1
|
Attardi E, Corey SJ, Wlodarski MW. Clonal hematopoiesis in children with predisposing conditions. Semin Hematol 2024; 61:35-42. [PMID: 38311515 DOI: 10.1053/j.seminhematol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Clonal hematopoiesis in children and young adults differs from that occuring in the older adult population. A variety of stressors drive this phenomenon, sometimes independent of age-related processes. For the purposes of this review, we adopt the term clonal hematopoiesis in predisposed individuals (CHIPI) to differentiate it from classical, age-related clonal hematopoiesis of indeterminate potential (CHIP). Stress-induced CHIPI selection can be extrinsic, such as following immunologic, infectious, pharmacologic, or genotoxic exposures, or intrinsic, involving germline predisposition from inherited bone marrow failure syndromes. In these conditions, clonal advantage relates to adaptations allowing improved cell fitness despite intrinsic defects affecting proliferation and differentiation. In certain contexts, CHIPI can improve competitive fitness by compensating for germline defects; however, the downstream effects of clonal expansion are often unpredictable - they may either counteract the underlying pathology or worsen disease outcomes. A more complete understanding of how CHIPI arises in young people can lead to the definition of preleukemic states and strategies to assess risk, surveillance, and prevention to leukemic transformation. Our review summarizes current research on stress-induced clonal dynamics in individuals with germline predisposition syndromes.
Collapse
Affiliation(s)
- Enrico Attardi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Fioredda F, Skokowa J, Tamary H, Spanoudakis M, Farruggia P, Almeida A, Guardo D, Höglund P, Newburger PE, Palmblad J, Touw IP, Zeidler C, Warren AJ, Dale DC, Welte K, Dufour C, Papadaki HA. The European Guidelines on Diagnosis and Management of Neutropenia in Adults and Children: A Consensus Between the European Hematology Association and the EuNet-INNOCHRON COST Action. Hemasphere 2023; 7:e872. [PMID: 37008163 PMCID: PMC10065839 DOI: 10.1097/hs9.0000000000000872] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
Neutropenia, as an isolated blood cell deficiency, is a feature of a wide spectrum of acquired or congenital, benign or premalignant disorders with a predisposition to develop myelodysplastic neoplasms/acute myeloid leukemia that may arise at any age. In recent years, advances in diagnostic methodologies, particularly in the field of genomics, have revealed novel genes and mechanisms responsible for etiology and disease evolution and opened new perspectives for tailored treatment. Despite the research and diagnostic advances in the field, real world evidence, arising from international neutropenia patient registries and scientific networks, has shown that the diagnosis and management of neutropenic patients is mostly based on the physicians' experience and local practices. Therefore, experts participating in the European Network for the Innovative Diagnosis and Treatment of Chronic Neutropenias have collaborated under the auspices of the European Hematology Association to produce recommendations for the diagnosis and management of patients across the whole spectrum of chronic neutropenias. In the present article, we describe evidence- and consensus-based guidelines for the definition and classification, diagnosis, and follow-up of patients with chronic neutropenias including special entities such as pregnancy and the neonatal period. We particularly emphasize the importance of combining the clinical findings with classical and novel laboratory testing, and advanced germline and/or somatic mutational analyses, for the characterization, risk stratification, and monitoring of the entire spectrum of neutropenia patients. We believe that the wide clinical use of these practical recommendations will be particularly beneficial for patients, families, and treating physicians.
Collapse
Affiliation(s)
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology, and Clinical Immunology, University Hospital Tübingen, Germany
| | - Hannah Tamary
- The Rina Zaizov Hematology/Oncology Division, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Michail Spanoudakis
- Department of Hematology, Warrington and Halton Teaching Hospitals NHS foundation Trust, Warrington, United Kingdom
| | - Piero Farruggia
- Pediatric Onco-Hematology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Antonio Almeida
- Department of Hematology, Hospital da Luz Lisboa, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Daniela Guardo
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Petter Höglund
- Clinical Immunology and Transfusion Medicine Clinic, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan Palmblad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Ivo P. Touw
- Department of Hematology and Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, Hannover, Germany
| | - Alan J. Warren
- Department of Hematology, University of Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom
| | | | - Karl Welte
- University Children’s Hospital Tübingen, Germany
| | - Carlo Dufour
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
- Department of Hematology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
3
|
A patient with severe congenital neutropenia harbors a missense ELANE mutation due to paternal germline mosaicism. Clin Chim Acta 2021; 526:14-20. [PMID: 34968504 DOI: 10.1016/j.cca.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Clinical and genetic characteristics of ELANE mutation of a 3-year-old male who had a severe congenital neutropenia (SCN) were examined. We then investigated whether CRISPR/Cas9-mediated gene editing could correct the mutation. PROCEDURE The proband underwent extensive clinical assessments, such as exome sequencing and bioinformatics analysis, so that pathogenic genes could be identified. Sanger sequencing was also utilized for confirmation. The cell line, 293-ELANE, harboring ELANE mutation was generated, and the mutation was then corrected by CRISPR/Cas9-mediated homology-directed repair (HDR). RESULTS The ELANE gene test in the proband unveiled a heterozygous de novo missense mutation: c. 248T > A (p.V83D), which was not detected in his asymptomatic parents who had provided peripheral blood samples. We found that 46.01% of his father's sperm cells had the same mutation. These results demonstrate that the proband inherited the ELANE mutation from his father, who had an average neutrophil count but had a germline mosaicism. The highest repair efficiency of CRISPR/Cas9-mediated HDR for 293-ELANE is 4.43%. CONCLUSIONS We identified a missense mutation (p.V83D) in ELANE that causes SCN. This is the first report on paternal semen mosaicism of an ELANE mutation. Our study paves the way for preimplantation genetic diagnosis (PGD) based on ELANE mutation prevention and clinical treatment of congenital disabilities.
Collapse
|
4
|
Gutierrez-Rodrigues F, Sahoo SS, Wlodarski MW, Young NS. Somatic mosaicism in inherited bone marrow failure syndromes. Best Pract Res Clin Haematol 2021; 34:101279. [PMID: 34404533 DOI: 10.1016/j.beha.2021.101279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of diseases caused by pathogenic germline variants in key pathways associated with haematopoiesis and genomic stability. Germline variants in IBMFS-related genes are known to reduce the fitness of hematopoietic stem and progenitor cells (HSPC), which has been hypothesized to drive clonal selection in these diseases. In many IBMFS, somatic mosaicism predominantly impacts cells by two distinct mechanisms, with contrasting effects. An acquired variation can improve cell fitness towards baseline levels, providing rescue of a deleterious phenotype. Alternatively, somatic mosaicism may result in a fitness advantage that results in malignant transformation. This review will describe these phenomena in IBMFS and delineate their relevance for diagnosis and clinical management. In addition, we will discuss which samples and methods can be used for detection of mosaicism according to clinical phenotype, type of mosaicism, and sample availability.
Collapse
Affiliation(s)
| | - Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Rao S, Yao Y, Soares de Brito J, Yao Q, Shen AH, Watkinson RE, Kennedy AL, Coyne S, Ren C, Zeng J, Serbin AV, Studer S, Ballotti K, Harris CE, Luk K, Stevens CS, Armant M, Pinello L, Wolfe SA, Chiarle R, Shimamura A, Lee B, Newburger PE, Bauer DE. Dissecting ELANE neutropenia pathogenicity by human HSC gene editing. Cell Stem Cell 2021; 28:833-845.e5. [PMID: 33513358 PMCID: PMC8106646 DOI: 10.1016/j.stem.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Severe congenital neutropenia (SCN) is a life-threatening disorder most often caused by dominant mutations of ELANE that interfere with neutrophil maturation. We conducted a pooled CRISPR screen in human hematopoietic stem and progenitor cells (HSPCs) that correlated ELANE mutations with neutrophil maturation potential. Highly efficient gene editing of early exons elicited nonsense-mediated decay (NMD), overcame neutrophil maturation arrest in HSPCs from ELANE-mutant SCN patients, and produced normal hematopoietic engraftment function. Conversely, terminal exon frameshift alleles that mimic SCN-associated mutations escaped NMD, recapitulated neutrophil maturation arrest, and established an animal model of ELANE-mutant SCN. Surprisingly, only -1 frame insertions or deletions (indels) impeded neutrophil maturation, whereas -2 frame late exon indels repressed translation and supported neutrophil maturation. Gene editing of primary HSPCs allowed faithful identification of variant pathogenicity to clarify molecular mechanisms of disease and encourage a universal therapeutic approach to ELANE-mutant neutropenia, returning normal neutrophil production and preserving HSPC function.
Collapse
Affiliation(s)
- Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Josias Soares de Brito
- Departments of Pediatrics and of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02129, USA
| | - Anne H Shen
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Coyne
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Victoria Serbin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard College, Cambridge, MA 02138, USA
| | - Sabine Studer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlyn Ballotti
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chad E Harris
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myriam Armant
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02129, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter E Newburger
- Departments of Pediatrics and of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Liu Q, Zhang L, Shu Z, Ding Y, Tang XM, Zhao XD. Two paternal mosaicism of mutation in ELANE causing severe congenital neutropenia exhibit normal neutrophil morphology and ROS production. Clin Immunol 2019; 203:53-58. [PMID: 31009763 DOI: 10.1016/j.clim.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/19/2018] [Accepted: 04/17/2019] [Indexed: 01/23/2023]
Abstract
Severe congenital neutropenia caused by ELANE gene mutation is a rare disease. To date, only four families were reported with mosaicism. Here we examined the morphology and function of granulocytes isolated from two patients and their mosaic fathers. Analysis of granulocytes isolated from the fathers revealed no genetic mutations. DNA extracted from fractionated peripheral blood mononuclear cells (PBMCs) and fingernails obtained from both fathers did harbor the mutation, suggesting mosaicism. Granulocytes isolated from the patients displayed significantly weaker ionomycin-induced intracellular reactive oxygen species (ROS) responses than those isolated from the fathers. Both patients showed increased expression of neutrophil elastase, whereas the mosaic fathers showed normal expression. Taken together, the results suggest that granulocytes from these SCN patients are immunocompromised, whereas those from the mosaic fathers are normal. These findings may provide new insight into disease diagnosis, prognosis, therapy and genetic counseling.
Collapse
Affiliation(s)
- Qiao Liu
- Chong Qing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Liang Zhang
- Chong Qing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhou Shu
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yuan Ding
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xue-Mei Tang
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiao-Dong Zhao
- Chong Qing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
7
|
Shigemura T, Kobayashi N, Agematsu K, Ohara O, Nakazawa Y. Mosaicism of an ELANE Mutation in an Asymptomatic Mother. J Clin Immunol 2019; 39:106-111. [PMID: 30635825 DOI: 10.1007/s10875-018-0580-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE We report normal neutrophil count in a mother, who carries the same ELANE mutation as her daughter with severe congenital neutropenia. We hypothesized that the mother possessed wild- and mutant-type clones and the wild-type clones could generate neutrophils, whereas the mutant clones could not. METHODS We confirmed mutant variant ratio by sequence signals and measured the frequency of the mutant allele by subcloning in various cell types. We established the ELANE-mutated and non-mutated induced pluripotent stem cells (iPSCs) from the mother's T cells and compared granulopoiesis between these iPSCs. RESULTS In the sequence analysis of isolated peripheral blood (PB), nail and hair, the mutant variant was detected in approximately 40-60% of lymphocytes, monocytes, hematopoietic progenitor cells, and hair as well as in a small percentage of nail, but in none of the neutrophils. In the subcloning analysis of extracted DNA from CD3+ and CD34+ cells, the mutant allele was identified in 37.5% and 38.1%, respectively. We reprogrammed the mother's PB cells and established the ELANE-mutated and non-mutated iPSCs. Granulopoiesis from mutated iPSCs revealed little sensitivity to granulocyte colony-stimulating factor in comparison with non-mutated iPSCs. CONCLUSIONS These observations strongly suggest that mutant-carrying neutrophils did not appear in the mother's PB because mutated clones could not differentiate into neutrophils. The mother's normal hematological phenotype could be explained by the perseverance of normal, non-mutated granulopoiesis.
Collapse
Affiliation(s)
- Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Norimoto Kobayashi
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kazunaga Agematsu
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|
8
|
Arun AK, Senthamizhselvi A, Hemamalini S, Edison ES, Korula A, Fouzia NA, George B, Mathews V, Balasubramanian P. Spectrum of ELANE mutations in congenital neutropenia: a single-centre study in patients of Indian origin. J Clin Pathol 2018; 71:1046-1050. [PMID: 30171085 DOI: 10.1136/jclinpath-2018-205235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
AIMS Congenital and cyclical neutropenia are rare inherited diseases that result in recurrent life-threatening bacterial infections due to a deficiency of mature neutrophils. Cyclical neutropenia is usually caused by heterozygous ELANE mutations while congenital neutropenia is genetically heterogeneous with mutations in genes like ELANE, HAX-1, G6PC3 and GFI1. The presence of ELANE mutation aids in the establishment of diagnosis and rules out other secondary causes of neutropenia such as autoimmune cytopenia and evolving aplasia. Further, patients with ELANE mutations are also at a high risk of developing myelodysplasia or acute myeloid leukaemia. Hence it is important to screen for these mutations in patients presenting with neutropenia early in life. METHODS The study included 52 patients who were evaluated for inherited neutropenia. Genomic DNA was extracted from peripheral blood leucocytes and mutation analysis was done by bidirectional Sanger sequencing. RESULTS Ten different missense, frameshift or splice site variants in ELANE gene were identified in 11 patients: c.125C>T (p.Pro42Leu), c.164G>A (p.Cys55Tyr), c.169G>A (p.Ala57Thr), c.179T>C (p.Ile60Thr), c.770C>T (p.Pro257Leu), c.367-8C>A, c.597+1G>A along with three novel mutations c.302T>A (p.Val101Glu), c.468G>T (p.Try156Cys) and c.596delT (Phe199Ser fs*13). Family studies were available for three patients and, in all three instances, the mutation had a de novo origin. CONCLUSION The widespread distribution of mutations suggests the need to screen all the exons in ELANE gene for proper characterisation of the genotype.
Collapse
Affiliation(s)
- A Kumar Arun
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Suresh Hemamalini
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Eunice S Edison
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - N A Fouzia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
9
|
Olcay L, Ünal Ş, Onay H, Erdemli E, Öztürk A, Billur D, Metin A, Okur H, Yıldırmak Y, Büyükaşık Y, İkincioğulları A, Falay M, Özet G, Yetgin S. Both Granulocytic and Non-Granulocytic Blood Cells Are Affected in Patients with Severe Congenital Neutropenia and Their Non-Neutropenic Family Members: An Evaluation of Morphology, Function, and Cell Death. Turk J Haematol 2018; 35:229-259. [PMID: 30040071 PMCID: PMC6256814 DOI: 10.4274/tjh.2017.0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective: To examine granulocytic and non-granulocytic cells in children with severe congenital neutropenia (SCN) and their non-neutropenic parents. Materials and Methods: Fifteen patients with SCN and 21 non-neutropenic parents were evaluated for a) CD95, CD95 ligand, annexin V, propidium iodide, cell cycle, and lymphocyte subsets by flow cytometry; b) rapid cell senescence (of leukocytes) by senescence-associated β-galactosidase stain; c) aggregation tests by aggregometer; d) in vitro bleeding time by PFA-100 instrument; e) mepacrine-labeled dense granule number of thrombocytes by fluorescence microscope; and f) hematomorphology by light and electron microscope. HAX1, ELANE, G6PC3, CSF3R, and JAGN1 mutations associated with SCN were studied in patients and several parents. Results: Significant increase in apoptosis and secondary necrosis in monocytes, lymphocytes, and granulocytes of the patients and parents was detected, irrespective of the mutation type. CD95 and CD95 ligand results implied that apoptosis was non-CD95-mediated. Leukocytes of 25%, 12.5%, and 0% of patients, parents, and controls showed rapid cell senescence. The cell cycle analysis testable in four cases showed G1 arrest and apoptosis in lymphocytes of three. The patients had HAX1 (n=6), ELANE (n=2), G6PC3 (n=2), and unidentified (n=5) mutations. The CD3, CD4, and NK lymphocytes were below normal levels in 16.6%, 8.3%, and 36.4% of the patients and in 0%, 0%, and 15.4% of the parents (controls: 0%, 0%, 5.6%). The thrombocytes aggregated at low rates, dense granule number/thrombocyte ratio was low, and in vitro bleeding time was prolonged in 37.5%-66.6% of patients and 33.3%-63.2% of parents (vs. 0% in controls). Under electron and/or light microscope, the neutrophils, monocytes, lymphocytes, and thrombocytes in the peripheral blood of both patients and parents were dysplastic and the bone marrow of patients revealed increased phagocytic activity, dysmegakaryopoiesis, and necrotic and apoptotic cells. Ultrastructurally, thrombocyte adhesion, aggregation, and release were inadequate. Conclusion: In cases of SCN, patients’ pluripotent hematopoietic stem cells and their non-neutropenic parents are both affected irrespective of the genetic defect.
Collapse
Affiliation(s)
- Lale Olcay
- Ankara Oncology Training and Research Hospital, Clinic of Pediatric Hematology, Ankara, Turkey
| | - Şule Ünal
- Hacettepe University Faculty of Medicine, İhsan Doğramacı Children’s Hospital, Clinic of Pediatric Hematology, Ankara, Turkey
| | - Hüseyin Onay
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Esra Erdemli
- Ankara University Faculty of Medicine, Department of Histology Embryology, Ankara, Turkey
| | - Ayşenur Öztürk
- Ankara University Faculty of Medicine, Department of Pediatric Molecular Genetics, Ankara, Turkey
| | - Deniz Billur
- Ankara University Faculty of Medicine, Department of Histology Embryology, Ankara, Turkey
| | - Ayşe Metin
- Ankara Children’s Hematology Oncology Training and Research Hospital, Clinic of Pediatric Immunology, Ankara, Turkey
| | - Hamza Okur
- Hacettepe University Faculty of Medicine, İhsan Doğramacı Children’s Hospital, Clinic of Pediatric Hematology, Ankara, Turkey
| | - Yıldız Yıldırmak
- Şişli Etfal Children’s Training and Research Hospital, Clinic of Pediatric Hematology, İstanbul, Turkey
| | - Yahya Büyükaşık
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Unit of Hematology, Ankara, Turkey
| | - Aydan İkincioğulları
- Ankara University Faculty of Medicine, Department of Pediatric Immunology and Allergy and Pediatric Molecular Genetics, Ankara, Turkey
| | - Mesude Falay
- Ankara Numune Training and Research Hospital, Clinic of Hematology, Ankara, Turkey
| | - Gülsüm Özet
- Ankara Numune Training and Research Hospital, Clinic of Hematology, Ankara, Turkey,Yıldırım Beyazıt University Faculty of Medicine, Department of Internal Medicine, Clinic of Hematology, Ankara, Turkey
| | - Sevgi Yetgin
- Hacettepe University Faculty of Medicine, İhsan Doğramacı Children’s Hospital, Clinic of Pediatric Hematology, Ankara, Turkey
| |
Collapse
|
10
|
Chen X, Peng W, Zhang Z, Wu Y, Xu J, Zhou Y, Chen L. ELANE gene mutation-induced cyclic neutropenia manifesting as recurrent fever with oral mucosal ulcer: A case report. Medicine (Baltimore) 2018. [PMID: 29517659 PMCID: PMC5882443 DOI: 10.1097/md.0000000000010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cyclic neutropenia (CyN) is a rare hematological disease. Herein, a CyN girl, aged 3 years and 2 months, with recurrent fever and oral mucosal ulcer caused by neutrophil elastase (ELANE) gene mutation is reported. CASE PRESENTATION A 3 years and 2 months old girl presented with recurrent fever and oral mucosal ulcer for 1 year. Routine blood test revealed that her absolute neutrophil count repeatedly decreased (minimum 0. 04 × 10/L) every 21 days on an average. Gene testing showed that the patient suffered from ELANE gene heterozygous mutation (c.197T>G) (exon2) (p.M66R). She was finally diagnosed as CyN. The patient's symptoms were relieved after infection prevention and treatment as well as granulocyte-colony stimulating factor (G-CSF) therapy. Her condition continues to remain stable. CONCLUSION Active prevention and treatment of infection as well as G-CSF therapy can successfully control CyN.
Collapse
|