MS. Due to the challenges that are associated with their differential diagnosis, the objective is to present an overview of the factors that may contribute to increased susceptibility or occurrence of stroke in MSpatients by performing a review of the available to date literature. As both MS and stroke can individually detrimentally affect the quality of life of afflicted patients, the identification of factors that contribute to an increased risk for stroke in MS is crucial for the prompt implementation of preventative therapeutic measures to limit the additive burden that stroke imposes.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | |
Collapse
|
2
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
3
|
Arshad Z, Rezapour-Firouzi S, Ebrahimifar M, Mosavi Jarrahi A, Mohammadian M. Association of Delta-6-Desaturase Expression with Aggressiveness of Cancer, Diabetes Mellitus, and Multiple Sclerosis: A Narrative Review. Asian Pac J Cancer Prev 2019; 20:1005-1018. [PMID: 31030467 PMCID: PMC6948902 DOI: 10.31557/apjcp.2019.20.4.1005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/12/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The phosphatidylinositol 3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/ mTOR) signaling regulates multiple cellular processes and organizes cell proliferation, survival, and differentiation with the available nutrients, in particular, fatty acids. Polyunsaturated fatty acids (PUFAs) are cytotoxic to cancer cells and play a critical role in the treatment of multiple sclerosis (MS) and diabetes mellitus (DM). PUFAs are produced in the body by desaturases and elongases from dietary essential fatty acids (EFAs), primarily involving delta-6-desaturase (D6D). D6D is a rate-limiting enzyme for maintaining many aspects of lipid homeostasis and normal health. D6D is important to recognize the mechanisms that regulate the expression of this enzyme in humans. A lower level of D6D was seen in breast tumors compared to normal tissues. Interestingly, the elevated serum level of D6D was seen in MS and DM, which explains the critical role of D6D in inflammatory diseases. Methods: We searched databases of PubMed, Web of Science (WOS), Google Scholar, Scopus and related studies by predefined eligibility criteria. We assessed their quality and extracted data. Results: Regarding the mTOR signaling pathway, there is remarkable contributions of many inflammatory diseases to attention to common metabolic pathways are depicted. Of course, we need to have the insights into each disorder and their pathological process. The first step in balancing the intake of EFAs is to prevent the disruption of metabolism and expression of the D6D enzyme. Conclusions: The ω6 and ω3 pathways are two major pathways in the biosynthesis of PUFAs. In both of these, D6D is a vital bifunctional enzyme desaturating linoleic acid or alpha-linolenic acid. Therefore, if ω6 and ω3 EFAs are given together in a ratio of 2: 1, the D6D expression will be down-regulated and normalized.
Collapse
Affiliation(s)
- Zhila Arshad
- Department of Pathology of Anatomy, School of medicine, Baku University of Medical Sciences, Baku, Azerbaijan,
| | | | - Meysam Ebrahimifar
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia,
| | - Alireza Mosavi Jarrahi
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza,
| | - Mahshid Mohammadian
- Department of Social Medicine, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Gao ZF, Ji XL, Gu J, Wang XY, Ding L, Zhang H. microRNA-107 protects against inflammation and endoplasmic reticulum stress of vascular endothelial cells via KRT1-dependent Notch signaling pathway in a mouse model of coronary atherosclerosis. J Cell Physiol 2018; 234:12029-12041. [PMID: 30548623 DOI: 10.1002/jcp.27864] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Coronary atherosclerosis is a long-term, sustained, and evolving inflammatory disease manifested with the remodeling of the coronary arteries. The purpose of this study is to explore the potential role of microRNA-107 (miR-107) in vascular endothelial cells (VECs) in coronary atherosclerosis by regulating the KRT1 gene and the Notch signaling pathway. A mouse model of coronary atherosclerosis was established. The relationship between miR-107 and KRT1 was analyzed and verified by dual-luciferase reporter assay. The functional role of miR-107 in coronary atherosclerosis was determined using ectopic expression and depletion. Blood lipid levels and atherosclerotic index (AI) were measured in atherosclerotic mice. Expression pattern of miR-107, KRT1, Notch signaling pathway, inflammatory/anti-inflammatory factors, and endoplasmic reticulum (ER) stress-related genes was evaluated by means of reverse transcription quantitative polymerase chain reaction, western blot analysis, and enzyme-linked immunosorbent assay. Meanwhile, cell-cycle distribution and cell apoptosis in VECs were assessed by flow cytometry. Atherosclerotic mice exhibited higher blood lipid levels, AI, apoptotic index, and KRT1-positive expression as well as inhibited Notch signaling pathway when compared with normal mice. The miR-107 was revealed to bind to KRT1; miR-107 upregulation or KRT1 silencing resulted in reductions in blood lipid levels and AI, inhibition in cell apoptosis, inflammation, and ER stress. Restored miR-107 or downregulated KRT1 activated the Notch signaling pathway. These results supported the notion that miR-107-targeted KRT1 inhibition activated the Notch pathway, thereby, protecting against the coronary atherosclerosis. Findings in this study might provide a novel biomarker for the coronary atherosclerosis treatment.
Collapse
Affiliation(s)
- Zhi-Feng Gao
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, P.R. China
| | - Xiao-Lin Ji
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, P.R. China
| | - Jie Gu
- Department of Anesthesiology, Peking University International Hospital, Beijing, P.R. China
| | - Xiao-Yu Wang
- Department of Anesthesiology, Peking University International Hospital, Beijing, P.R. China
| | - Lin Ding
- Department of Anesthesiology, Peking University International Hospital, Beijing, P.R. China
| | - Huan Zhang
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, P.R. China
| |
Collapse
|
5
|
Trotter A, Anstadt E, Clark RB, Nichols F, Dwivedi A, Aung K, Cervantes JL. The role of phospholipase A2 in multiple Sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2018; 27:206-213. [PMID: 30412818 DOI: 10.1016/j.msard.2018.10.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023]
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that cleave the fatty acids of membrane phospholipids. They play critical roles in pathogenesis of neurodegenerative diseases such as multiple sclerosis by enhancing oxidative stress and initiating inflammation. The levels of PLA2 activity in MS patients compared to controls and role of inhibiting PLA2 activity on severity scores in different experimental models are not comprehensively assessed in the light of varying evidence from published studies. The objective of this systematic review is to determine the association between PLA2 activity and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We performed a systematic review of six studies that assessed PLA2 activity in MS patients compared to controls and nine studies that assessed PLA2 activity in EAE. sPLA2 nor Lp-PLA2 activity were not increased in MS compared to controls in five of those six studies. A difference in sPLA2 activity was only found in a study that measured the enzyme activity in urine. However, inhibiting cPLA2 or sPLA2 led to lower clinical severity or no signs of EAE in mice, and a lower incidence of EAE lesions compared to animals without cPLA2 inhibition. These findings indicate that PLA2 appears to play a role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Austin Trotter
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Emily Anstadt
- Department of Immunology, and Department of Medicine, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, and Department of Medicine, Farmington, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| | - Frank Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Alok Dwivedi
- Department of Biomedical Sciences, Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Koko Aung
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jorge L Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
6
|
Stoessel D, Stellmann JP, Willing A, Behrens B, Rosenkranz SC, Hodecker SC, Stürner KH, Reinhardt S, Fleischer S, Deuschle C, Maetzler W, Berg D, Heesen C, Walther D, Schauer N, Friese MA, Pless O. Metabolomic Profiles for Primary Progressive Multiple Sclerosis Stratification and Disease Course Monitoring. Front Hum Neurosci 2018; 12:226. [PMID: 29915533 PMCID: PMC5994544 DOI: 10.3389/fnhum.2018.00226] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/15/2018] [Indexed: 01/28/2023] Open
Abstract
Primary progressive multiple sclerosis (PPMS) shows a highly variable disease progression with poor prognosis and a characteristic accumulation of disabilities in patients. These hallmarks of PPMS make it difficult to diagnose and currently impossible to efficiently treat. This study aimed to identify plasma metabolite profiles that allow diagnosis of PPMS and its differentiation from the relapsing-remitting subtype (RRMS), primary neurodegenerative disease (Parkinson’s disease, PD), and healthy controls (HCs) and that significantly change during the disease course and could serve as surrogate markers of multiple sclerosis (MS)-associated neurodegeneration over time. We applied untargeted high-resolution metabolomics to plasma samples to identify PPMS-specific signatures, validated our findings in independent sex- and age-matched PPMS and HC cohorts and built discriminatory models by partial least square discriminant analysis (PLS-DA). This signature was compared to sex- and age-matched RRMS patients, to patients with PD and HC. Finally, we investigated these metabolites in a longitudinal cohort of PPMS patients over a 24-month period. PLS-DA yielded predictive models for classification along with a set of 20 PPMS-specific informative metabolite markers. These metabolites suggest disease-specific alterations in glycerophospholipid and linoleic acid pathways. Notably, the glycerophospholipid LysoPC(20:0) significantly decreased during the observation period. These findings show potential for diagnosis and disease course monitoring, and might serve as biomarkers to assess treatment efficacy in future clinical trials for neuroprotective MS therapies.
Collapse
Affiliation(s)
- Daniel Stoessel
- Metabolomic Discoveries GmbH, Potsdam, Germany.,Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany.,Bioinformatik, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Jan-Patrick Stellmann
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Willing
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Behrens
- Neurodegenerative Erkrankungen, Hertie-Institut für klinische Hirnforschung, Eberhardt-Karls-Universität Tübingen, Tübingen, Germany
| | - Sina C Rosenkranz
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sibylle C Hodecker
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Klarissa H Stürner
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Reinhardt
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Fleischer
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Deuschle
- Neurodegenerative Erkrankungen, Hertie-Institut für klinische Hirnforschung, Eberhardt-Karls-Universität Tübingen, Tübingen, Germany
| | - Walter Maetzler
- Neurodegenerative Erkrankungen, Hertie-Institut für klinische Hirnforschung, Eberhardt-Karls-Universität Tübingen, Tübingen, Germany.,Department of Neurology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Daniela Berg
- Neurodegenerative Erkrankungen, Hertie-Institut für klinische Hirnforschung, Eberhardt-Karls-Universität Tübingen, Tübingen, Germany.,Department of Neurology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christoph Heesen
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Walther
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany.,Bioinformatik, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | | | - Manuel A Friese
- Zentrum für Molekulare Neurobiologie Hamburg, Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Hamburg, Germany
| |
Collapse
|
7
|
Acar T, Koçak S, Cander B, Ergin M, Dikmetaş C. Liporotein-associated phospholipase-A2 can be a diagnostic marker inthe early stage diagnosis of acute mesenteric ischemia. Turk J Med Sci 2016; 46:120-5. [PMID: 27511344 DOI: 10.3906/sag-1412-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/20/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The purpose of this experimental study was to investigate the role of lipoprotein-associated phospholipase-A2 (Lp-PLA2) in the diagnosis of acute mesenteric ischemia (AMI) in the early stage. MATERIALS AND METHODS Twenty-seven New Zealand rabbits were randomly divided into 3 groups in this study. Blood specimens were obtained from the groups at hours 0, 1, 3, and 6. Using the blood samples drawn from all groups, Lp-PLA2 and C-reactive protein (CRP) parameters were investigated. RESULTS There was a significant rise in the levels of both Lp-PLA2 and CRP starting at hour 1 (P < 0.05) (hour 1; Lp-PLA2, P = 0.003) in the ischemia group. In the sham group, the levels of Lp-PLA2 and CRP started to rise at hour 3 (P < 0.05) (hour 3; Lp-PLA2, P = 0.011). At hour 6 of ischemia, the area under the ROC curve was 100%, and the cut-off value of 63.91 ng/mL revealed a sensitivity of 88% and a specificity of 100% for Lp-PLA2. CONCLUSION These findings showed the role of serum Lp-PLA2 and CRP levels in the early diagnosis of AMI. Thus, further studies are needed to describe the role of Lp-PLA2 in the early diagnosis of AMI.
Collapse
Affiliation(s)
- Tarık Acar
- Department of Emergency, Training and Research Hospital of the Turkish Ministry of Health, Ordu University, Ordu, Turkey
| | - Sedat Koçak
- Department of Emergency Medicine, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Başar Cander
- Department of Emergency Medicine, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Ergin
- Department of Emergency Medicine, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Cesareddin Dikmetaş
- Department of Emergency, Training and Research Hospital of the Turkish Ministry of Health, Ordu University, Ordu, Turkey
| |
Collapse
|
8
|
|