1
|
Franco S, Fuchs J, Dinner S, Ma S. B-ALL in a 21-year-old male with X-linked agammaglobulinemia (XLA): a case report and review of B-cell malignancies in XLA. Leuk Lymphoma 2025; 66:801-803. [PMID: 39671464 DOI: 10.1080/10428194.2024.2439529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Affiliation(s)
- Stephanie Franco
- Department of Internal Medicine, Northwestern Medicine, Chicago, IL, USA
| | - Joseph Fuchs
- Department of Internal Medicine, Northwestern Medicine, Chicago, IL, USA
| | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL , USA
| | - Shuo Ma
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL , USA
| |
Collapse
|
2
|
Kon T, Sasaki Y, Abe Y, Yagi M, Mizumoto N, Onozato Y, Ito M, Watabe T, Tsuchiya H, Goto H, Miura T, Sato R, Ueno Y. Young Patient with X-linked Agammaglobulinemia Presents with Advanced Gastric Cancer and Extensive Atrophic Gastritis. Intern Med 2025; 64:95-100. [PMID: 38749732 PMCID: PMC11781919 DOI: 10.2169/internalmedicine.3236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 01/07/2025] Open
Abstract
X-linked agammaglobulinemia (XLA) is associated with an increased risk of gastrointestinal cancers including gastric cancer (GC). We herein report the case of a 30-year-old male patient with XLA who developed GC and extensive atrophic gastritis. He tested positive in the urea breath test, thus indicating the presence of Helicobacter pylori. Distal gastrectomy and chemotherapy were performed without any complications; however, the died two years after this diagnosis. Immunoglobulin deficiency makes these patients susceptible to progressive atrophic gastritis and the associated risk of GC. Therefore, patients with XLA are advised to undergo an evaluation for Helicobacter pylori infection as well as monitoring for GC.
Collapse
Affiliation(s)
- Takashi Kon
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Yu Sasaki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Yasuhiko Abe
- Division of Endoscopy, Yamagata University Hospital, Japan
| | - Makoto Yagi
- Division of Endoscopy, Yamagata University Hospital, Japan
| | - Naoko Mizumoto
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Yusuke Onozato
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Minami Ito
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Takahiro Watabe
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Hiroko Tsuchiya
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Hiroki Goto
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Takahiro Miura
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Ryo Sato
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Japan
| |
Collapse
|
3
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Bahal S, Zinicola M, Moula SE, Whittaker TE, Schejtman A, Naseem A, Blanco E, Vetharoy W, Hu YT, Rai R, Gomez-Castaneda E, Cunha-Santos C, Burns SO, Morris EC, Booth C, Turchiano G, Cavazza A, Thrasher AJ, Santilli G. Hematopoietic stem cell gene editing rescues B-cell development in X-linked agammaglobulinemia. J Allergy Clin Immunol 2024; 154:195-208.e8. [PMID: 38479630 PMCID: PMC11752842 DOI: 10.1016/j.jaci.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is an inborn error of immunity that renders boys susceptible to life-threatening infections due to loss of mature B cells and circulating immunoglobulins. It is caused by defects in the gene encoding the Bruton tyrosine kinase (BTK) that mediates the maturation of B cells in the bone marrow and their activation in the periphery. This paper reports on a gene editing protocol to achieve "knock-in" of a therapeutic BTK cassette in hematopoietic stem and progenitor cells (HSPCs) as a treatment for XLA. METHODS To rescue BTK expression, this study employed a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system that creates a DNA double-strand break in an early exon of the BTK locus and an adeno-associated virus 6 virus that carries the donor template for homology-directed repair. The investigators evaluated the efficacy of the gene editing approach in HSPCs from patients with XLA that were cultured in vitro under B-cell differentiation conditions or that were transplanted in immunodeficient mice to study B-cell output in vivo. RESULTS A (feeder-free) B-cell differentiation protocol was successfully applied to blood-mobilized HSPCs to reproduce in vitro the defects in B-cell maturation observed in patients with XLA. Using this system, the investigators could show the rescue of B-cell maturation by gene editing. Transplantation of edited XLA HSPCs into immunodeficient mice led to restoration of the human B-cell lineage compartment in the bone marrow and immunoglobulin production in the periphery. CONCLUSIONS Gene editing efficiencies above 30% could be consistently achieved in human HSPCs. Given the potential selective advantage of corrected cells, as suggested by skewed X-linked inactivation in carrier females and by competitive repopulating experiments in mouse models, this work demonstrates the potential of this strategy as a future definitive therapy for XLA.
Collapse
Affiliation(s)
- Sameer Bahal
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marta Zinicola
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Thomas E Whittaker
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrea Schejtman
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elena Blanco
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Winston Vetharoy
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yi-Ting Hu
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Eduardo Gomez-Castaneda
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Catarina Cunha-Santos
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Emma C Morris
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Claire Booth
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
5
|
Epidemiology and Characteristics of Gastric Carcinoma in Childhood-An Analysis of Data from Population-Based and Clinical Cancer Registries. Cancers (Basel) 2023; 15:cancers15010317. [PMID: 36612313 PMCID: PMC9818931 DOI: 10.3390/cancers15010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Gastric carcinoma is an exceptionally rare tumor in childhood. Little is known about the etiology, epidemiology, and clinical features of pediatric gastric carcinomas. This analysis aimed to fill this gap by increasing knowledge about the occurrence of gastric carcinoma in childhood. (2) Material and methods: Data from gastric carcinoma cases diagnosed between 2000 and 2017/2018 were retrieved from the Surveillance, Epidemiology, and End Results Program (SEER) and the German Center for Cancer Registry Data. Data from patients <20 years of age were analyzed for patient- and tumor-related characteristics. In addition, clinical data from patients with gastric carcinoma registered in the German Registry for Rare Pediatric Tumors (STEP) were analyzed for diagnostics, therapy, and outcome. (3) Results: Ninety-one cases of gastric carcinoma, mainly in adolescents, were identified in the epidemiologic cancer registries. Among patients with recorded staging data, advanced tumor stages were common (66.7%). Within the follow-up period covered, 63.7% of patients with clinical follow-up data died. Eight pediatric patients with gastric carcinoma were enrolled in the STEP registry, among whom two were patients with hereditary CDH1 mutations and another was a patient with Peutz−Jeghers syndrome. Three patients were found to have distinctly decreased immunoglobulin concentrations. All four patients in whom complete resection was achieved remained in remission. Three of the other four patients died despite multimodal therapy. (4) Conclusions: A combination of Helicobacter pylori infection and tumor predisposition and/or immunodeficiency appears to promote the development of gastric carcinoma in childhood. While patients with localized disease stages have a good chance of achieving durable remission through complete resection, patients with stage IV carcinomas face a dismal prognosis, highlighting the need to develop new strategies such as mutation-guided treatments.
Collapse
|
6
|
Fjordside L, Herløv C, Drabe CH, Andersen LP, Katzenstein TL. Helicobacter trogontum Bacteremia and Lower Limb Skin Lesion in a Patient with X-Linked Agammaglobulinemia-A Case Report and Review of the Literature. Pathogens 2022; 11:1247. [PMID: 36364998 PMCID: PMC9696073 DOI: 10.3390/pathogens11111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/29/2024] Open
Abstract
We describe the first case of infection with Helicobacter trogontum in a patient with X-linked agammaglobulinemia. A 22-year-old male with X-linked agammaglobulinemia presented with fever, malaise and a painful skin lesion on the lower left extremity. Spiral shaped Gram-negative rods were isolated from blood cultures and later identified as Helicobacter trogontum. The patient was treated with various intravenous and oral antibiotic regimens over a period of 10 months, each causing seemingly full clinical and paraclinical remission, yet several episodes of relapse occurred after cessation of antibiotic treatment. The review of the literature showed that only a few cases of infections with enterohepatic helicobacters belonging to the Flexispira rappini taxons have previously been reported. The majority of cases included patients with X-linked agammaglobulinemia and the symptomatology and course of disease were similar to the case described here. Infections with enterohepatic helicobacters, including Helicobacter trogontum, should be considered in patients with X-linked agammaglobulinemia presenting with fever, malaise and skin lesions. Careful cultivation and microbiological investigation are essential to determine the diagnosis and a long treatment period of over 6 months must be expected for successful eradication.
Collapse
Affiliation(s)
- Lasse Fjordside
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Caroline Herløv
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Camilla Heldbjerg Drabe
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Leif Percival Andersen
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Terese L. Katzenstein
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Zheng B, Artin MG, Chung H, Chen B, Sun S, May BL, Hur C, Green PHR, Wang TC, Park J, Kong XF. Immunogenetics of gastrointestinal cancers: A systematic review and retrospective survey of inborn errors of immunity in humans. J Gastroenterol Hepatol 2022; 37:973-982. [PMID: 35384041 PMCID: PMC9301767 DOI: 10.1111/jgh.15848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Humans with inborn errors of immunity (IEI), or primary immunodeficiencies, may be associated with a potential risk factor for early-onset gastrointestinal (GI) cancer. METHODS We systematically reviewed all cases with clinical diagnoses of both an IEI and a GI cancer in three databases (MEDLINE, SCOPUS, and EMBASE). In total, 76 publications satisfying our inclusion criteria were identified, and data for 149 cases were analyzed. We also searched our institutional cancer registry for such cases. RESULTS We identified 149 patients with both an IEI and a GI cancer, 95 presented gastric cancer, 13 small bowel cancer, 35 colorectal cancer, and 6 had an unspecified cancer or cancer at another site. Gastric and colon adenocarcinomas were the most common. For both gastric and colorectal cancers, age at onset was significantly earlier in patients with IEIs than in the general population, based on the SEER database. Common variable immunodeficiency (CVID) was the most common IEI associated with gastrointestinal cancer. About 12% of patients had molecular genetic diagnoses, the three most frequently implicated genes being ATM, CARMIL2, and CTLA4. Impaired humoral immunity and Epstein-Barr virus (EBV) infection were frequently reported as factors potentially underlying early-onset GI cancers in patients with IEIs. We identified one patient with CVID and early-onset gastric adenocarcinoma, recurrent diarrhea, and gastrointestinal CMV infection from a retrospective survey. CONCLUSION Patients with IEIs should be considered at risk of early-onset GI cancers and should therefore undergo cancer screening at an earlier age.
Collapse
Affiliation(s)
- Beishi Zheng
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York,Department of Internal Medicine, Woodhull Medical and Mental Health Center, Brooklyn, New York, USA
| | - Michael G Artin
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Howard Chung
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Bing Chen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Siming Sun
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Benjamin L May
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Chin Hur
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Peter H R Green
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Jiheum Park
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Xiao-Fei Kong
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Irving Medical Center, New York
| |
Collapse
|
8
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. BIOLOGY 2021; 10:biology10040313. [PMID: 33918597 PMCID: PMC8069273 DOI: 10.3390/biology10040313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. Immunologists and oncologists should interact to monitor and promptly diagnose the potential development of cancer in known IEI patients, as well as an underlying IEI in newly diagnosed cancers with suggestive medical history or high rate of therapy-related toxicity. The creation of an international registry of IEI cases with detailed information on the occurrence of cancer is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the aim of improving prognosis and reducing comorbidities. Abstract Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The aim of this narrative review is to discuss the epidemiology, the pathogenesis and the correct management of tumours in patients with IEI. PubMed was used to search for all of the studies published over the last 20 years using the keywords: “inborn errors of immunity” or “primary immunodeficiency” and “cancer” or “tumour” or “malignancy”. Literature analysis showed that the overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. The knowledge of a specific tumour risk in the presence of IEI highlights the importance of a synergistic effort by immunologists and oncologists in tracking down the potential development of cancer in known IEI patients, as well as an underlying IEI in patients with newly diagnosed cancers. In the current genomic era, the creation of an international registry of IEI cases integrated with malignancies occurrence information is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the hope to obtain a better prognosis for these patients.
Collapse
Affiliation(s)
- Alessandra Tiri
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Riccardo Masetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Anna Tignanelli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Elena Turrini
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Patrizia Bertolini
- Pediatric Oncohematology Unit, Pietro Barilla Children’s Hospital, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
- Correspondence: ; Tel.: +39-0521-903-524
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| |
Collapse
|
10
|
Nie L, Su T, Yang KT, Zhao L, Hu J, Yang SH, Xu YJ, Fu B. [Peripheral blood stem cell transplantation from HLA-mismatched unrelated donor or haploidentical donor for the treatment of X-linked agammaglobulinemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:821-827. [PMID: 32800027 PMCID: PMC7441510 DOI: 10.7499/j.issn.1008-8830.2006150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Allogeneic stem cell transplantation (allo-SCT) is currently the only curative option for patients with X-linked agammaglobulinemia (XLA). In this study, patient 1 aged 4 years who underwent allogeneic peripheral blood stem cell transplantation (allo-PBSCT) from HLA-mismatched unrelated donor; patient 2 aged 24 years (childhood onset) with primary cutaneous acral CD8+ T cell lymphoma who underwent allo-PBSCT from haploidentical relative donor. Both were treated by reduced toxicity myeloablative conditioning with post-transplantation cyclophosphamide (PTCy), anti-thymocyte globulin (ATG), methotrexate (MTX) and cyclosporine (CsA) for graft-versus-host-disease (GVHD) prophylaxis. In patient 1, neutrophil and platelet engraftment were observed on day 11 post-transplantation; the donor chimerism dropped on day 90 post-transplantation, and recovered on day 150 with donor lymphocyte infusion (DLI). In patient 2, neutrophil and platelet engraftment were observed on days 20 and 87 post-transplantation respectively, with complete donor chimerism on day 30 post-transplantation. The serum levels of IgG, IgM and IgA and the percentage of CD19+ B cells in peripheral blood of patients 1 and 2 returned to normal within 2 months and more than 1 year after transplantation respectively. There was no evidence of acute GVHD for the two patients. Patient 1 developed a limited type of skin chronic GVHD after DLI, which disappeared after anti-GVHD treatment. This is the first report of successful treatment for two XLA patients using PTCy with allo-PBSCT from HLA-mismatched unrelated donor or haploidentical donor, combining with improved conditioning, which expands the pool of eligible donors for patients with XLA.
Collapse
Affiliation(s)
- Ling Nie
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gullo I, Costa C, Silva SL, Ferreira C, Motta A, Silva SP, Ferreira RD, Rosmaninho P, Faria E, da Costa JT, Câmara R, Gonçalves G, Santos-Antunes J, Oliveira C, Machado JC, Carneiro F, Sousa AE. The Dysfunctional Immune System in Common Variable Immunodeficiency Increases the Susceptibility to Gastric Cancer. Cells 2020; 9:1498. [PMID: 32575504 PMCID: PMC7349552 DOI: 10.3390/cells9061498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric carcinoma (GC) represents the most common cause of death in patients with common variable immunodeficiency (CVID). However, a limited number of cases have been characterised so far. In this study, we analysed the clinical features, bacterial/viral infections, detailed morphology and immune microenvironment of nine CVID patients with GC. The study of the immune microenvironment included automated digital counts of CD20+, CD4+, CD8+, FOXP3+, GATA3+ and CD138+ immune cells, as well as the evaluation of PD-L1 expression. Twenty-one GCs from non-CVID patients were used as a control group. GC in CVID patients was diagnosed mostly at early-stage (n = 6/9; 66.7%) and at younger age (median-age: 43y), when compared to non-CVID patients (p < 0.001). GC pathogenesis was closely related to Helicobacter pylori infection (n = 8/9; 88.9%), but not to Epstein-Barr virus (0.0%) or cytomegalovirus infection (0.0%). Non-neoplastic mucosa (non-NM) in CVID-patients displayed prominent lymphocytic gastritis (100%) and a dysfunctional immune microenvironment, characterised by higher rates of CD4+/CD8+/Foxp3+/GATA3+/PD-L1+ immune cells and the expected paucity of CD20+ B-lymphocytes and CD138+ plasma cells, when compared to non-CVID patients (p < 0.05). Changes in the immune microenvironment between non-NM and GC were not equivalent in CVID and non-CVID patients, reflecting the relevance of immune dysfunction for gastric carcinogenesis and GC progression in the CVID population.
Collapse
Affiliation(s)
- Irene Gullo
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal; (I.G.); (C.C.); (G.G.)
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal; (C.O.); (J.C.M.)
- Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Catarina Costa
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal; (I.G.); (C.C.); (G.G.)
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal; (C.O.); (J.C.M.)
| | - Susana L. Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.F.); (A.M.); (S.P.S.); (R.D.F.); (P.R.); (A.E.S.)
- Centro de Imunodeficiências Primárias do Centro Académico de Medicina de Lisboa, 1649-028 Lisbon, Portugal
- Centro Hospitalar Universitário Lisboa Norte, 1600-190 Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.F.); (A.M.); (S.P.S.); (R.D.F.); (P.R.); (A.E.S.)
- Centro de Imunodeficiências Primárias do Centro Académico de Medicina de Lisboa, 1649-028 Lisbon, Portugal
- Centro Hospitalar Universitário Lisboa Norte, 1600-190 Lisbon, Portugal
| | - Adriana Motta
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.F.); (A.M.); (S.P.S.); (R.D.F.); (P.R.); (A.E.S.)
- Centro de Imunodeficiências Primárias do Centro Académico de Medicina de Lisboa, 1649-028 Lisbon, Portugal
| | - Sara P. Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.F.); (A.M.); (S.P.S.); (R.D.F.); (P.R.); (A.E.S.)
- Centro de Imunodeficiências Primárias do Centro Académico de Medicina de Lisboa, 1649-028 Lisbon, Portugal
- Centro Hospitalar Universitário Lisboa Norte, 1600-190 Lisbon, Portugal
| | - Rúben Duarte Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.F.); (A.M.); (S.P.S.); (R.D.F.); (P.R.); (A.E.S.)
- Centro de Imunodeficiências Primárias do Centro Académico de Medicina de Lisboa, 1649-028 Lisbon, Portugal
| | - Pedro Rosmaninho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.F.); (A.M.); (S.P.S.); (R.D.F.); (P.R.); (A.E.S.)
- Centro de Imunodeficiências Primárias do Centro Académico de Medicina de Lisboa, 1649-028 Lisbon, Portugal
| | - Emília Faria
- Serviço de Imunoalergologia, Centro Hospitalar Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - José Torres da Costa
- Serviço de Imunoalergologia, Centro Hospitalar Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal;
| | - Rita Câmara
- Serviço de Imunoalergologia, Hospital Dr Nélio Mendonça, 9000-177 Funchal, Portugal;
| | - Gilza Gonçalves
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal; (I.G.); (C.C.); (G.G.)
- Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - João Santos-Antunes
- Department of Gastroenterology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal;
| | - Carla Oliveira
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal; (C.O.); (J.C.M.)
- Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - José C. Machado
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal; (C.O.); (J.C.M.)
- Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal; (I.G.); (C.C.); (G.G.)
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal; (C.O.); (J.C.M.)
- Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Ana E. Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.F.); (A.M.); (S.P.S.); (R.D.F.); (P.R.); (A.E.S.)
- Centro de Imunodeficiências Primárias do Centro Académico de Medicina de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
12
|
Kasahara Y, Imamura M, Shin C, Shimizu H, Utsumi J, Hosokai R, Iwabuchi H, Takachi T, Kakita A, Kanegane H, Saitoh A, Imai C. Fatal Progressive Meningoencephalitis Diagnosed in Two Members of a Family With X-Linked Agammaglobulinemia. Front Pediatr 2020; 8:579. [PMID: 33042921 PMCID: PMC7530192 DOI: 10.3389/fped.2020.00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic enteroviral meningoencephalitis is a well-known complication in patients with X-linked agammaglobulinemia (XLA). However, progressive neurodegenerative disorders or chronic neuroinflammatory diseases with no causative microorganisms have been recognized as rare central nervous system (CNS) complications in XLA. We herein report a family in which two of three members with XLA had developed progressive meningoencephalitis with an unknown etiology. A 15-month-old male infant presented with left-sided ptosis. Initially, the family denied any family history of inherited diseases, but later disclosed a family history of agammaglobulinemia previously diagnosed in two family members. In the early 1980s, one of the elder brothers of the index patient's mother who had been treated with intramuscular immunoglobulin [or later intravenous immunoglobulin (IVIG)] for agammaglobulinemia deceased at 10 years of age after showing progressive neurological deterioration during the last several years of his life. The index patient was diagnosed with XLA caused by Bruton tyrosine kinase deficiency (654delG; Val219Leufs*9), and chronic meningoencephalitis with an unknown infectious etiology. Magnetic resonance imaging of the brain demonstrated inflammatory changes in the basal ganglia, hypothalamus, midbrain, and pons, with multiple nodular lesions with ring enhancement, which showed impressive amelioration after the initiation of IVIG replacement therapy. Pleocytosis, which was characterized by an increase in CD4-positive and CD8-positive T cells expressing an activation marker and an elevation in inflammatory cytokines in the cerebrospinal fluid, was identified. No microorganism was identified as a cause of CNS complications. He thereafter developed brain infarction at 19 months of age and fatal status epilepticus at 5 years of age, despite regular IVIG with high trough levels and regular intraventricular immunoglobulin administration. The etiology of this rare CNS complication in XLA is currently unknown. Previous studies have suggested a possible association of IVIG, which was clearly denied in our index case because of the demonstration of his neurological disorder at presentation. In the future, extensive and unbiased molecular methods to detect causative microorganisms, as well as to investigate the possible role of autoimmunity are needed to clarify the etiology of CNS complications.
Collapse
Affiliation(s)
- Yasushi Kasahara
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaru Imamura
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Chansu Shin
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jirou Utsumi
- Department of Pediatrics, Niigata Cancer Center Hospital, Niigata, Japan
| | - Ryosuke Hosokai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruko Iwabuchi
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takayuki Takachi
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama, Japan.,Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Agarwal S, Cunningham-Rundles C. Gastrointestinal Manifestations and Complications of Primary Immunodeficiency Disorders. Immunol Allergy Clin North Am 2019; 39:81-94. [PMID: 30466774 DOI: 10.1016/j.iac.2018.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) involvement can be the presenting disease manifestation in patients with primary immunodeficiency disorders (PIDs). Infections and noninfectious diarrhea are frequent manifestations; however, malignancy and inflammatory and autoimmune-related GI diseases are also described. GI symptoms and disease seen in association with PIDs can mimic other diseases but are often resistant to conventional treatments owing to alternate disease mechanisms. Despite the advances in treatments for these conditions, therapy for immunodeficiency-related GI disease is often empiric.
Collapse
Affiliation(s)
- Shradha Agarwal
- Division of Allergy and Clinical Immunology after the Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY 10029, USA.
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology after the Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY 10029, USA
| |
Collapse
|
14
|
Metastatic colorectal cancer and severe hypocalcemia following irinotecan administration in a patient with X-linked agammaglobulinemia: a case report. BMC MEDICAL GENETICS 2019; 20:157. [PMID: 31510946 PMCID: PMC6739925 DOI: 10.1186/s12881-019-0880-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/22/2019] [Indexed: 12/28/2022]
Abstract
Background X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disorder caused by germline mutations in the Bruton tyrosine kinase (BTK) gene on X chromosome. These mutations disturb B-cell development, decrease immunoglobulin levels, increase susceptibility to infection or neoplasms, and increase the risk of developing colorectal cancer (CRC). For occasional cases of CRC have been reported in XLA patients, low levels of B lymphocytes and immunoglobulins induced by congenital immune disorder make them more susceptible to drug-related toxicities (DRT). Therefore, gene sequencing, therapeutic drug monitoring and any possible measurement to predict DRT should be considered before determining the course of chemotherapy for XLA patients with CRC. Case presentation In this study, we reported a 21-year-old male who developed metastatic CRC in the context of XLA. Since the whole exome sequencing and therapeutic drug monitoring did not reveal any predictive markers of DRT, we applied standard first-line chemotherapy to the patient. However, progressive disease occurred after the fifth treatment cycle. Therefore, the administration of oxaliplatin was changed to irinotecan as second-line therapy. After that, the patient firstly suffered from severe hypocalcemia and eventually died due to metastatic CRC after the eighth treatment cycle. The overall survival time was 7.5 months. Conclusions This study reported the first written record of a Chinese XLA patient with metastatic CRC and severe hypocalcemia. Whole exome sequencing and bioinformatic analysis indicated the somatic mutations in ABCA6, C6 and PAX3 genes might contribute to the early-onset and metastasis CRC. Besides, a number of germline mutations in genes related to calcium metabolism (CACNA2D4, CD36, etc.) and the administration of irinotecan were speculated to be the causes of severe hypocalcemia. We therefore suggested that in order to avoid severe DRT, clinicians should take genetic background and therapeutic drug monitoring into consideration while planning chemotherapy treatment for XLA patients with CRC. Electronic supplementary material The online version of this article (10.1186/s12881-019-0880-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Satgé D. A Tumor Profile in Primary Immune Deficiencies Challenges the Cancer Immune Surveillance Concept. Front Immunol 2018; 9:1149. [PMID: 29881389 PMCID: PMC5976747 DOI: 10.3389/fimmu.2018.01149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 01/23/2023] Open
Abstract
Under the concept of cancer immune surveillance, individuals with primary immune deficiencies would be expected to develop many more malignancies and show an excess of all types of cancers, compared to people with a normal immune system. A review of the nine most frequent and best-documented human conditions with primary immune deficiency reveals a 1.6- to 2.3-fold global increase of cancer in the largest epidemiological studies. However, the spectrum of cancer types with higher frequencies is narrow, limited mainly to lymphoma, digestive tract cancers, and virus-induced cancers. Increased lymphoma is also reported in animal models of immune deficiency. Overstimulation of leukocytes, chronic inflammation, and viruses explain this tumor profile. This raises the question of cancers being foreign organisms or tissues. Organisms, such as bacteria, viruses, and parasites as well as non-compatible grafts are seen as foreign (non-self) and identified and destroyed or rejected by the body (self). As cancer cells rarely show strong (and unique) surface antibodies, their recognition and elimination by the immune system is theoretically questionable, challenging the immune surveillance concept. In the neonatal period, the immune system is weak, but spontaneous regression and good outcomes occur for some cancers, suggesting that non-immune factors are effective in controlling cancer. The idea of cancer as a group of cells that must be destroyed and eliminated appears instead as a legacy of methods and paradigms in microbiological medicine. As an alternative approach, cancer cells could be considered part of the body and could be controlled by an embryonic and neonatal environment.
Collapse
Affiliation(s)
- Daniel Satgé
- Institut Universitaire de Recherche Clinique, Biostatistics, Epidemiology and Public Health, Team Cancer EA 2415 and Oncodéfi, Montpellier, France
| |
Collapse
|
16
|
Esenboga S, Cagdas D, Ozgur TT, Gur Cetinkaya P, Turkdemir LM, Sanal O, VanDerBurg M, Tezcan I. Clinical and genetic features of the patients with X-Linked agammaglobulinemia from Turkey: Single-centre experience. Scand J Immunol 2018; 87. [PMID: 29424453 DOI: 10.1111/sji.12647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Abstract
X-linked agammaglobulinemia is a primary immunodeficiency disorder resulting from BTK gene mutations. There are many studies in the literature suggesting contradictory ideas about phenotype-genotype correlation. The aim of this study was to identify the mutations and clinical findings of patients with XLA in Turkey, to determine long-term complications related to the disease and to analyse the phenotype-genotype correlation. Thirty-two patients with XLA diagnosed between 1985 and 2016 in Pediatric Immunology Department of Hacettepe University Ihsan Dogramaci Children's Hospital were investigated. A clinical survey including clinical features of the patients was completed, and thirty-two patients from 26 different families were included in the study. Getting early diagnosis and regular assessment with imaging techniques seem to be the most important issues for improving the health status of the patients with XLA. Early molecular analysis gives chance for definitive diagnosis and genetic counselling, but not for predicting the clinical severity and prognosis.
Collapse
Affiliation(s)
- S Esenboga
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - D Cagdas
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - T T Ozgur
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - P Gur Cetinkaya
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - L M Turkdemir
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - O Sanal
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M VanDerBurg
- Erasmus Medical Center, Laboratory Medical Immunology, Division of Immunology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Hajjar J, Hasan S, Forbes LR, Hemmige V, Orange JS. Gastric Adenocarcinoma in a Patient with X-Linked Agammaglobulinemia and HIV: Case Report and Review of the Literature. Front Pediatr 2016; 4:100. [PMID: 27722150 PMCID: PMC5033959 DOI: 10.3389/fped.2016.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Joud Hajjar
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA
| | - Sana Hasan
- Internal Medicine, Baylor College of Medicine , Houston, TX , USA
| | - Lisa R Forbes
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA
| | - Vagish Hemmige
- Internal Medicine, Baylor College of Medicine , Houston, TX , USA
| | - Jordan S Orange
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
18
|
Lugo Reyes SO, Ramirez-Vazquez G, Cruz Hernández A, Medina-Torres EA, Ramirez-Lopez AB, España-Cabrera C, Hernandez-Lopez CA, Yamazaki-Nakashimada MA, Espinosa-Rosales FJ, Espinosa-Padilla SE, Murata C. Clinical Features, Non-Infectious Manifestations and Survival Analysis of 161 Children with Primary Immunodeficiency in Mexico: A Single Center Experience Over two Decades. J Clin Immunol 2015; 36:56-65. [PMID: 26707787 DOI: 10.1007/s10875-015-0226-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE The hallmark of Primary immunodeficiencies (PID) is unusual infection, although other immunological non-infectious manifestations such as autoimmunity, allergy and cancer are often present. Most published reports focus on one disease or defect groups, so that a global prevalence of non-infectious manifestations of PID is hard to find. We aimed to describe the clinical features of our pediatric patients with PID, as well as the frequency and evolution of allergy, cancer and autoimmunity. METHODS We reviewed all the available charts of patients being followed for PID from 1991 to the spring of 2012 at the National Institute of Pediatrics, Mexico City, to describe their demographic, clinical and laboratory features. Their diagnoses were established by pediatric immunologists in accordance to ESID criteria, including routine immunological workup and specialized diagnostic assays. We divided patients by decade of diagnosis to analyze their survival curves. RESULTS There were 168 charts available, from which we excluded one duplicate and six equivocal diagnoses. We studied the charts of 161 PID patients (68% male, 86% alive), mostly from the center of the country, with a positive family history in 27% and known consanguinity in 11%. Eighty percent of the patients were diagnosed during the last decade. Current median age was 124 months; median age at onset of infections, 12 months; median age at diagnosis, 52 months; median age at death, 67.5 months. Severe infection and bleeding were the cause of 22 deaths. Eighty-six percent of all patients had at least one infection, while non-infectious manifestations had a global prevalence of 36%, namely: autoimmunity 19%, allergies 17%, and cancer 2.4%. Survival curves were not significantly different when compared by decade of diagnosis. CONCLUSIONS Compared to other registry reports, we found a lower prevalence of antibody defects, and of associated allergy and cancer. We could only locate two isolated IgA deficiencies and four cases of cancer among our PID patients. Although antibody defects are the most prevalent group (30%), the distribution we found is similar to that reported in Iran, Kuwait, Egypt and Taiwan, with a close 27% share for phagocyte defects, and 26% for the formerly called "well-defined" syndromes. Of note, autoimmune and inflammatory complications are high among our patients with chronic granulomatous disease, as has been reported in both the United States and Japan, but not in Europe.
Collapse
Affiliation(s)
| | | | - Alonso Cruz Hernández
- Clinical Immunology Department, National Institute of Pediatrics, Mexico City, Mexico
| | - Edgar A Medina-Torres
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Corín España-Cabrera
- Clinical Immunology Department, National Institute of Pediatrics, Mexico City, Mexico
| | | | | | - Francisco J Espinosa-Rosales
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Mexico City, Mexico
- Clinical Immunology Department, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Chiharu Murata
- Research Methodology Department, National Institute of Pediatrics, Mexico City, Mexico.
| |
Collapse
|
19
|
Conley ME. Are patients with X-linked agammaglobulinemia at increased risk of developing acute lymphoblastic leukemia? J Clin Immunol 2015; 35:98-9. [PMID: 25631529 DOI: 10.1007/s10875-015-0132-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Affiliation(s)
- Mary Ellen Conley
- St. Giles Laboratory of Human Genetics, The Rockefeller University, 1230 York Ave Box 163, New York, NY, 10065-6399, USA,
| |
Collapse
|