1
|
Kowalski MK, Domżał-Magrowska D, Małecka-Wojciesko E. Celiac Disease-Narrative Review on Progress in Celiac Disease. Foods 2025; 14:959. [PMID: 40231983 PMCID: PMC11941517 DOI: 10.3390/foods14060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Celiac disease is defined as a systemic immunological disorder caused by gluten (gliadin and other prolamin) in genetically predisposed individuals, who present with a variety of gluten-dependent symptoms, specific antibodies, the presence of the HLA DQ2 and DQ8 histocompatibility antigen, and enteropathy. Its prevalence, depending on the studied population and methodology, is estimated at 0.75-1.6% of the general population. During the complex immune reaction it induces, most cells involved in inflammatory processes are activated, which leads to the gradual atrophy of intestinal villi and the proliferation of enterocytes within intestinal crypts. The pathogenesis of celiac disease is extremely complicated and is still the subject of research. According to the current diagnostic guidelines, the following criteria should be taken into account: clinical symptoms (intestinal and extraintestinal), the presence of antibodies against tissue transglutaminase in the IgA class, the level of total IgA, and the presence of typical histological changes in duodenal biopsies. Diet-resistant celiac disease is one of the most important clinical challenges, causing serious complications. Currently, the basic method for treating celiac disease is an elimination diet (i.e., the exclusion of products that may contain gluten from the diet), however, new therapeutic strategies are still being sought, mainly based on supplementation with exogenous endopeptidases, modification of the immune response, and the use of zonulin inhibitors and transglutaminase 2 inhibitors. Clinical trials of new drugs are ongoing. The gradually expanding knowledge about the pathogenesis of celiac disease may allow for the development of new therapeutic strategies for both patients with a mild disease course, as well as those that are diet-resistant.
Collapse
Affiliation(s)
| | | | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Norbert Barlicki University Hospital, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| |
Collapse
|
2
|
Kowalski MK, Domżał-Magrowska D, Szcześniak P, Bulska M, Orszulak-Michalak D, Małecka-Wojciesko E. Gluten-Free Diet Adherence Evaluation in Adults with Long-Standing Celiac Disease. Foods 2024; 14:76. [PMID: 39796366 PMCID: PMC11720135 DOI: 10.3390/foods14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disease that results from the interaction of genetic, immune, and environmental factors. According to the 2020 European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) guidelines, an elimination diet (i.e., excluding products that may contain gluten) is the basic method of treating celiac disease. Following a gluten-free diet is extremely problematic, and patients often make unconscious deviations from the diet. According to the current Oslo definitions for celiac disease, depending on the clinical picture and adequate tests, several forms of celiac disease have been identified: typical, atypical, asymptomatic, potential, and refractory. OBJECTIVE The aim of the study was to assess the frequency of conscious diet mistakes and unconscious deviations from a gluten-free diet in a group of patients with long-standing celiac disease and their impact on the frequency of typical and atypical symptoms. METHODS The study included 57 people diagnosed with celiac disease between 1980 and 2010. After verifying the history of the disease according to the ESPGHAN guidelines from 2020, we excluded 19 patients who had Marsh grade 1 at the time of diagnosis or those without HLA DQ2 or DQ8 haplotypes detected. After verification, the study included 38 patients, 30 women and 8 men, with a verified diagnosis of typical celiac disease. The effectiveness of the gluten-free diet was assessed in all participants. Blood was collected to determine IgA anti-tissue transglutaminase II antibodies (anti-tTG) and IgG antibodies against deamidated gliadin peptides by ELISA. All survey participants provided data concerning current gastrointestinal and systemic symptoms, bowel habits, comorbidities, dietary habits, physical activity, and socioeconomic conditions. RESULTS A total of 25 patients (65.78%) declared strict adherence to the gluten-free diet. However, in this group, seven (18.4%) patients had significantly increased levels of anti-tTG antibodies (mean 82.3 RU/mL ± 78.9 SD at N < 20 RU/mL). Among the patients who consciously made dietary mistakes, six (46.2%) demonstrated increased levels of anti-tTG antibodies. The analysis did not reveal any difference between the frequency of intestinal and extraintestinal symptoms in patients making dietary mistakes and following the gluten-free diet. CONCLUSIONS More than half of celiac patients unconsciously or consciously make dietary mistakes, which indicates an urgent need to increase their general knowledge of CD and the appropriate diet. Regardless of whether the gluten-free diet is followed, both typical and atypical symptoms of the disease have been observed among celiac patients.
Collapse
Affiliation(s)
- Marek K. Kowalski
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| | - Danuta Domżał-Magrowska
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| | - Piotr Szcześniak
- Department of Biopharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (P.S.); (M.B.); (D.O.-M.)
| | - Magdalena Bulska
- Department of Biopharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (P.S.); (M.B.); (D.O.-M.)
| | - Daria Orszulak-Michalak
- Department of Biopharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (P.S.); (M.B.); (D.O.-M.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| |
Collapse
|
3
|
Corlett C, Rodrigues A, Ravikumara M. Coeliac Disease in Children-A Clinical Review Including Novel Treatment Agents. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1650. [PMID: 39459437 PMCID: PMC11509383 DOI: 10.3390/medicina60101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Coeliac disease (CD) affects almost of 1% of the population, yet remains undiagnosed in the majority. Though the demonstration of enteropathy in duodenal biopsy was traditionally the essential criterion for the diagnosis of coeliac disease, the guidelines published by the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) in 2012, and revised in 2020, paved the way to a no-biopsy approach to diagnosis. In a select group of children meeting certain criteria, a definitive diagnosis of CD can now be made without the need for duodenal biopsies. This is being increasingly applied in clinical practice. It is well established that untreated coeliac disease is associated with several chronic adverse health conditions. At present, a strict gluten-free diet remains the only effective treatment for CD. The advances in our understanding of the pathogenesis of CD have led to a search for alternative treatment agents. Several investigational agents are in various phases of clinical trials at present. In this review, we outline the clinical aspects of coeliac disease and summarise various investigational treatment agents.
Collapse
Affiliation(s)
- Chloe Corlett
- Department of Gastroenterology, Children’s Hospital Oxford, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (C.C.); (A.R.)
| | - Astor Rodrigues
- Department of Gastroenterology, Children’s Hospital Oxford, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (C.C.); (A.R.)
| | - Madhur Ravikumara
- Department of Gastroenterology, Perth Children’s Hospital, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
5
|
Inhibition of Transglutaminase 2 as a Therapeutic Strategy in Celiac Disease-In Vitro Studies in Intestinal Cells and Duodenal Biopsies. Int J Mol Sci 2023; 24:ijms24054795. [PMID: 36902226 PMCID: PMC10002517 DOI: 10.3390/ijms24054795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Enzymatic modification of gliadin peptides by human transglutaminase 2 (TG2) is a key mechanism in the pathogenesis of celiac disease (CD) and represents a potential therapeutic target. Recently, we have identified the small oxidative molecule PX-12 as an effective inhibitor of TG2 in vitro. In this study, we further investigated the effect of PX-12 and the established active-site directed inhibitor ERW1041 on TG2 activity and epithelial transport of gliadin peptides. We analyzed TG2 activity using immobilized TG2, Caco-2 cell lysates, confluent Caco-2 cell monolayers and duodenal biopsies from CD patients. TG2-mediated cross-linking of pepsin-/trypsin-digested gliadin (PTG) and 5BP (5-biotinamidopentylamine) was quantified by colorimetry, fluorometry and confocal microscopy. Cell viability was tested with a resazurin-based fluorometric assay. Epithelial transport of promofluor-conjugated gliadin peptides P31-43 and P56-88 was analyzed by fluorometry and confocal microscopy. PX-12 reduced TG2-mediated cross-linking of PTG and was significantly more effective than ERW1041 (10 µM, 15 ± 3 vs. 48 ± 8%, p < 0.001). In addition, PX-12 inhibited TG2 in cell lysates obtained from Caco-2 cells more than ERW1041 (10 µM; 12 ± 7% vs. 45 ± 19%, p < 0.05). Both substances inhibited TG2 comparably in the intestinal lamina propria of duodenal biopsies (100 µM, 25 ± 13% vs. 22 ± 11%). However, PX-12 did not inhibit TG2 in confluent Caco-2 cells, whereas ERW1041 showed a dose-dependent effect. Similarly, epithelial transport of P56-88 was inhibited by ERW1041, but not by PX-12. Cell viability was not negatively affected by either substance at concentrations up to 100 µM. PX-12 did not reduce TG2 activity or gliadin peptide transport in confluent Caco-2 cells. This could be caused by rapid inactivation or degradation of the substance in the Caco-2 cell culture. Still, our in vitro data underline the potential of the oxidative inhibition of TG2. The fact that the TG2-specific inhibitor ERW1041 reduced the epithelial uptake of P56-88 in Caco-2 cells further strengthens the therapeutic potential of TG2 inhibitors in CD.
Collapse
|
6
|
The TGM2 inhibitor cysteamine hydrochloride does not impact corneal epithelial and stromal wound healing in vitro and in vivo. Exp Eye Res 2023; 226:109338. [PMID: 36470430 PMCID: PMC10120528 DOI: 10.1016/j.exer.2022.109338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.
Collapse
|
7
|
Chaykin A, Odintsova` E, Nedorubov A. Celiac Disease: Disease Models in Understanding Pathogenesis and Search for Therapy. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Celiac disease is a complex polygenic systemic disorder caused by dietary gluten exposure that selectively occurs in genetically susceptible people. The potential celiac disease is defined by the presence of celiac disease-specific antibodies and compatible human leukocyte antigen but without histological abnormalities in duodenal biopsies. At present, the only treatment is lifelong adherence to a gluten-free diet. Despite its effectiveness, the diet is difficult to maintain due to its cost, availability of gluten-free foods, and hidden gluten. The need to develop non-dietary treatment methods is widely recognized, but this is prevented by the absence of a pathophysiologically relevant preclinical model. Nonetheless, in vitro and in vivo models have made it possible to investigate the mechanisms of the disease and develop new treatment approaches: The use of foods with neutralized gluten, microbiota correction, cocktails of specific endoproteinase, polymer gluten binders, specific inhibitors of transglutaminases and inflammatory cytokines, and a vaccine based on allergen-specific therapy.
Collapse
|
8
|
Paolella G, Sposito S, Romanelli AM, Caputo I. Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23147513. [PMID: 35886862 PMCID: PMC9318967 DOI: 10.3390/ijms23147513] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 transglutaminase (TG2) is the main autoantigen in coeliac disease (CD), a widespread inflammatory enteropathy caused by the ingestion of gluten-containing cereals in genetically predisposed individuals. As a consequence, serum antibodies to TG2 represent a very useful marker in CD diagnosis. However, TG2 is also an important player in CD pathogenesis, for its ability to deamidate some Gln residues of gluten peptides, which become more immunogenic in CD intestinal mucosa. Given the importance of TG2 enzymatic activities in CD, several studies have sought to discover specific and potent inhibitors that could be employed in new therapeutical approaches for CD, as alternatives to a lifelong gluten-free diet. In this review, we summarise all the aspects regarding TG2 involvement in CD, including its enzymatic reactions in pathogenesis, the role of anti-TG2 antibodies in disease management, and the exploration of recent strategies to reduce deamidation or to use transamidation to detoxify gluten.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- Correspondence: (G.P.); (I.C.)
| | - Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
| | | | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (G.P.); (I.C.)
| |
Collapse
|
9
|
Anderson RP. Emergence of an adaptive immune paradigm to explain celiac disease: a perspective on new evidence and implications for future interventions and diagnosis. Expert Rev Clin Immunol 2021; 18:75-91. [PMID: 34767744 DOI: 10.1080/1744666x.2021.2006636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Recent patient studies have shown that gluten-free diet is less effective in treating celiac disease than previously believed, and additionally patients remain vulnerable to gluten-induced acute symptoms and systemic cytokine release. Safe and effective pharmacological adjuncts to gluten-free diet are in preclinical and clinical development. Clear understanding of the pathogenesis of celiac disease is critical for drug target identification, establishing efficacy endpoints and to develop non-invasive biomarkers suitable to monitor and potentially diagnose celiac disease. AREAS COVERED The role and clinical effects of CD4+ T cells directed against deamidated gluten in the context of an "adaptive immune paradigm" are reviewed. Alternative hypotheses of gluten toxicity are discussed and contrasted. In the context of recent patient studies, implications of the adaptive immune paradigm for future strategies to prevent, diagnose, and treat celiac disease are outlined. EXPERT OPINION Effective therapeutics for celiac disease are likely to be approved and necessitate a variety of new clinical instruments and tests to stratify patient need, monitor remission, and confirm diagnosis in uncertain cases. Sensitive assessments of CD4+ T cells specific for deamidated gluten are likely to play a central role in clinical management, and to facilitate research and pharmaceutical development.
Collapse
|
10
|
D'Avino P, Serena G, Kenyon V, Fasano A. An updated overview on celiac disease: from immuno-pathogenesis and immuno-genetics to therapeutic implications. Expert Rev Clin Immunol 2021; 17:269-284. [PMID: 33472447 DOI: 10.1080/1744666x.2021.1880320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Celiac disease (CD) is an autoimmune enteropathy triggered by ingestion of gluten. While presenting many similarities with other autoimmune diseases, celiac disease is unique in that the external trigger, gluten, and the genetic background necessary for disease development (HLA DQ2/DQ8) are well described. The prevalence of celiac disease is dramatically increasing over the years and new epidemiologic data show changes regarding age of onset and symptoms. A better understanding of CD-pathogenesis is fundamental to highlight the reasons of this rise of celiac diagnoses. AREAS COVERED In this review we describe CD-pathogenesis by dissecting all the components necessary to lose tolerance to gluten (ingestion of gluten, genetic predisposition, loss of barrier function and immune response). Additionally, we also highlight the role that microbiome plays in celiac disease as well as new proposed therapies and experimental tools. EXPERT OPINION Prevalence of autoimmune diseases is increasing around the world. As a result, modern society is strongly impacted by a social and economic burden. Given the unique characteristics of celiac disease, a better understanding of its pathogenesis and the factors that contribute to it may shed light on other autoimmune diseases for which external trigger and genetic background are not known.
Collapse
Affiliation(s)
- Paolo D'Avino
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Vita-Salute San Raffaele University, Milan, Italy
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Victoria Kenyon
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Harvard Medical School, Boston, MA, USA.,Celiac Research Program, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
11
|
Serena G, D'Avino P, Fasano A. Celiac Disease and Non-celiac Wheat Sensitivity: State of Art of Non-dietary Therapies. Front Nutr 2020; 7:152. [PMID: 33015123 PMCID: PMC7506149 DOI: 10.3389/fnut.2020.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Gluten related disorders (GRD), which include celiac disease, non-celiac wheat sensitivity and wheat allergy are heterogeneous conditions triggered by ingestion of gluten-containing grains. Together, their prevalence is estimated to be ~5% in the general population, however, in the last years the number of diagnoses has been rapidly increasing. To this day, the gold standard treatment for these disorders is the complete removal of gluten-containing grains from the diet. Although this therapy results effective in the majority of patients, up to 30% of individuals affected by GRD continue to present persistent symptoms. In addition, gluten-free diet has been shown to have poor nutritional quality and to cause a socio-economic burden in patients' quality of life. In order to respond to these issues, the scientific community has been focusing on finding additional and adjuvant non-dietary therapies. In this review, we focus on two main gluten related disorders, celiac disease and non-celiac wheat sensitivity. We delineate the actual knowledge about potential treatments and their relative efficacy in pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Paolo D'Avino
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
12
|
Martucciello S, Sposito S, Esposito C, Paolella G, Caputo I. Interplay between Type 2 Transglutaminase (TG2), Gliadin Peptide 31-43 and Anti-TG2 Antibodies in Celiac Disease. Int J Mol Sci 2020; 21:ijms21103673. [PMID: 32456177 PMCID: PMC7279455 DOI: 10.3390/ijms21103673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) is a common intestinal inflammatory disease involving both a genetic background and environmental triggers. The ingestion of gluten, a proteic component of several cereals, represents the main hexogen factor implied in CD onset that involves concomitant innate and adaptive immune responses to gluten. Immunogenicity of some gluten sequences are strongly enhanced as the consequence of the deamidation of specific glutamine residues by type 2 transglutaminase (TG2), a ubiquitous enzyme whose expression is up-regulated in the intestine of CD patients. A short gluten sequence resistant to intestinal proteases, the α-gliadin peptide 31-43, seems to modulate TG2 function in the gut; on the other hand, the enzyme can affect the biological activity of this peptide. In addition, an intense auto-immune response towards TG2 is a hallmark of CD. Auto-antibodies exert a range of biological effects on several cells, effects that in part overlap with those induced by peptide 31-43. In this review, we delineate a scenario in which TG2, anti-TG2 antibodies and peptide 31-43 closely relate to each other, thus synergistically participating in CD starting and progression.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
| | - Silvia Sposito
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano (SA), Italy; (S.M.); (C.E.); (G.P.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano (SA), Italy;
- Correspondence: ; Tel.: +39-089-969592; Fax: +39-089-969603
| |
Collapse
|
13
|
Caio G, Ciccocioppo R, Zoli G, De Giorgio R, Volta U. Therapeutic options for coeliac disease: What else beyond gluten-free diet? Dig Liver Dis 2020; 52:130-137. [PMID: 31831308 DOI: 10.1016/j.dld.2019.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Coeliac disease is a chronic and systemic autoimmune condition triggered by gluten ingestion in genetically predisposed subjects. Currently, the only effective treatment available is a strict, lifelong gluten-free diet. However, patients perceive gluten withdrawal as an unsustainable burden in their life and some of them can exhibit persistent symptoms despite a strict diet. Thus, gluten-free diet represents a challenge, leading scientists to look for alternative or complementary treatments. This review will focus on non-dietary therapies for coeliac disease highlighting six therapeutic strategies: (1) decreasing gluten immunogenic content before it reaches the intestine; (2) sequestering gluten in the gut lumen before absorption; (3) blocking the passage of gluten through a leaky intestinal barrier; (4) preventing the enhancement of immune response against gliadin; (5) dampening the downstream immune activation; (6) inducing immune tolerance to gluten. Most developing therapies are only in the pre-clinical phase with only a few being tested in phase 2b or 3 trials. Although new approaches raise the hope for coeliacs giving them a chance to come back to gluten, for the time being a cautionary appraisal of new therapies suggests that they may have a complementary role to gluten withdrawal, mainly to prevent inadvertent gluten contamination.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Medical Sciences, University of Ferrara, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G. B. Rossi and University of Verona, Italy
| | - Giorgio Zoli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | | | - Umberto Volta
- Department of Medical and Surgical Scieces, University of Bologna, Italy
| |
Collapse
|
14
|
Jauregi-Miguel A, Santin I, Garcia-Etxebarria K, Olazagoitia-Garmendia A, Romero-Garmendia I, Sebastian-delaCruz M, Irastorza I, Castellanos-Rubio A, Bilbao JR. MAGI2 Gene Region and Celiac Disease. Front Nutr 2019; 6:187. [PMID: 31921880 PMCID: PMC6930898 DOI: 10.3389/fnut.2019.00187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) patients present a loss of intestinal barrier function due to structural alterations in the tight junction (TJ) network, the most apical unions between epithelial cells. The association of TJ-related gene variants points to an implication of this network in disease susceptibility. This work aims to characterize the functional implication of TJ-related, disease-associated loci in CD pathogenesis. We performed an association study of 8 TJ-related gene variants in a cohort of 270 CD and 91 non-CD controls. The expression level of transcripts located in the associated SNP region was analyzed by RT-PCR in several human tissues and in duodenal biopsies of celiac patients and non-CD controls. (si)RNA-driven silencing combined with gliadin in the Caco2 intestinal cell line was used to analyze the implication of transcripts from the associated region in the regulation of TJ genes. We replicated the association of rs6962966*A variant [p = 0.0029; OR = 1.88 (95%1.24–2.87)], located in an intron of TJ-related MAGI2 coding gene and upstream of RP4-587D13.2 transcript, bioinformatically classified as a long non-coding RNA (lncRNA). The expression of both genes is correlated and constitutively downregulated in CD intestine. Silencing of lncRNA decreases the levels of MAGI2 protein. At the same time, silencing of MAGI2 affects the expression of several TJ-related genes. The associated region is functionally altered in disease, probably affecting CD-related TJ genes.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Izortze Santin
- Department of Biochemistry and Molecular Biology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain.,CIBER in Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Koldo Garcia-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Maialen Sebastian-delaCruz
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Iñaki Irastorza
- Department of Pediatrics, Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Barakaldo, Spain
| | | | - Ainara Castellanos-Rubio
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jose Ramón Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain.,CIBER in Diabetes and Associated Metabolic Diseases, Madrid, Spain
| |
Collapse
|
15
|
Singh RS, Singh A, Batra G, Kaur H, Medhi B. Novel targets for drug discovery in celiac disease. Indian J Pharmacol 2019; 51:359-365. [PMID: 31831931 PMCID: PMC6892008 DOI: 10.4103/ijp.ijp_679_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022] Open
Abstract
Celiac disease is a lifelong, immunological disorder induced by dietary protein-gluten, in a genetically susceptible populations, resulting in different clinical manifestations, the release of antibodies, and damage to the intestinal mucosa. The only recommended therapy for the disease is to strictly follow a gluten-free diet (GFD), which is difficult to comply with. A GFD is found to be ineffective in some active Celiac disease cases. Therefore, there is an unmet need for an alternative nondietary therapeutic approach. The review focuses on the novel drug targets for Celiac disease.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Vaquero L, Bernardo D, León F, Rodríguez-Martín L, Alvarez-Cuenllas B, Vivas S. Challenges to drug discovery for celiac disease and approaches to overcome them. Expert Opin Drug Discov 2019; 14:957-968. [DOI: 10.1080/17460441.2019.1642321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luis Vaquero
- Gastroenterology Unit, University Hospital of León, León, Spain
| | - David Bernardo
- Mucosal Immunology lab, IBGM (University of Valladolid-CSIC), Valladolid, Spain
- Gut Immunology Research Lab, Instituto de Investigación Sanitaria Princesa (IIS-IP) & Centro de Investigación Biomédica en Red de Enfermdades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | | | - Laura Rodríguez-Martín
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| | | | - Santiago Vivas
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
17
|
Kramer K, Yeboah-Awudzi M, Magazine N, King JM, Xu Z, Losso JN. Procyanidin B2 rich cocoa extracts inhibit inflammation in Caco-2 cell model of in vitro celiac disease by down-regulating interferon-gamma- or gliadin peptide 31-43-induced transglutaminase-2 and interleukin-15. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Alhassan E, Yadav A, Kelly CP, Mukherjee R. Novel Nondietary Therapies for Celiac Disease. Cell Mol Gastroenterol Hepatol 2019; 8:335-345. [PMID: 31146067 PMCID: PMC6713892 DOI: 10.1016/j.jcmgh.2019.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 02/08/2023]
Abstract
Celiac Disease (CeD) is defined as a chronic small intestinal immune-mediated enteropathy that is precipitated by exposure to dietary gluten in genetically predisposed individuals. CeD is one of the most common autoimmune disorders affecting around 1% of the population worldwide. Currently, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD) which can often present a challenging task. A GFD alone is not sufficient to control symptoms and prevent mucosal damage that can result from unintentional gluten exposure. Moreover, long-term complications can occur in many patients. Consequently, there is an unmet need for non-dietary therapies for the management of CeD. Such therapies could serve as an adjunct to the GFD but eventually may replace it. This review will focus on and discuss non-dietary therapies currently in clinical development for the management of CeD. METHODOLOGY: We searched clinicaltrials.gov and PubMed to extract articles about celiac disease. We used keywords including, but not limited to, "celiac disease," "non-dietary," "therapeutics," "pathophysiology," "Endopeptidases," "tight junction modulators," "vaccine," and "Nexvax2". We focused mainly on articles that conducted pathophysiologic and therapeutic research in human trials.
Collapse
Affiliation(s)
- Eaman Alhassan
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Abhijeet Yadav
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rupa Mukherjee
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
19
|
Abstract
Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. Gluten-free diets can be challenging because of their restrictive nature, inadvertent cross-contaminations, and the high cost of gluten-free food. Novel nondietary therapies are at the preclinical stage, clinical trial phase, or have already been developed for other indications and are now being applied to CD. These therapies include enzymatic gluten degradation, binding and sequestration of gluten, restoration of epithelial tight junction barrier function, inhibition of tissue transglutaminase-mediated potentiation of gliadin oligopeptide immunogenicity or of human leukocyte antigen-mediated gliadin presentation, induction of tolerance to gluten, and antiinflammatory interventions.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Ciaran P Kelly
- Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Jericho H, Guandalini S. Extra-Intestinal Manifestation of Celiac Disease in Children. Nutrients 2018; 10:755. [PMID: 29895731 PMCID: PMC6024684 DOI: 10.3390/nu10060755] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this literature review is to discuss the extra-intestinal manifestations of celiac disease within the pediatric celiac population.
Collapse
Affiliation(s)
- Hilary Jericho
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Celiac Disease Center-Comer Children's Hospital, Chicago, IL 60637, USA.
| | - Stefano Guandalini
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Celiac Disease Center-Comer Children's Hospital, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Celiac Disease. CURRENT PEDIATRICS REPORTS 2018. [DOI: 10.1007/s40124-018-0154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Haridy J, Lewis D, Newnham ED. Investigational drug therapies for coeliac disease - where to from here? Expert Opin Investig Drugs 2018; 27:225-233. [PMID: 29411655 DOI: 10.1080/13543784.2018.1438407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Despite decades of research and a detailed knowledge of the immunopathological basis of coeliac disease (CD), adherence to a lifelong gluten-free diet (GFD) remains the single proven and available treatment. The increasing prevalence of CD combined with variable adherence to the GFD in a significant proportion of patients demands new therapeutic strategies. AREAS COVERED Trial registries, clinicaltrials.gov, pharmaceutical company website searches as well as published data from PubMed and conference proceedings were used to extract the most recent outcomes for CD therapeutics. This article aims to review the available therapies from a pathophysiological approach, and propose future directions in this interesting yet largely unfulfilled area of research. EXPERT OPINION Increasingly, the GFD is being challenged by its availability, palatability, practicality and now even efficacy in some populations. Whilst the causative antigens have been well described, it is clear that treatment based on the removal of these immunostimulatory peptides from the diet is far more complex than early experience in CD treatment implied. Despite burgeoning interest and research in experimental therapies for CD over the past twenty years, the only therapy showing promise as a true alternative to a GFD is that of the induction of tolerance via a vaccine.
Collapse
Affiliation(s)
- James Haridy
- a Department of Gastroenterology and Hepatology , Monash University, Eastern Health Clinical School , Melbourne , Australia
| | - Diana Lewis
- a Department of Gastroenterology and Hepatology , Monash University, Eastern Health Clinical School , Melbourne , Australia
| | - Evan D Newnham
- a Department of Gastroenterology and Hepatology , Monash University, Eastern Health Clinical School , Melbourne , Australia
| |
Collapse
|
23
|
Gerace E, Resta F, Landucci E, Renzi D, Masi A, Pellegrini-Giampietro DE, Calabrò A, Mannaioni G. The gliadin peptide 31-43 exacerbates kainate neurotoxicity in epilepsy models. Sci Rep 2017; 7:15146. [PMID: 29123180 PMCID: PMC5680182 DOI: 10.1038/s41598-017-14845-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Many neurological disorders of gluten-related diseases (GRD), not directly referable to the gastrointestinal tract, have been reported in association with celiac disease (CD), including ataxia, neuropathy and epilepsy. In particular, people with epilepsy diagnosed with CD seems to be characterized by intractable seizure. In these patients, gluten restriction diet has resulted in a reduction of both seizure frequency and antiepileptic medication. Many hypotheses have been suggested, however, molecular mechanisms that associates GRD and epileptogenesis are yet unknown. In this study, we examined the effects of the toxic gliadin peptide 31-43 in in vivo and in vitro models of kainate-induced-epilepsy. We observed that p31-43 exacerbates kainate neurotoxicity in epilepsy models, through the involvement of the enzymatic activity of transglutaminases. Moreover, electrophysiological recordings in CA3 pyramidal neurons of organotypic hippocampal slices show that p31-43 increases the inward current induced by kainate, the average sEPSC amplitude and the total number of evoked action potentials when applicated alone, thus suggesting that p31-43 is able to influence CA3-CA1 neurotransmission and can potentiate postsynaptic kainate receptors. Our results suggest a possible mechanism underlying the relationship between GRD and epilepsy through a potentiation of kainate-induced neurotoxicity and links the toxic effects of gluten to epilepsy.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Viale G. Pieraccini 6, 50139, Florence, Italy. .,Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Francesco Resta
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Daniela Renzi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50141, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Viale G. Pieraccini 6, 50139, Florence, Italy
| | | | - Antonio Calabrò
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50141, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Viale G. Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
24
|
Kumar J, Kumar M, Pandey R, Chauhan NS. Physiopathology and Management of Gluten-Induced Celiac Disease. J Food Sci 2017; 82:270-277. [PMID: 28140462 DOI: 10.1111/1750-3841.13612] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022]
Abstract
Proline- and glutamine-rich gluten proteins are one of the major constituents of cereal dietary proteins, which are largely resistant to complete cleavage by the human gastrointestinal (GI) digestive enzymes. Partial digestion of gluten generates approximately 35 amino acids (aa) immunomodulatory peptides which activate T-cell-mediated immune system, followed by immunological inflammation of mucosa leading to the onset of celiac disease (CD). CD is an autoimmune disease associated with HLA-DQ2/DQ8 polymorphism and dysbiosis of gut microbiota. CD is either diagnosed using duodenal mucosal biopsis or serological testing for transglutaminase 2 (TG2) specific antibodies (IgA and IgG). Current therapy for CD management is gluten-free diet, while other therapies like glutenase, probiotics, immunomodulation, jamming of HLA-DQ2, inhibition of TG2, and gluten tolerance aided by gluten tolerizing vaccines are being developed.
Collapse
Affiliation(s)
- Jitendra Kumar
- Dept. of Biochemistry, M.D. Univ., Rohtak, 124001, Haryana, India
| | - Manoj Kumar
- Dept. of Biochemistry, M.D. Univ., Rohtak, 124001, Haryana, India
| | - Rajesh Pandey
- Ayurgenomics Unit-TRISUTRA, Inst. of Genomics and Integrative Biology, Council of Scientific and Industrial Research, New Delhi, 110020, India
| | | |
Collapse
|
25
|
Abstract
Since the first description of celiac disease (CeD) by Samuel Gee in 1888 and the later "miraculous discovery" that bread was responsible for this condition following World War II in Europe, there has been an exponential growth of knowledge regarding CeD. Just when we thought that we knew everything there was to know about it, the disease is, however, offering new challenges, with its presentation having significantly morphed over the years from cases of overt gastrointestinal symptoms, malnutrition, and atrophic villi on duodenal biopsies to that of largely extraintestinal, subtle, or mild symptoms. Along with these changes, unexpectedly a new parallel entity appeared a few years ago and is gaining ground: the so-called nonceliac gluten sensitivity, an improper name because it should actually be referred to as wheat intolerance syndrome given that the role of gluten in all such cases is far from demonstrated and the implication of an immune involvement suggested by the term "sensitivity" is still unfounded. Lastly, wheat can be an offender also through an immunoglobulin E-mediated allergy, whose presence must also be evaluated and ruled out in selected cases.The practicing physician is therefore now challenged with the task of discerning which patients need to be assessed for one or the other of these disorders, and how.This review aims at providing an updated, critical reassessment of these 2 entities.
Collapse
|
26
|
Kurada S, Yadav A, Leffler DA. Current and novel therapeutic strategies in celiac disease. Expert Rev Clin Pharmacol 2016; 9:1211-23. [PMID: 27322016 DOI: 10.1080/17512433.2016.1200463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION A gluten free diet (GFD) is the only available treatment for celiac disease (CD). However many patients fail to respond fully clinically or histologically. Several surveys highlight the psychosocial implications of adherence to a GFD. Hence, efforts are ongoing to develop therapeutic strategies beyond a GFD. AREAS COVERED We conducted a search of PubMed and clinicaltrials.gov to extract articles on CD using keywords including 'celiac disease' and 'refractory celiac disease' (RCD) and focused on articles conducting pathophysiologic and therapeutic research in/ex-vivo models and human trials. We highlight novel therapeutics that manipulate these mechanisms including tight junction regulators, glutenases, gluten sequestrants and immunotherapy using vaccines, nanoparticles that may serve as adjuncts to a GFD or more ambitiously to allow for gluten consumption. We also highlight the role of anti-inflammatories, immunosuppressants and monoclonal antibodies in RCD. Expert commentary: Therapeutics including tight junction regulators, glutenases have the potential to be approved for non-responsive CD or as gluten adjuncts. We expect results of various phase 1/2 trials using AMG 714, BL 7010, IgY antibodies to be published. In the interim, off-label use of 5 amino-salicylates, budesonide, nucleoside analogues and newer biologics developed for other inflammatory diseases will be used in RCD.
Collapse
Affiliation(s)
- Satya Kurada
- a Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,b Department of Medicine, Boston Medical Center , Boston University School of Medicine , Boston , MA , USA.,c Celiac Research Program, Harvard Medical School , Boston , MA , USA
| | - Abhijeet Yadav
- a Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,c Celiac Research Program, Harvard Medical School , Boston , MA , USA
| | - Daniel A Leffler
- a Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,c Celiac Research Program, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
27
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|
28
|
McCarville JL, Caminero A, Verdu EF. Pharmacological approaches in celiac disease. Curr Opin Pharmacol 2015; 25:7-12. [DOI: 10.1016/j.coph.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023]
|
29
|
Datta P, Weis MT. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport. World J Gastroenterol 2015; 21:9055-9066. [PMID: 26290632 PMCID: PMC4533037 DOI: 10.3748/wjg.v21.i30.9055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the direct effects of ischemia on intestinal epithelial integrity. Furthermore, clinical efforts at mitigating the effect of hypoperfusion on gut permeability have focused on restoring gut vascular function.
METHODS: We report that, in the Caco-2 cell model of transepithelial transport, calcium glycerophosphate (CGP), an inhibitor of intestinal alkaline phosphatase F3, has a significant effect to preserve transepithelial electrical resistance (TEER) and to attenuate increases in mannitol flux rates during hypoxia or cytokine stimulation.
RESULTS: The effect was observable even at concentrations as low as 1 μmol/L. As celiac disease is also marked by a loss of gut epithelial integrity, the effect of CGP to attenuate the effect of the α-gliadin peptide 31-55 was also examined. In this instance, CGP exerted little effect of preservation of TEER, but significantly attenuated peptide induced increase in mannitol flux.
CONCLUSION: It appears that CGP treatment might synergize with other therapies to preserve gut epithelial integrity.
Collapse
|
30
|
Veeraraghavan G, Leffler DA, Kaswala DH, Mukherjee R. Celiac disease 2015 update: new therapies. Expert Rev Gastroenterol Hepatol 2015; 9:913-27. [PMID: 25864708 DOI: 10.1586/17474124.2015.1033399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celiac disease (CD) is a chronic, small intestinal, immune-mediated enteropathy triggered by exposure to dietary gluten in genetically susceptible individuals. Currently, lifelong adherence to a gluten-free diet (GFD) is the only available treatment. However, GFD alone is not sufficient to relieve symptoms, control small intestinal inflammation and prevent long-term complications in many patients. The GFD has its challenges including issues related to adherence, lifestyle restrictions and cost. As a result, there is growing interest in and a need for non-dietary therapies to manage this condition. In recent years, different targets in the immune-mediated cascade of CD have been identified in clinical and pre-clinical trials for potential therapies. This review will discuss the latest non-dietary therapies in CD, including endopeptidases, modulators of enterocyte tight junctions and agents involved in gluten tolerization and immunomodulation. We will also discuss the potential implications of approved therapeutics on CD clinical practice.
Collapse
Affiliation(s)
- Gopal Veeraraghavan
- Department of Medicine, Celiac Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
31
|
Non-dietary methods in the treatment of celiac disease. GASTROENTEROLOGY REVIEW 2015; 10:12-7. [PMID: 25960809 PMCID: PMC4411409 DOI: 10.5114/pg.2014.47503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/09/2014] [Accepted: 02/17/2014] [Indexed: 12/26/2022]
Abstract
This is a selective review of the literature concerning the methods of celiac disease treatment, which can be an alternative to a gluten-free diet. The most advanced studies are devoted to the larazotide acetate (AT-1001, human zonulin inhibitor) and prolyl-endopeptidases degrading toxic gluten peptides (ALV003, AN-PEP). It is estimated that they will be registered within a few years. They will not become an alternative to the gluten-free diet but rather a supplement to it, which will enable patients to ease the nutritional restrictions.
Collapse
|
32
|
Sulic AM, Kurppa K, Rauhavirta T, Kaukinen K, Lindfors K. Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets 2014; 19:335-48. [PMID: 25410283 DOI: 10.1517/14728222.2014.985207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The only current treatment for celiac disease is a strict gluten-free diet. The ubiquitous presence of gluten in groceries, however, makes the diet burdensome and difficult to maintain, and alternative treatment options are thus needed. Here, the important role of transglutaminase 2 (TG2) in the pathogenesis of celiac disease makes it an attractive target for drug development. AREAS COVERED The present paper gives an overview of TG2 and addresses its significance in the pathogenesis of celiac disease. Moreover, the article summarizes preclinical studies performed with TG2 inhibitors and scrutinizes issues related to this therapeutic approach. EXPERT OPINION Activation of TG2 in the intestinal mucosa is central in celiac disease pathogenesis and researchers have therefore suggested TG2 inhibitors as a potential therapeutic approach. However, a prerequisite for such a drug is that it should be specific for TG2 and not affect the activity of other members of the transglutaminase family. Such compounds have already been introduced and tested in vitro, but a major obstacle to further development is the lack of a well-defined animal model for celiac disease. Nonetheless, with encouraging results in preclinical studies clinical trials with TG2 inhibitors are eagerly awaited.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Tampere , Finland +358 50 3186306; +358 3 3641369 ;
| | | | | | | | | |
Collapse
|
33
|
Mooney PD, Hadjivassiliou M, Sanders DS. Emerging drugs for coeliac disease. Expert Opin Emerg Drugs 2014; 19:533-44. [DOI: 10.1517/14728214.2014.959490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Kurppa K, Hietikko M, Sulic AM, Kaukinen K, Lindfors K. Current status of drugs in development for celiac disease. Expert Opin Investig Drugs 2014; 23:1079-91. [PMID: 24806736 DOI: 10.1517/13543784.2014.916274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Gluten is the main trigger for celiac disease, and the current treatment is based on its elimination from the diet. Although the symptoms usually disappear during the diet, it is restrictive and difficult to maintain. Further, despite a strict treatment the small-bowel mucosal damage does now always heal. Consequently, adherence is often poor and new treatment approaches are needed. With an increased understanding of the disease pathogenesis, several novel treatments have been suggested, and some of them have already entered Phase II clinical trials. AREAS COVERED This article reviews the latest status of the drugs in development for celiac disease. The article focuses mainly on synthetic drugs currently entering in clinical trials. EXPERT OPINION It is anticipated that some of the treatments under investigation will soon enter Phase III clinical trials, although challenges remain. For instance, histological studies are problematic in wide-scale clinical studies. On the other hand, the existing non-invasive serological methods and clinical outcome measures might be too insensitive for monitoring responses to the possible drug candidates. There is also no animal model which would accurately reflect celiac disease. Well-conducted basic and clinical research is required to develop better non-invasive surrogate markers and patient-related outcomes for future pharmacological studies.
Collapse
Affiliation(s)
- Kalle Kurppa
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Finn Medi 3, Biokatu 10, 33520 Tampere , Finland +358 3 3551 8403 ; +358 3 3551 8402 ;
| | | | | | | | | |
Collapse
|
35
|
Odii BO, Coussons P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. ScientificWorldJournal 2014; 2014:714561. [PMID: 24778599 PMCID: PMC3981525 DOI: 10.1155/2014/714561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/30/2013] [Indexed: 02/01/2023] Open
Abstract
Transglutaminase 2 (TG2) is the most widely distributed and most abundantly expressed member of the transglutaminase family of enzymes, a group of intracellular and extracellular proteins that catalyze the Ca²⁺-dependent posttranslational modification of proteins. It is a unique member of the transglutaminase family owing to its specialized biochemical, structural and functional elements, ubiquitous tissue distribution and subcellular localization, and substrate specificity. The broad substrate specificity of TG2 and its flexible interaction with numerous other gene products may account for its multiple biological functions. In addition to the classic Ca²⁺-dependent transamidation of proteins, which is a hallmark of transglutaminase enzymes, additional Ca²⁺-independent enzymatic and nonenzymatic activities of TG2 have been identified. Many such activities have been directly or indirectly implicated in diverse cellular physiological events, including cell growth and differentiation, cell adhesion and morphology, extracellular matrix stabilization, wound healing, cellular development, receptor-mediated endocytosis, apoptosis, and disease pathology. Given the wide range of activities of the transglutaminase gene family it has been suggested that, in the absence of active versions of TG2, its function could be compensated for by other members of the transglutaminase family. It is in the light of this assertion that we review, herein, TG2 activities and the possibilities and premises for compensation for its absence.
Collapse
Affiliation(s)
- Benedict Onyekachi Odii
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Peter Coussons
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To summarize the recent advances in coeliac disease. RECENT FINDINGS Details of the polygenic nature of coeliac disease with the human leukocyte antigen (HLA) locus as the dominating genetic element have been uncovered. The existence of a large number of non-HLA coeliac disease genes, only partly shared by each individual patient, suggests the genetic heterogeneity of the disease. The critical role for HLA-DQ-restricted CD4 T cells recognizing antigenic gluten peptides is further substantiated. Involvement of CD8 T cells has received new attention. Other components of wheat than gluten, in particular the amylase trypsin inhibitors, may also play a role. The disease is becoming more prevalent. New guidelines state that coeliac disease diagnosis in children can be made on the basis of clinical signs, serology and genetics without the need of biopsy. The clinical entity 'noncoeliac gluten sensitivity' has received much attention, but diagnostic and pathophysiological definitions are still elusive. The risk for mortality and morbidity in coeliac disease is less than previously thought. SUMMARY Our understanding of the basic and clinical aspects of coeliac disease increases. Coeliac disease stands out as a major health problem of almost global occurrence. Case finding, distinguishing coeliac disease from other gluten-sensitive conditions, better care and balanced use of resources are the current challenges.
Collapse
|
37
|
Abstract
Coeliac disease is a common and fairly well-characterized systemic disorder that mainly affects the small intestine, but also has extraintestinal manifestations. The environmental trigger (gluten derived from wheat, rye and barley), the genetic predisposition conferred by the HLA-DQ2 and HLA-DQ8 haplotypes and many steps in the disease pathogenesis are known. This knowledge has enabled researchers to suggest novel alternative treatments or adjunctive therapies to the gluten-free diet, which is currently the only available and effective treatment for the condition. This Review focuses on emerging and potential treatment strategies that are based on the current concept of the disease pathophysiology. The search for novel future treatment modes, including nonpharmacological and pharmacological approaches, is also outlined. The potential pitfalls associated with the various research avenues are also discussed.
Collapse
|
38
|
Stoven S, Murray JA, Marietta EV. Latest in vitro and in vivo models of celiac disease. Expert Opin Drug Discov 2013; 8:445-57. [PMID: 23293929 DOI: 10.1517/17460441.2013.761203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Currently, the only treatment for celiac disease is a gluten-free diet, and there is an increased desire for alternative therapies. In vitro and in vivo models of celiac disease have been generated in order to better understand the pathogenesis of celiac disease, and this review will discuss these models as well as the testing of alternative therapies using these models. AREAS COVERED The research discussed describes the different in vitro and in vivo models of celiac disease that currently exist and how they have contributed to our understanding of how gluten can stimulate both innate and adaptive immune responses in celiac patients. We also provide a summary on the alternative therapies that have been tested with these models and discuss whether subsequent clinical trials were done based on these tests done with these models of celiac disease. EXPERT OPINION Only a few of the alternative therapies that have been tested with animal models have gone on to clinical trials; however, those that did go on to clinical trial have provided promising results from a safety standpoint. Further trials are required to determine if some of these therapies may serve as an effective adjunct to a gluten-free diet to alleviate the adverse affects associated with accidental gluten exposure. A "magic-bullet" approach may not be the answer to celiac disease, but possibly a future cocktail of these different therapeutics may allow celiac patients to consume an unrestricted diet.
Collapse
Affiliation(s)
- Samantha Stoven
- Mayo Clinic, Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | |
Collapse
|
39
|
Matoori S, Fuhrmann G, Leroux JC. Celiac disease: a challenging disease for pharmaceutical scientists. Pharm Res 2012; 30:619-26. [PMID: 23229860 DOI: 10.1007/s11095-012-0951-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/30/2012] [Indexed: 12/19/2022]
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered by the ingestion of gluten-containing grains that affects ~1% of the white ethnic population. In the last decades, a rise in prevalence of CD has been observed that cannot be fully explained by improved diagnostics. Genetic predisposition greatly influences the susceptibility of individuals towards CD, though environmental factors also play a role. With no pharmacological treatments available, the only option to keep CD in remission is a strict and permanent exclusion of dietary gluten. Such a gluten-free diet is difficult to maintain because of gluten's omnipresence in food (e.g., additive in processed food). The development of adjuvant therapies which would permit the intake of small amounts of gluten would be desirable to improve the quality of life of patients on a gluten-free diet. Such therapies include gluten-degrading enzymes, polymeric binders, desensitizing vaccines, anti-inflammatory drugs, transglutaminase 2 inhibitors, and HLA-DQ2 blockers. However, many of these approaches pose pharmaceutical challenges with respect to drug formulation and stability, or application route and dosing interval. This perspective article discusses how pharmaceutical scientists may deal with these challenges and contribute to the implementation of novel therapeutic options for patients with CD.
Collapse
Affiliation(s)
- Simon Matoori
- Department of Chemistry and Applied Biosciences, ETH Zurich Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Str. 10, HCI, 8093, Zurich, Switzerland
| | | | | |
Collapse
|