1
|
Karaaslan BG, Rosain J, Bustamante J, Kıykım A. Interferon Gamma in Sickness Predisposing to Mycobacterial Infectious Diseases. Balkan Med J 2024; 41:326-332. [PMID: 39183693 PMCID: PMC11588913 DOI: 10.4274/balkanmedj.galenos.2024.2024-8-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
In recent decades, the prevalence of inborn errors of immunity has increased, necessitating the development of more effective treatment and care options for these highly morbid conditions. Due to these “experiments of nature,” the complicated nature of the immune system is being revealed. Based on the functional and molecular tests, targeted therapies are now being developed which offer a more effective approach and reduce damage. This study aimed to investigate a key cytokine of the cellular immune response, interferon‐gamma (IFN-γ), which is linked to Mendelian susceptibility to Mycobacterial disease, and its potential as a therapeutic option for IFN-γ deficiency.
Collapse
Affiliation(s)
- Betül Gemici Karaaslan
- Department of Pediatric Allergy and Immunology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases Necker Branch, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases Rockefeller Branch, Rockefeller University, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases Necker Branch, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases Rockefeller Branch, Rockefeller University, New York, USA
| | - Ayça Kıykım
- Department of Pediatric Allergy and Immunology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
| |
Collapse
|
2
|
Ogishi M, Arias AA, Yang R, Han JE, Zhang P, Rinchai D, Halpern J, Mulwa J, Keating N, Chrabieh M, Lainé C, Seeleuthner Y, Ramírez-Alejo N, Nekooie-Marnany N, Guennoun A, Muller-Fleckenstein I, Fleckenstein B, Kilic SS, Minegishi Y, Ehl S, Kaiser-Labusch P, Kendir-Demirkol Y, Rozenberg F, Errami A, Zhang SY, Zhang Q, Bohlen J, Philippot Q, Puel A, Jouanguy E, Pourmoghaddas Z, Bakhtiar S, Willasch AM, Horneff G, Llanora G, Shek LP, Chai LY, Tay SH, Rahimi HH, Mahdaviani SA, Nepesov S, Bousfiha AA, Erdeniz EH, Karbuz A, Marr N, Navarrete C, Adeli M, Hammarstrom L, Abolhassani H, Parvaneh N, Al Muhsen S, Alosaimi MF, Alsohime F, Nourizadeh M, Moin M, Arnaout R, Alshareef S, El-Baghdadi J, Genel F, Sherkat R, Kiykim A, Yücel E, Keles S, Bustamante J, Abel L, Casanova JL, Boisson-Dupuis S. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J Exp Med 2022; 219:e20220094. [PMID: 36094518 PMCID: PMC9472563 DOI: 10.1084/jem.20220094] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 12/21/2022] Open
Abstract
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/β (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.
Collapse
Affiliation(s)
- Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Primary Immunodeficiencies Group, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joshua Halpern
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jeanette Mulwa
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Noé Ramírez-Alejo
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sara S. Kilic
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Yasemin Kendir-Demirkol
- Department of Pediatric Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Zahra Pourmoghaddas
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andre M. Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Gerd Horneff
- Center for Pediatric Rheumatology, Department of Pediatrics, Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Genevieve Llanora
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
| | - Lynette P. Shek
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
- Department of Pediatrics, National University of Singapore, Singapore
| | - Louis Y.A. Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
- Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute; Synthetic Biology Translational Research Program, National University of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
| | - Hamid H. Rahimi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Serdar Nepesov
- Department of Pediatric Allergy and Immunology, Istanbul Medipol University, Istanbul, Turkey
| | - Aziz A. Bousfiha
- Clinical Immunology Unit, Department of Pediatrics, King Hassan II University, Ibn-Rochd Hospital, Casablanca, Morocco
| | - Emine Hafize Erdeniz
- Division of Pediatric Infectious Diseases, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Karbuz
- Division of Pediatric Infectious Diseases, Okmeydani Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Carmen Navarrete
- Department of Immunology, Hospital de Niños Roberto del Río, Santiago de Chile, Chile
| | - Mehdi Adeli
- Division of Allergy and Immunology, Sidra Medicine/Hamad Medical Corp., Doha, Qatar
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Beijing Genomics Institute, Shenzhen, China
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saleh Al Muhsen
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alosaimi
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Pediatric Intensive Care Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Rand Arnaout
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Al Faisal University, Riyadh, Saudi Arabia
| | - Saad Alshareef
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Ferah Genel
- University of Health Sciences, Dr Behçet Uz Children’s Hospital, Division of Pediatric Immunology, Izmir, Turkey
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ayça Kiykim
- Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Yücel
- Division of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
- Deparment of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
3
|
Tsumura M, Miki M, Mizoguchi Y, Hirata O, Nishimura S, Tamaura M, Kagawa R, Hayakawa S, Kobayashi M, Okada S. Enhanced osteoclastogenesis in patients with MSMD due to impaired response to IFN-γ. J Allergy Clin Immunol 2021; 149:252-261.e6. [PMID: 34176646 DOI: 10.1016/j.jaci.2021.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with Mendelian susceptibility to mycobacterial disease (MSMD) experience recurrent and/or persistent infectious diseases associated with poorly virulent mycobacteria. Multifocal osteomyelitis is among the representative manifestations of MSMD. The frequency of multifocal osteomyelitis is especially high in patients with MSMD etiologies that impair cellular response to IFN-γ, such as IFN-γR1, IFN-γR2, or STAT1 deficiency. OBJECTIVES This study sought to characterize the mechanism underlying multifocal osteomyelitis in MSMD. METHODS GM colonies prepared from bone marrow mononuclear cells from patients with autosomal dominant (AD) IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 gain of function (GOF) and from healthy controls were differentiated into osteoclasts in the presence or absence of IFN-γ. The inhibitory effect of IFN-γ on osteoclastogenesis was investigated by quantitative PCR, immunoblotting, tartrate-resistant acid phosphatase staining, and pit formation assays. RESULTS Increased osteoclast numbers were identified by examining the histopathology of osteomyelitis in patients with AD IFN-γR1 deficiency or AD STAT1 deficiency. In the presence of receptor activator of nuclear factor kappa-B ligand and M-CSF, GM colonies from patients with AD IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 GOF differentiated into osteoclasts, similar to GM colonies from healthy volunteers. IFN-γ concentration-dependent inhibition of osteoclast formation was impaired in GM colonies from patients with AD IFN-γR1 deficiency or AD STAT1 deficiency, whereas it was enhanced in GM colonies from patients with STAT1 GOF. CONCLUSIONS Osteoclast differentiation is increased in AD IFN-γR1 deficiency and AD STAT1 deficiency due to an impaired response to IFN-γ, leading to excessive osteoclast proliferation and, by inference, increased bone resorption in infected foci, which may underlie multifocal osteomyelitis.
Collapse
Affiliation(s)
- Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Mizuka Miki
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Hidamari Children Clinic, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Moe Tamaura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Japanese Red Cross, Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| |
Collapse
|
4
|
Khoshnevisan R, Nekooei-Marnany N, Klein C, Kotlarz D, Behnam M, Ostadi V, Yaran M, Rezaei A, Sherkat R. IL-12Rβ1 deficiency corresponding to concurrency of two diseases, mendelian susceptibility to mycobacterial disease and Crohn's disease. J Clin Tuberc Other Mycobact Dis 2019; 17:100123. [PMID: 31788565 PMCID: PMC6879969 DOI: 10.1016/j.jctube.2019.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background The interleukin-12 receptor β1 (IL-12Rβ1) deficiency is a primary immunodeficiency (PID), affecting the immunological pathway of interleukin 12/interferon- γ (IL12/IFN-γ) axis and interleukin 23 receptor (IL23R). Defect in this pathway is mainly affecting the cellular immunity-related disorders. IL-12Rβ1 is a receptor chain of both the IL-12 and the IL-23 receptors and thus, deficiency of IL-12Rβ1 abolishes both IL-12 and IL-23 signaling. Material and methods In this study, we performed whole exon sequencing and confirmatory Sanger sequencing in IL-12Rβ1. Evaluation of the IL12/IFN-γ axis was performed by assessment of patients’ whole blood cell to IL12/IFN-γ responding. Total and surface IL-12Rβ1expression was evaluated, in peripheral blood mononuclear cells (PBMCs) and T cell- derived PBMCs, and Th17 count was assessed. Results In the present study, we described a c.1791 + 2T > G mutation at a splicing site position in IL-12Rβ1, using whole exome sequencing, and confirmed with targeted Sanger sequencing in a 26- year-old patient with Mendelian susceptibility to mycobacterial disease (MSMD) and Crohn's disease (CD). Complete lack of IL-12Rβ1 protein expression was detected in patient's PBMCs, compared to the healthy control. Furthermore, no IL-12Rβ1 protein was expressed on the cell surface. Interestingly, IL-12Rβ1-mutant cells showed an impaired response to IL12, and Bacillus Calmette–Guérin stimulation, confirming that the mutation is causative in this patient. Conclusion A 3′splicing site mutation in IL12Rβ1, can be corresponding to the abolished expression of IL12Rβ1 in patients' cells, and associated with an impaired IL12-mediated signaling, which may lead not only to MSMD, but also to inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Razieh Khoshnevisan
- Immunology Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nioosha Nekooei-Marnany
- Aquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Mahdieh Behnam
- Immunology Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Ostadi
- Immunology Department, Isfahan University of Medical Sciences, Isfahan, Iran.,Aquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Yaran
- Aquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rezaei
- Immunology Department, Isfahan University of Medical Sciences, Isfahan, Iran.,Aquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Aquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Rosain J, Kong XF, Martinez-Barricarte R, Oleaga-Quintas C, Ramirez-Alejo N, Markle J, Okada S, Boisson-Dupuis S, Casanova JL, Bustamante J. Mendelian susceptibility to mycobacterial disease: 2014-2018 update. Immunol Cell Biol 2019; 97:360-367. [PMID: 30264912 PMCID: PMC6438774 DOI: 10.1111/imcb.12210] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-γ immunity. Since 1996, disease-causing mutations have been found in 11 genes, which, through allelic heterogeneity, underlie 21 different genetic disorders. We briefly review here progress in the study of molecular, cellular and clinical aspects of MSMD since the last comprehensive review published in 2014. Highlights include the discoveries of (1) a new genetic etiology, autosomal recessive signal peptide peptidase-like 2 A deficiency, (2) TYK2-deficient patients with a clinical phenotype of MSMD, (3) an allelic form of partial recessive IFN-γR2 deficiency, and (4) two forms of syndromic MSMD: RORγ/RORγT and JAK1 deficiencies. These recent findings illustrate how genetic and immunological studies of MSMD can shed a unique light onto the mechanisms of protective immunity to mycobacteria in humans.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Children Hospital, Paris, France, EU
| | - Xiao-Fei Kong
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Ruben Martinez-Barricarte
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
| | - Noé Ramirez-Alejo
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Janet Markle
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Satoshi Okada
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Children Hospital, Paris, France, EU
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
6
|
Esteve-Sole A, Sánchez-Dávila SP, Deyà-Martínez A, Freeman AF, Zelazny AM, Dekker JP, Khil PP, Holland SM, Noguera-Julian A, Bustamante J, Casanova JL, Juan M, Cordova W, Alsina L. Severe BCG-osis Misdiagnosed as Multidrug-Resistant Tuberculosis in an IL-12Rβ1-Deficient Peruvian Girl. J Clin Immunol 2018; 38:712-716. [PMID: 30039354 DOI: 10.1007/s10875-018-0535-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Mendelian suceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency predisposing to severe disease caused by mycobacteria and other intracellular pathogens. Delay in diagnosis can have an impact on the patient's prognosis. METHODS We evaluated the IFN-γ circuit by studying IFN-γ production after mycobacterial challenge as well as IL-12Rβ1 expression and STAT4 phosphorylation in response to IL-12p70 stimulation in whole blood of a 6-year-old Peruvian girl with disseminated recurrent mycobacterial infection diagnosed as multidrug-resistant tuberculosis. Genetic studies with Sanger sequencing were used to identify the causative mutation. Microbiological studies based on PCR reactions were used to diagnose the specific mycobacterial species. RESULTS We identified a homozygous mutation in the IL12RB1 gene (p. Arg211*) causing abolished expression of IL-12Rβ1 and IL-12 response. MSMD diagnosis led to a microbiological reevaluation of the patient, revealing a BCG vaccine-related infection instead of tuberculosis. Treatment was then adjusted, with good response. CONCLUSIONS We report the first Peruvian patient with IL-12Rβ1 deficiency. Specific mycobacterial species diagnosis within Mycobacterium tuberculosis complex is still challenging in countries with limited access to PCR-based microbiological diagnostic techniques. Awareness of MSMD warning signs and accurate microbiological diagnosis of mycobacterial infections are of the utmost importance for optimal diagnosis and management of affected patients.
Collapse
Affiliation(s)
- Ana Esteve-Sole
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Suly P Sánchez-Dávila
- National reference center Allergy Asthma Immunology, National Institute of Child Health, Lima, Peru
| | - Angela Deyà-Martínez
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Zelazny
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - John P Dekker
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Pavel P Khil
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Antoni Noguera-Julian
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Pediatrics Department, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- CIBER of Epidemiology and Public Health, CIBERESP, Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Manel Juan
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
- Immunology Department, Biomedical Diagnostics Center, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Wilmer Cordova
- National reference center Allergy Asthma Immunology, National Institute of Child Health, Lima, Peru
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.
| |
Collapse
|
7
|
Rosain J, Oleaga-Quintas C, Deswarte C, Verdin H, Marot S, Syridou G, Mansouri M, Mahdaviani SA, Venegas-Montoya E, Tsolia M, Mesdaghi M, Chernyshova L, Stepanovskiy Y, Parvaneh N, Mansouri D, Pedraza-Sánchez S, Bondarenko A, Espinosa-Padilla SE, Yamazaki-Nakashimada MA, Nieto-Patlán A, Kerner G, Lambert N, Jacques C, Corvilain E, Migaud M, Grandin V, Herrera MT, Jabot-Hanin F, Boisson-Dupuis S, Picard C, Nitschke P, Puel A, Tores F, Abel L, Blancas-Galicia L, De Baere E, Bole-Feysot C, Casanova JL, Bustamante J. A Variety of Alu-Mediated Copy Number Variations Can Underlie IL-12Rβ1 Deficiency. J Clin Immunol 2018; 38:617-627. [PMID: 29995221 DOI: 10.1007/s10875-018-0527-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Autosomal recessive complete IL-12Rβ1 deficiency is the most frequent genetic etiology of MSMD. Only two of the 84 known mutations are copy number variations (CNVs), identified in two of the 213 IL-12Rβ1-deficient patients and two of the 164 kindreds reported. These two CNVs are large deletions found in the heterozygous or homozygous state. We searched for novel families with IL-12Rβ1 deficiency due to CNVs. METHODS We studied six MSMD patients from five unrelated kindreds displaying adverse reactions to BCG vaccination. Three of the patients also presented systemic salmonellosis, two had mucocutaneous candidiasis, and one had disseminated histoplasmosis. We searched for CNVs and other variations by IL12RB1-targeted next-generation sequencing (NGS). RESULTS We identified six new IL-12Rβ1-deficient patients with a complete loss of IL-12Rβ1 expression on phytohemagglutinin-activated T cells and/or EBV-transformed B cells. The cells of these patients did not respond to IL-12 and IL-23. Five different CNVs encompassing IL12RB1 (four deletions and one duplication) were identified in these patients by NGS coverage analysis, either in the homozygous state (n = 1) or in trans (n = 4) with a single-nucleotide variation (n = 3) or a small indel (n = 1). Seven of the nine mutations are novel. Interestingly, four of the five CNVs were predicted to be driven by nearby Alu elements, as well as the two previously reported large deletions. The IL12RB1 locus is actually enriched in Alu elements (44.7%), when compared with the rest of the genome (10.5%). CONCLUSION The IL12RB1 locus is Alu-enriched and therefore prone to rearrangements at various positions. CNVs should be considered in the genetic diagnosis of IL-12Rβ1 deficiency.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stéphane Marot
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | | | - Mahboubeh Mansouri
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Edna Venegas-Montoya
- The Immunodeficiencies Research Unit, National Institute of Pediatrics, Mexico City, Mexico
| | - Maria Tsolia
- Second Department of Pediatrics, P. and A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Mehrnaz Mesdaghi
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Liudmyla Chernyshova
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Yuriy Stepanovskiy
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Department of Internal Medicine, Division of Infectious Disease and Clinical Immunology, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sigifredo Pedraza-Sánchez
- Unit of Biochemistry, National Institute for Medical Sciences and Nutrition Salvador Zubiran (INCMNSZ), Mexico City, Mexico
| | - Anastasia Bondarenko
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | | | | | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Corinne Jacques
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Free University of Brussels, Brussels, Belgium
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Virginie Grandin
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - María T Herrera
- Department of Microbiology Research, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Capucine Picard
- Imagine Institute, Paris Descartes University, Paris, France.,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Patrick Nitschke
- Bioinformatics Core Facility, Imagine Institute, SFR-Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Frederic Tores
- Bioinformatics Core Facility, Imagine Institute, SFR-Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Christine Bole-Feysot
- Genomic Core Facility, INSERM UMR1163, SFR-Necker, Imagine Institute, Paris, France.,INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France. .,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Many genetic conditions predispose affected individuals to opportunistic infections. A number of immunodeficiency diseases, including genetic defects termed Mendelian susceptibility to mycobacterial disease (MSMD), permit infection from many different strains of mycobacteria that would otherwise not cause disease. These include tuberculous and nontuberculous mycobacteria, and bacille Calmette-Guérin vaccine (BCG). Patients may present with infections from other organisms that depend on macrophage function for containment. Defects in multiple genes in the IL-12 and NFKB signaling pathways can cause the MSMD phenotype, some of which include IL12RB1, IL12B, IKBKG, ISG15, IFNGR1, IFNGR2, CYBB, TYK2, IRF8, and STAT1. RECENT FINDINGS Multiple autosomal recessive and dominant, and 2 X-linked recessive gene defects resulting in the MSMD phenotype have been reported, and others await discovery. This review presents the known gene defects and describes clinical findings that result from the mutations. If MSMD is suspected, a careful clinical history and examination and basic immunodeficiency screening tests will narrow the differential diagnosis. A specific diagnosis requires more sophisticated laboratory investigation. Genetic testing permits a definitive diagnosis, permitting genetic counseling. Mild cases respond well to appropriate antibiotic therapy, whereas severe disease may require hematopoietic stem cell transplantation.
Collapse
|
9
|
Tucher C, Bode K, Schiller P, Claßen L, Birr C, Souto-Carneiro MM, Blank N, Lorenz HM, Schiller M. Extracellular Vesicle Subtypes Released From Activated or Apoptotic T-Lymphocytes Carry a Specific and Stimulus-Dependent Protein Cargo. Front Immunol 2018; 9:534. [PMID: 29599781 PMCID: PMC5862858 DOI: 10.3389/fimmu.2018.00534] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are released from nearly all mammalian cells and different EV populations have been described. Microvesicles represent large EVs (LEVs) released from the cellular surface, while exosomes are small EVs (SEVs) released from an intracellular compartment. As it is likely that different stimuli promote the release of distinct EV populations, we analyzed EVs from human lymphocytes considering the respective release stimuli (activation Vs. apoptosis induction). We could clearly separate two EV populations, namely SEVs (average diameter <200 nm) and LEVs (diameter range between 200 and 1000 nm). Morphology and size were analyzed by electron microscopy and nanoparticle tracking analysis. Apoptosis induction caused a massive release of LEVs, while activated T-cells released SEVs and LEVs in considerably lower amounts. The release of SEVs from apoptotic T-cells was comparable with LEV release from activated ones. LEVs contained signaling proteins and proteins of the actin-myosin cytoskeleton. SEVs carried cytoplasmic/endosomal proteins like the 70-kDa heat shock protein 70 (HSP70) or tumor susceptibility 101 (TSG101), microtubule-associated proteins, and ubiquitinated proteins. The protein expression profile of SEVs and LEVs changed substantially after the induction of apoptosis. After apoptosis induction, HSP70 and TSG101 (often used as exosome markers) were highly expressed within LEVs. Interestingly, in contrast to HSP70 and TSG101, gelsolin and eps15 homology domain-containing protein 3 (EHD3) turned out to be specific for SEVs irrespective of the stimulus causing the EV release. Finally, we detected several subunits of the proteasome (PSMB9, PSMB10) as well as the danger signal HMGB1 exclusively within apoptotic cell-released LEVs. Thus, we were able to identify new marker proteins that can be useful to discriminate between distinct LEV subpopulations. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD009074.
Collapse
Affiliation(s)
- Christine Tucher
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Konrad Bode
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Laboratory Dr. Limbach and Colleagues, Medical Care Unit, Heidelberg, Germany
| | - Petra Schiller
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Claßen
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolin Birr
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany.,ACURA Center for Rheumatic Diseases, Baden-Baden, Germany
| | - Martin Schiller
- Division of Rheumatology, Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|