1
|
Biglari S, Youssefian L, Tabatabaiefar MA, Saeidian AH, Abtahi-Naeini B, Khorram E, Sherkat R, Moghaddam AS, Mohaghegh F, Rahimi M, Rahimi H, Babaei S, Shahrooei M, Mozafari N, Zaresharifi S, Vahidnezhad F, Homayouni V, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Jouanguy E, Béziat V, Zhang Q, Cobat A, Vahidnezhad H. DOCK2 Deficiency and GATA2 Haploinsufficiency Can Underlie Critical Coronavirus Disease 2019 (COVID-19) Pneumonia. J Clin Immunol 2025; 45:85. [PMID: 40153067 PMCID: PMC11953147 DOI: 10.1007/s10875-025-01877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/16/2025] [Indexed: 03/30/2025]
Abstract
The life-threatening coronavirus disease 2019 (COVID-19) affects about 1 in 1,000 healthy people under 50 without underlying conditions. Among patients with critical COVID-19 pneumonia, rare germline variants at genes controlling type I IFN immunity have been reported in up to 5% of patients. Causal etiologies in 80-85% of cases are still unknown. We analyzed two families with hypoxemic COVID-19 pneumonia for known single-gene inborn errors of immunity. In Family 1, two siblings with critical COVID-19 were homozygous for a DOCK2 variant, c.3624+5G>A. DOCK2 deficiency is a known T-cell disorder underlying severe viral diseases. The variant resulted in skipping exon 35, which was predicted to produce a frameshift truncated protein (p.L1157Ifs*12). The proband showed markedly decreased blood CD4 T-helper cell counts, impaired T lymphocyte transformation test, and increased serum IgG, IgA, and IgE levels, as documented in other DOCK2-deficient patients. In Family 2, the proband had lethal COVID-19 and HPV-2-associated multiple recalcitrant warts. She was heterozygous for a deletion in GATA2:c.1075_1102del28, p.W360Sfs*18. GATA2 haploinsufficiency is a known cause of severe viral diseases due to a lack of plasmacytoid dendritic cell (pDC) development. The proband had monocytopenia and a lack of circulating pDCs, as reported in other patients with GATA2 haploinsufficiency. Overall, both DOCK2 deficiency and GATA2 haploinsufficiency are associated with critical and often fatal COVID-19 pneumonia.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology, Cytogenetics Laboratory, City of Hope National Medical Center, Irwindale, CA, USA
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hossein Saeidian
- Center for Applied Genomics, Children'S Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bahareh Abtahi-Naeini
- Pediatric Dermatology Division, Department of Pediatrics, Imam Hossein Children'S Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Khorram
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Fatemeh Mohaghegh
- Department of Dermatology, Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maziyar Rahimi
- Pediatrics Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rahimi
- Pediatric Infectious Diseases Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Babaei
- Department of Asthma, Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute of Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shahrooei
- Dr. Shahrooei Laboratory, Tehran, Iran
- Clinical and Diagnostic Immunology, 3000, Louvain, KU, Belgium
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Zaresharifi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vahidnezhad
- Department of Computer Science and Engineering Technology, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Vida Homayouni
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children'S Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children'S Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Inserm U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, EU, France
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Inserm U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Inserm U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Inserm U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Inserm U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children'S Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, Children'S Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Dermatology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Randall KL, Flesch IEA, Mei Y, Miosge LA, Aye R, Yu Z, Domaschenz H, Hollett NA, Russell TA, Stefanovic T, Wong YC, Seneviratne S, Ballard F, Hernandez Gallardo R, Croft SN, Goodnow CC, Bertram EM, Enders A, Tscharke DC. DOCK2 Deficiency Causes Defects in Antiviral T-Cell Responses and Impaired Control of Herpes Simplex Virus Infection. J Infect Dis 2024; 230:e712-e721. [PMID: 38366567 PMCID: PMC11420714 DOI: 10.1093/infdis/jiae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defense against infectious diseases. However, analysis of these in patients is complicated by their treatments and comorbid infections, requiring the use of mouse models for detailed investigations. We developed a mouse model of DOCK2 immunodeficiency and herein demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. We also uncovered a critical, cell-intrinsic role of DOCK2 in the priming of antiviral CD8+ T cells and in particular their initial expansion, despite apparently normal early activation of these cells. When this defect was overcome by priming in vitro, DOCK2-deficient CD8+ T cells were surprisingly protective against HSV-1 disease, albeit not as effectively as wild-type cells. These results shed light on a cellular deficiency that is likely to impact antiviral immunity in DOCK2-deficient patients.
Collapse
Affiliation(s)
- Katrina L Randall
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Inge E A Flesch
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yan Mei
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Lisa A Miosge
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Racheal Aye
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Zhijia Yu
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Heather Domaschenz
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Natasha A Hollett
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tiffany A Russell
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tijana Stefanovic
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yik Chun Wong
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sandali Seneviratne
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Fiona Ballard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Raquel Hernandez Gallardo
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N Croft
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher C Goodnow
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, NSW, Australia
| | - Edward M Bertram
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Christodoulou A, Tsai JY, Suwankitwat N, Anderson A, Iritani BM. Hem1 inborn errors of immunity: waving goodbye to coordinated immunity in mice and humans. Front Immunol 2024; 15:1402139. [PMID: 39026677 PMCID: PMC11254771 DOI: 10.3389/fimmu.2024.1402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inborn errors of immunity (IEI) are a group of diseases in humans that typically present as increased susceptibility to infections, autoimmunity, hyperinflammation, allergy, and in some cases malignancy. Among newly identified genes linked to IEIs include 3 independent reports of 9 individuals from 7 independent kindreds with severe primary immunodeficiency disease (PID) and autoimmunity due to loss-of-function mutations in the NCKAP1L gene encoding Hematopoietic protein 1 (HEM1). HEM1 is a hematopoietic cell specific component of the WASp family verprolin homologous (WAVE) regulatory complex (WRC), which acts downstream of multiple immune receptors to stimulate actin nucleation and polymerization of filamentous actin (F-actin). The polymerization and branching of F-actin is critical for creating force-generating cytoskeletal structures which drive most active cellular processes including migration, adhesion, immune synapse formation, and phagocytosis. Branched actin networks at the cell cortex have also been implicated in acting as a barrier to regulate inappropriate vesicle (e.g. cytokine) secretion and spontaneous antigen receptor crosslinking. Given the importance of the actin cytoskeleton in most or all hematopoietic cells, it is not surprising that HEM1 deficient children present with a complex clinical picture that involves overlapping features of immunodeficiency and autoimmunity. In this review, we will provide an overview of what is known about the molecular and cellular functions of HEM1 and the WRC in immune and other cells. We will describe the common clinicopathological features and immunophenotypes of HEM1 deficiency in humans and provide detailed comparative descriptions of what has been learned about Hem1 disruption using constitutive and immune cell-specific mouse knockout models. Finally, we discuss future perspectives and important areas for investigation regarding HEM1 and the WRC.
Collapse
Affiliation(s)
- Alexandra Christodoulou
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julia Y Tsai
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
- Virology Laboratory, National Institute of Animal Health, Bangkok, Thailand
| | - Andreas Anderson
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Brian M Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE. The Rac-GEF Tiam1 controls integrin-dependent neutrophil responses. Front Immunol 2023; 14:1223653. [PMID: 38077328 PMCID: PMC10703174 DOI: 10.3389/fimmu.2023.1223653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.
Collapse
Affiliation(s)
- Kirsti Hornigold
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Martin J. Baker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | - Polly A. Machin
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | - Priota Islam
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge, United Kingdom
| | - Rachael Walker
- Flow Cytometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | | |
Collapse
|
5
|
Tangye SG, Meyts I. DOCK11 and Immune Disease. N Engl J Med 2023; 389:563-567. [PMID: 37590454 DOI: 10.1056/nejme2305431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Affiliation(s)
- Stuart G Tangye
- From the Garvan Institute of Medical Research, Darlinghurst, NSW, and the School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Randwick, NSW - both in Australia (S.G.T.); and the Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, and the Department of Pediatrics, University Hospitals, Leuven, and Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Brussels - all in Belgium (I.M.)
| | - Isabelle Meyts
- From the Garvan Institute of Medical Research, Darlinghurst, NSW, and the School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Randwick, NSW - both in Australia (S.G.T.); and the Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, and the Department of Pediatrics, University Hospitals, Leuven, and Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Brussels - all in Belgium (I.M.)
| |
Collapse
|
6
|
Randall KL, Flesch IEA, Mei Y, Miosge LA, Aye R, Yu Z, Domaschenz H, Hollett NA, Russell TA, Stefanovic T, Wong YC, Goodnow CC, Bertram EM, Enders A, Tscharke DC. DOCK2-deficiency causes defects in anti-viral T cell responses and poor control of herpes simplex virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551154. [PMID: 37577614 PMCID: PMC10418165 DOI: 10.1101/2023.08.02.551154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, patients with these diseases are by definition rare. In addition, any analysis is complicated by treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. Further, we found that they have a critical, cell intrinsic role of DOCK2 in the clonal expansion of anti-viral CD8+ T cells despite normal early activation of these cells. Finally, while the major deficiency is in clonal expansion, the ability of primed and expanded DOCK2-deficient CD8+ T cells to protect against HSV-1-infection is also compromised. These results provide a contributing cause for the frequent and devastating viral infections seen in DOCK2-deficient patients and improve our understanding of anti-viral CD8+ T cell immunity.
Collapse
Affiliation(s)
- Katrina L Randall
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
- School of Medicine and Psychology, Australian National University, Canberra ACT 2600
| | - Inge E A Flesch
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Yan Mei
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Lisa A Miosge
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Racheal Aye
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Zhijia Yu
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Heather Domaschenz
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Natasha A Hollett
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Tiffany A Russell
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Tijana Stefanovic
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Yik Chun Wong
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Christopher C Goodnow
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Edward M Bertram
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| | - David C Tscharke
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601
| |
Collapse
|
7
|
Machin PA, Johnsson AKE, Massey EJ, Pantarelli C, Chetwynd SA, Chu JY, Okkenhaug H, Segonds-Pichon A, Walker S, Malliri A, Fukui Y, Welch HCE. Dock2 generates characteristic spatiotemporal patterns of Rac activity to regulate neutrophil polarisation, migration and phagocytosis. Front Immunol 2023; 14:1180886. [PMID: 37383235 PMCID: PMC10293741 DOI: 10.3389/fimmu.2023.1180886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens. Methods Here, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control. Results All the GEFs were required for neutrophil adhesion, and Prex1/Vav1 were important during spreading and for the velocity of migration during chemotaxis. However, Dock2 emerged as the prominent regulator of neutrophil responses, as this GEF was required for neutrophil polarisation and random migration, for migration velocity during chemokinesis, for the likelihood to migrate and for the speed of migration and of turning during chemotaxis, as well as for rapid particle engulfment during phagocytosis. We identified characteristic spatiotemporal patterns of Rac activity generated by Dock2 which correlate with the importance of the Rac-GEF in these neutrophil responses. We also demonstrate a requirement for Dock2 in neutrophil recruitment during aseptic peritonitis. Discussion Collectively, our data provide a first direct comparison of the pools of Rac activity generated by different types of Rac-GEFs, and identify Dock2 as a key regulator of polarisation, migration and phagocytosis in primary neutrophils.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Anna-Karin E. Johnsson
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Ellie J. Massey
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Chiara Pantarelli
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Stephen A. Chetwynd
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Julia Y. Chu
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Anne Segonds-Pichon
- Bioinformatics Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Simon Walker
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Angeliki Malliri
- Cell Signalling, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
8
|
Li W, Sun Y, Yu L, Chen R, Gan R, Qiu L, Sun G, Chen J, Zhou L, Ding Y, Du H, Shu Z, Zhang Z, Tang X, Chen Y, Zhao X, Zhao Q, An Y. Multiple Immune Defects in Two Patients with Novel DOCK2 Mutations Result in Recurrent Multiple Infection Including Live Attenuated Virus Vaccine. J Clin Immunol 2023:10.1007/s10875-023-01466-y. [PMID: 36947335 PMCID: PMC10032263 DOI: 10.1007/s10875-023-01466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
The dedicator of cytokinesis 2(DOCK2) protein, an atypical guanine nucleotide exchange factor (GEFs), is a member of the DOCKA protein subfamily. DOCK2 protein deficiency is characterized by early-onset lymphopenia, recurrent infections, and lymphocyte dysfunction, which was classified as combined immune deficiency with neutrophil abnormalities as well. The only cure is hematopoietic stem cell transplantation. Here, we report two patients harboring four novel DOCK2 mutations associated with recurrent infections including live attenuated vaccine-related infections. The patient's condition was partially alleviated by symptomatic treatment or intravenous immunoglobulin. We also confirmed defects in thymic T cell output and T cell proliferation, as well as aberrant skewing of T/B cell subset TCR-Vβ repertoires. In addition, we noted neutrophil defects, the weakening of actin polymerization, and BCR internalization under TCR/BCR activation. Finally, we found that the DOCK2 protein affected antibody affinity although with normal total serum immunoglobulin. The results reported herein expand the clinical phenotype, the pathogenic DOCK2 mutation database, and the immune characteristics of DOCK2-deficient patients.
Collapse
Affiliation(s)
- Wenhui Li
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Sun
- School of Medicine, Chongqing University, Chongqing, China
| | - Lang Yu
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Chen
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Gan
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Luyao Qiu
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Gan Sun
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongqiang Du
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Shu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400014, People's Republic of China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Morino K, Kunimura K, Sugiura Y, Izumi Y, Matsubara K, Akiyoshi S, Maeda R, Hirotani K, Sakata D, Mizuno S, Takahashi S, Bamba T, Uruno T, Fukui Y. Cholesterol sulfate limits neutrophil recruitment and gut inflammation during mucosal injury. Front Immunol 2023; 14:1131146. [PMID: 37006281 PMCID: PMC10063914 DOI: 10.3389/fimmu.2023.1131146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
During mucosal injury, intestinal immune cells play a crucial role in eliminating invading bacteria. However, as the excessive accumulation of immune cells promotes inflammation and delays tissue repair, it is essential to identify the mechanism that limits the infiltration of immune cells to the mucosal-luminal interface. Cholesterol sulfate (CS) is the lipid product of the sulfotransferase SULT2B1 and suppresses immune reactions by inhibiting DOCK2-mediated Rac activation. In this study, we aimed to elucidate the physiological role of CS in the intestinal tract. We found that, in the small intestine and colon, CS is predominantly produced in the epithelial cells close to the lumen. While dextran sodium sulfate (DSS)-induced colitis was exacerbated in Sult2b1-deficient mice with increased prevalence of neutrophils, the elimination of either neutrophils or intestinal bacteria in Sult2b1-deficient mice attenuated disease development. Similar results were obtained when the Dock2 was genetically deleted in Sult2b1-deficient mice. In addition, we also show that indomethacin-induced ulcer formation in the small intestine was exacerbated in Sult2b1-deficient mice and was ameliorated by CS administration. Thus, our results uncover that CS acts on inflammatory neutrophils, and prevents excessive gut inflammation by inhibiting the Rac activator DOCK2. The administration of CS may be a novel therapeutic strategy for inflammatory bowel disease and non-steroidal anti-inflammatory drug-induced ulcers.
Collapse
Affiliation(s)
- Kenji Morino
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- *Correspondence: Kazufumi Kunimura, ; Yoshinori Fukui,
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sayaka Akiyoshi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichiro Hirotani
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- *Correspondence: Kazufumi Kunimura, ; Yoshinori Fukui,
| |
Collapse
|
10
|
Bruusgaard-Mouritsen MA, Masmas T, Borgwardt L, Nazaryan-Petersen L, Heilmann C, Madsen HO, Vibeke Marquart H. A novel DOCK2 variant in siblings with severe combined immunodeficiency. Scand J Immunol 2023; 97:e13243. [PMID: 36541113 DOI: 10.1111/sji.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Anna Bruusgaard-Mouritsen
- Section for Diagnostic Immunology, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tania Masmas
- Department of Paediatrics and Adolescent Medicine, Paediatric Haematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Carsten Heilmann
- Department of Paediatrics and Adolescent Medicine, Paediatric Haematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hans O Madsen
- Section for Diagnostic Immunology, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Section for Diagnostic Immunology, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
DOCK2 Mutation and Recurrent Hemophagocytic Lymphohistiocytosis. Life (Basel) 2023; 13:life13020434. [PMID: 36836791 PMCID: PMC9962445 DOI: 10.3390/life13020434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome resulting from uncontrolled hyper-inflammation, excessive immune system activation, and elevated levels of inflammatory cytokines. HLH can be caused by the inability to downregulate activated macrophages by natural killer (NK) and CD8 cytotoxic T cells through a process reliant on perforin and granzyme B to initiate apoptosis. Homozygous genetic mutations in this process result in primary HLH (pHLH), a disorder that can lead to multi-system organ failure and death in infancy. Heterozygous, dominant-negative, or monoallelic hypomorphic mutations in these same genes can cause a similar syndrome in the presence of an immune trigger, leading to secondary HLH (sHLH). A genetic mutation in a potential novel HLH-associated gene, dedicator of cytokinesis 2 (DOCK2), was identified in a patient with recurrent episodes of sHLH and hyperinflammation in the setting of frequent central line infections. He required baseline immune suppression for the prevention of sHLH, with increased anti-cytokine therapies and corticosteroids in response to flares and infections. Using a foamy-virus approach, the patient's DOCK2 mutation and wild-type (WT) control DOCK2 cDNA were separately transduced into a human NK-92 cell line. The NK-cell populations were stimulated with NK-sensitive K562 erythroleukemia target cells in vitro and degranulation and cytolysis were measured using CD107a expression and live/dead fixable cell dead reagent, respectively. Compared to WT, the patient's DOCK2 mutation was found to cause significantly decreased NK cell function, degranulation, and cytotoxicity. This study speaks to the importance of DOCK2 and similar genes in the pathogenesis of sHLH, with implications for its diagnosis and treatment.
Collapse
|
12
|
Extra-hematopoietic immunomodulatory role of the guanine-exchange factor DOCK2. Commun Biol 2022; 5:1246. [DOI: 10.1038/s42003-022-04078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractStromal cells interact with immune cells during initiation and resolution of immune responses, though the precise underlying mechanisms remain to be resolved. Lessons learned from stromal cell-based therapies indicate that environmental signals instruct their immunomodulatory action contributing to immune response control. Here, to the best of our knowledge, we show a novel function for the guanine-exchange factor DOCK2 in regulating immunosuppressive function in three human stromal cell models and by siRNA-mediated DOCK2 knockdown. To identify immune function-related stromal cell molecular signatures, we first reprogrammed mesenchymal stem/progenitor cells (MSPCs) into induced pluripotent stem cells (iPSCs) before differentiating these iPSCs in a back-loop into MSPCs. The iPSCs and immature iPS-MSPCs lacked immunosuppressive potential. Successive maturation facilitated immunomodulation, while maintaining clonogenicity, comparable to their parental MSPCs. Sequential transcriptomics and methylomics displayed time-dependent immune-related gene expression trajectories, including DOCK2, eventually resembling parental MSPCs. Severe combined immunodeficiency (SCID) patient-derived fibroblasts harboring bi-allelic DOCK2 mutations showed significantly reduced immunomodulatory capacity compared to non-mutated fibroblasts. Conditional DOCK2 siRNA knockdown in iPS-MSPCs and fibroblasts also immediately reduced immunomodulatory capacity. Conclusively, CRISPR/Cas9-mediated DOCK2 knockout in iPS-MSPCs also resulted in significantly reduced immunomodulation, reduced CDC42 Rho family GTPase activation and blunted filopodia formation. These data identify G protein signaling as key element devising stromal cell immunomodulation.
Collapse
|
13
|
Ji L, Xu S, Luo H, Zeng F. Insights from DOCK2 in cell function and pathophysiology. Front Mol Biosci 2022; 9:997659. [PMID: 36250020 PMCID: PMC9559381 DOI: 10.3389/fmolb.2022.997659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 2 (DOCK2) can activate the downstream small G protein Rac and regulate cytoskeletal reorganization. DOCK2 is essential for critical physiological processes such as migration, activation, proliferation, and effects of immune cells, including lymphocytes, neutrophils, macrophages, and dendritic cells. For example, DOCK2 is involved in the development and activation of T and B lymphocytes by affecting synapse formation and inhibiting the development of the Th2 lineage by downregulating IL-4Rα surface expression. Not only that, DOCK2 may be a molecular target for controlling cardiac transplant rejection and Alzheimer’s disease (AD). Patients with defects in the DOCK2 gene also exhibit a variety of impaired cellular functions, such as chemotactic responses of lymphocytes and reactive oxygen species (ROS) production by neutrophils. To date, DOCK2 has been shown to be involved in the development of various diseases, including AD, pneumonia, myocarditis, colitis, tumors, etc. DOCK2 plays different roles in these diseases and the degree of inflammatory response has a different impact on the progression of disease. In this paper, we present a review of recent advances in the function of DOCK2 in various immune cells and its role in various diseases.
Collapse
Affiliation(s)
- Lulin Ji
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Shuquan Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haiqing Luo
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Fanwei Zeng
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| |
Collapse
|
14
|
Ding S, Cao Y, Lu X, Zhang H, Cong L, Yi T, Xu M, Wang L. Dedicator of cytokinesis 2 (DOCK2) silencing protects against cerebral ischemia/reperfusion by modulating microglia polarization via the activation of the STAT6 signaling pathway. Neuroscience 2022; 491:110-121. [PMID: 35395356 DOI: 10.1016/j.neuroscience.2022.03.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022]
Abstract
Cerebral ischemia/reperfusion is the major pathophysiological process in stroke and could lead to severe and permanent disability. The current study aimed to investigate the effects of dedicator of cytokinesis 2 (DOCK2) on cerebral ischemia/reperfusion-induced cerebral injury. We established a mouse middle cerebral artery occlusion (MCAO) model with suture-occluded method in vivo. Then, BV-2 cells were conducted to oxygen-glucose deprivation and re-oxygenation (OGD/R) in vitro. The results showed that DOCK2 was highly expressed in ischemic brain following MCAO and in BV-2 cells induced by OGD/R. DOCK2 depletion protected against MCAO-induced brain infarcts and neuron degeneration. DOCK2 downregulation improved long-term neurological function, which was assessed by the Morris water-maze test. Moreover, silencing of DOCK2 promoted M2 polarization (anti-inflammation) and repressed M1 polarization (pro-inflammation) of microglia both in vivo and in vitro. Subsequently, we found that the loss of DOCK2 upregulated the expression of p-STAT6. DOCK2 knockdown-induced microglial cell polarization towards M2 phenotype was partly abrogated by the STAT6 inhibitor AS1517499. In conclusion, DOCK2 downregulation protected against cerebral ischemia/reperfusion by modulating microglia polarization via the activation of the STAT6 signaling pathway.
Collapse
Affiliation(s)
- Siwen Ding
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yuze Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Lin Cong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Tingting Yi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Mei Xu
- Department of Neurology, The Second Hospital of Harbin, Harbin, Heilongjiang, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
15
|
Teng L, Shen L, Zhao W, Wang C, Feng S, Wang Y, Bi Y, Rong S, Shushakova N, Haller H, Chen J, Jiang H. SLAMF8 Participates in Acute Renal Transplant Rejection via TLR4 Pathway on Pro-Inflammatory Macrophages. Front Immunol 2022; 13:846695. [PMID: 35432371 PMCID: PMC9012444 DOI: 10.3389/fimmu.2022.846695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 01/10/2023] Open
Abstract
Background Acute rejection (AR) in kidney transplantation is an established risk factor that reduces the survival rate of allografts. Despite standard immunosuppression, molecules with regulatory control in the immune pathway of AR can be used as important targets for therapeutic operations to prevent rejection. Methods We downloaded the microarray data of 15 AR patients and 37 non-acute rejection (NAR) patients from Gene Expression Omnibus (GEO). Gene network was constructed, and genes were classified into different modules using weighted gene co-expression network analysis (WGCNA). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape were applied for the hub genes in the most related module to AR. Different cell types were explored by xCell online database and single-cell RNA sequencing. We also validated the SLAMF8 and TLR4 levels in Raw264.7 and human kidney tissues of TCMR. Results A total of 1,561 differentially expressed genes were filtered. WGCNA was constructed, and genes were classified into 12 modules. Among them, the green module was most closely associated with AR. These genes were significantly enriched in 20 pathway terms, such as cytokine–cytokine receptor interaction, chemokine signaling pathway, and other important regulatory processes. Intersection with GS > 0.4, MM > 0.9, the top 10 MCC values and DEGs in the green module, and six hub genes (DOCK2, NCKAP1L, IL2RG, SLAMF8, CD180, and PTPRE) were identified. Their expression levels were all confirmed to be significantly elevated in AR patients in GEO, Nephroseq, and quantitative real-time PCR (qRT-PCR). Single-cell RNA sequencing showed that AR patient had a higher percentage of native T, CD1C+_B DC, NKT, NK, and monocytes in peripheral blood mononuclear cells (PBMCs). Xcell enrichment scores of 20 cell types were significantly different (p<0.01), mostly immune cells, such as B cells, CD4+ Tem, CD8+ T cells, CD8+ Tcm, macrophages, M1, and monocytes. GSEA suggests that highly expressed six hub genes are correlated with allograft rejection, interferon γ response, interferon α response, and inflammatory response. In addition, SLAMF8 is highly expressed in human kidney tissues of TCMR and in M1 phenotype macrophages of Raw264.7 cell line WGCNA accompanied by high expression of TLR4. Conclusion This study demonstrates six hub genes and functionally enriched pathways related to AR. SLAMF8 is involved in the M1 macrophages via TLR4, which contributed to AR process.
Collapse
Affiliation(s)
- Lisha Teng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lingling Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenjun Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yan Bi
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Nephropathy, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Hong Jiang,
| |
Collapse
|
16
|
First patient in the Iranian Registry with novel DOCK2 gene mutation, presenting with skeletal tuberculosis, and review of literature. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:126. [PMID: 34872585 PMCID: PMC8647063 DOI: 10.1186/s13223-021-00631-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022]
Abstract
Background Dedicator of cytokinesis 2 (DOCK2) deficiency is an inborn error of immunity characterized by cellular and humoral immunological abnormalities leading to early-onset infections. Case presentation We reported a novel case of a 27 months old girl presenting with recurrent pneumonia and a history of skeletal tuberculosis at the age of 19-month-old. Her immunological workup revealed persistent lymphopenia and low CD4 + T cell count along with elevated levels of CD19 +, CD20 +, CD16 +, and CD56 + cells. Furthermore, she had a high level of immunoglobulin (Ig) E and a slightly reduced IgM level with a non-protective antibody titer against diphtheria. The whole-exome sequencing (WES) analysis identified a homozygous frameshift deletion mutation (c.1512delG, p.I505Sfs*28) in exon 16 of the DOCK2 gene. We also conducted electronic searches in PubMed, Web of Science, and Scopus databases and reviewed the articles reporting patients with DOCK2 deficiency. The literature search yielded 14 DOCK2-deficient patients suffering from both cellular and humoral immune defects leading to early-onset infections, particularly human herpesvirus (HHV) infection. Conclusion DOCK2 deficiency should be considered in the context of severe or unusual early-onset infections, especially HHV infections, in a patient with a probable clinical diagnosis of combined immunodeficiency. We also recommended that DOCK2-deficient patients might benefit from T-cell receptor excision circle (TREC) assay as part of the routine newborn screening program.
Collapse
|
17
|
Abstract
Ras homology (RHO) GTPases are signalling proteins that have crucial roles in triggering multiple immune functions. Through their interactions with a broad range of effectors and kinases, they regulate cytoskeletal dynamics, cell polarity and the trafficking and proliferation of immune cells. The activity and localization of RHO GTPases are highly controlled by classical families of regulators that share consensus motifs. In this Review, we describe the recent discovery of atypical modulators and partners of RHO GTPases, which bring an additional layer of regulation and plasticity to the control of RHO GTPase activities in the immune system. Furthermore, the development of large-scale genetic screening has now enabled researchers to identify dysregulation of RHO GTPase signalling pathways as a cause of many immune system-related diseases. We discuss the mutations that have been identified in RHO GTPases and their signalling circuits in patients with rare diseases. The discoveries of new RHO GTPase partners and genetic mutations in RHO GTPase signalling hubs have uncovered unsuspected layers of crosstalk with other signalling pathways and may provide novel therapeutic opportunities for patients affected by complex immune or broader syndromes.
Collapse
|
18
|
Bastard P, Galerne A, Lefevre-Utile A, Briand C, Baruchel A, Durand P, Landman-Parker J, Gouache E, Boddaert N, Moshous D, Gaudelus J, Cohen R, Deschenes G, Fischer A, Blanche S, de Pontual L, Neven B. Different Clinical Presentations and Outcomes of Disseminated Varicella in Children With Primary and Acquired Immunodeficiencies. Front Immunol 2021; 11:595478. [PMID: 33250898 PMCID: PMC7674974 DOI: 10.3389/fimmu.2020.595478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Primary infection with varicella-zoster virus (VZV) causes chickenpox, a benign and self-limited disease in healthy children. In patients with primary or acquired immunodeficiencies, primary infection can be life-threatening, due to rapid dissemination of the virus to various organs [lung, gastrointestinal tract, liver, eye, central nervous system (CNS)]. We retrospectively described and compared the clinical presentations and outcomes of disseminated varicella infection (DV) in patients with acquired (AID) (n= 7) and primary (PID) (n= 12) immunodeficiencies. Patients with AID were on immunosuppression (mostly steroids) for nephrotic syndrome, solid organ transplantation or the treatment of hemopathies, whereas those with PID had combined immunodeficiency (CID) or severe CID (SCID). The course of the disease was severe and fulminant in patients with AID, with multiple organ failure, no rash or a delayed rash, whereas patients with CID and SICD presented typical signs of chickenpox, including a rash, with dissemination to other organs, including the lungs and CNS. In the PID group, antiviral treatment was prolonged until immune reconstitution after bone marrow transplantation, which was performed in 10/12 patients. Four patients died, and three experienced neurological sequelae. SCID patients had the worst outcome. Our findings highlight substantial differences in the clinical presentation and course of DV between children with AID and PID, suggesting differences in pathophysiology. Prevention, early diagnosis and treatment are required to improve outcome.
Collapse
Affiliation(s)
- Paul Bastard
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Aurélien Galerne
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France
| | - Alain Lefevre-Utile
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,INSERM U976-Human Systems Immunology and Inflammatory Networks, Institut de Recherche de Saint Louis, Paris, France.,Université de Paris, Paris, France
| | - Coralie Briand
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France
| | - André Baruchel
- Université de Paris, Paris, France.,Département d'Hématologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Philippe Durand
- Service de Réanimation Pédiatrique, Hôpital du Kremlin-Bicêtre, Kremlin-Bicêtre, France.,Université Paris XI, AP-HP, Paris.,Université Paris Saclay, Saint-Aubin, France
| | - Judith Landman-Parker
- Sorbonne Université, Service de d'Hématologie Oncologie Pédiatrique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Elodie Gouache
- Sorbonne Université, Service de d'Hématologie Oncologie Pédiatrique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Nathalie Boddaert
- Université de Paris, Paris, France.,Service de Radiologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France
| | - Despina Moshous
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France
| | - Joel Gaudelus
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,Sorbonne Paris Nord University, Bobigny, France
| | - Robert Cohen
- ACTIV Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Georges Deschenes
- Service de Néphrologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Alain Fischer
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France.,Experimental Medicine, Collège de France, Paris, France
| | - Stéphane Blanche
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - Loïc de Pontual
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,Sorbonne Paris Nord University, Bobigny, France
| | - Bénédicte Neven
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France
| |
Collapse
|
19
|
DOCK2 Deficiency Diagnosed 18 Years After Hematopoietic Stem Cell Transplantation. J Clin Immunol 2021; 41:1400-1402. [PMID: 33928462 DOI: 10.1007/s10875-021-01040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
|
20
|
McNulty SN, Evenson MJ, Riley M, Yoest JM, Corliss MM, Heusel JW, Duncavage EJ, Pfeifer JD. A Next-Generation Sequencing Test for Severe Congenital Neutropenia: Utility in a Broader Clinicopathologic Spectrum of Disease. J Mol Diagn 2020; 23:200-211. [PMID: 33217554 DOI: 10.1016/j.jmoldx.2020.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 10/24/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a collection of diverse disorders characterized by chronically low absolute neutrophil count in the peripheral blood, increased susceptibility to infection, and a significant predisposition to the development of myeloid malignancies. SCN can be acquired or inherited. Inherited forms have been linked to variants in a group of diverse genes involved in the neutrophil-differentiation process. Variants that promote resistance to treatment have also been identified. Thus, genetic testing is important for the diagnosis, prognosis, and management of SCN. Herein we describe clinically validated assay developed for assessing patients with suspected SCN. The assay is performed from a whole-exome backbone. Variants are called across all coding exons, and results are filtered to focus on 48 genes that are clinically relevant to SCN. Validation results indicated 100% analytical sensitivity and specificity for the detection of constitutional variants among the 48 reportable genes. To date, 34 individuals have been referred for testing (age range: birth to 67 years). Several pathogenic and likely pathogenic variants have been identified, including one in a patient with late-onset disease. The pattern of cases referred for testing suggests that this assay has clinical utility in a broader spectrum of patients beyond those in the pediatric population who have classic early-onset symptoms characteristic of SCN.
Collapse
Affiliation(s)
- Samantha N McNulty
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Meaghan Riley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Summit Pathology, Loveland, Colorado
| | - Jennifer M Yoest
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Meagan M Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan W Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - John D Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
21
|
Sprenkeler EGG, Webbers SDS, Kuijpers TW. When Actin is Not Actin' Like It Should: A New Category of Distinct Primary Immunodeficiency Disorders. J Innate Immun 2020; 13:3-25. [PMID: 32846417 DOI: 10.1159/000509717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of primary immunodeficiencies (PIDs) have been identified over the last decade, which are caused by deleterious mutations in genes encoding for proteins involved in actin cytoskeleton regulation. These mutations primarily affect hematopoietic cells and lead to defective function of immune cells, such as impaired motility, signaling, proliferative capacity, and defective antimicrobial host defense. Here, we review several of these immunological "actinopathies" and cover both clinical aspects, as well as cellular mechanisms of these PIDs. We focus in particular on the effect of these mutations on human neutrophil function.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands, .,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Steven D S Webbers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol 2020; 32:5-15. [PMID: 31630188 PMCID: PMC6949370 DOI: 10.1093/intimm/dxz067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dedicator of cytokinesis (DOCK) proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in other GEFs, they mediate the GTP–GDP exchange reaction through the DOCK homology region-2 (DHR-2) domain. In mammals, this family consists of 11 members, each of which has unique functions depending on the expression pattern and the substrate specificity. For example, DOCK2 is a Rac activator critical for migration and activation of leukocytes, whereas DOCK8 is a Cdc42-specific GEF that regulates interstitial migration of dendritic cells. Identification of DOCK2 and DOCK8 as causative genes for severe combined immunodeficiency syndromes in humans has highlighted their roles in immune surveillance. In addition, the recent discovery of a naturally occurring DOCK2-inhibitory metabolite has uncovered an unexpected mechanism of tissue-specific immune evasion. On the other hand, GEF-independent functions have been shown for DOCK8 in antigen-induced IL-31 production in helper T cells. This review summarizes multifaced functions of DOCK family proteins in the immune system.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
23
|
Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62:106-122. [PMID: 32014647 DOI: 10.1016/j.coi.2020.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Infections with any of the nine human herpes viruses (HHV) can be asymptomatic or life-threatening. The study of patients with severe diseases caused by HHVs, in the absence of overt acquired immunodeficiency, has led to the discovery or diagnosis of various inborn errors of immunity. The related inborn errors of adaptive immunity disrupt α/β T-cell rather than B-cell immunity. Affected patients typically develop HHV infections in the context of other infectious diseases. However, this is not always the case, as illustrated by inborn errors of SAP-dependent T-cell immunity to EBV-infected B cells. The related inborn errors of innate immunity disrupt leukocytes other than T and B cells, non-hematopoietic cells, or both. Patients typically develop only a single type of infection due to HHV, although, again, this is not always the case, as illustrated by inborn errors of TLR3 immunity resulting in HSV1 encephalitis in some patients and influenza pneumonitis in others. Most severe HHV infections in otherwise healthy patients remains unexplained. The forward human genetic dissection of isolated and syndromic HHV-driven illnesses will establish the molecular and cellular basis of protective immunity to HHVs, paving the way for novel diagnosis and management strategies.
Collapse
|
24
|
Recent human genetic errors of innate immunity leading to increased susceptibility to infection. Curr Opin Immunol 2020; 62:79-90. [PMID: 31935567 DOI: 10.1016/j.coi.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The germline encoded innate immunity governs eukaryotic host defense through both hematopoietic and non-hematopoietic cells, whereas adaptive immunity actions mainly via T cells and B cells characterized by their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity typically underlie infectious diseases. Disturbed innate immunity can additionally result in auto-inflammation. Here, we review inborn errors of innate immunity that have been recently discovered as well as new insights into previously described inborn errors of innate immunity.
Collapse
|
25
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|