1
|
Chiang SCC, Yang L, Owsley E, Husami A, Akeno N, Cobb C, Hartog NL, Elizalde A, Seroogy CM, Blanchard-Rohner G, Peng XP, Brager R, Buchbinder D, Cook E, Phillips L, Maricic S, Kalashnikova T, Derfalvi B, Dimitriades VR, Murguía-Favela LE, Gutierrez MJ, Shrikhande A, Steele M, Wilson JL, Wright NAM, Marsh R, Bleesing J, Jordan MB, Marwaha AK. Lipopolysaccharide-responsive and beige-like anchor protein (LRBA) functional deficiency caused by biallelic LRBA missense variants characterized by Evans syndrome or colitis. J Allergy Clin Immunol 2025:S0091-6749(25)00384-7. [PMID: 40220912 DOI: 10.1016/j.jaci.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Biallelic loss-of-function mutations in the lipopolysaccharide-responsive and beige-like anchor (LRBA) gene lead to a severe syndrome of early-onset immune dysregulation called LRBA deficiency. Monoallelic CTLA4 mutations lead to a similar phenotype. In both conditions, cytotoxic T lymphocyte-associated protein 4 (CTLA-4) levels are significantly decreased. In previously reported cases of symptomatic disease associated with LRBA pathogenic variants, patients usually have severely decreased or absent LRBA protein levels. OBJECTIVE We describe 5 patients with biallelic missense variants in the LRBA gene presenting predominantly with Evans syndrome or colitis. METHODS LRBA and CTLA-4 levels were investigated in LRBA missense, "classic" LRBA and in CTLA-4 insufficiency samples. RESULTS Surprisingly, all 5 LRBA missense patients had normal expression of LRBA protein. However, CTLA-4 intracellular expression was reduced to similar levels as those seen in patients with CTLA-4 insufficiency at resting state. Lower levels of surface CTLA-4 are seen on cell activation, indicating that these LRBA variants lead to reduced CTLA-4 cell surface expression. Several of the missense variants are shared between unrelated patients in the cohort, suggesting a mutational hot spot or founder effect for those with shared ancestry. CONCLUSION Novel LRBA deficiency variants result in quantitative or qualitative LRBA defects, leading to reduced intracellular resting levels and induced surface levels of CTLA-4.
Collapse
Affiliation(s)
- Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Li Yang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Erika Owsley
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nagako Akeno
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cristina Cobb
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicholas L Hartog
- Allergy and Immunology, Corwell Health, Helen Devos Children's Hospital, College of Human Medicine, Michigan State University, Grand Rapids, Mich
| | | | - Christine M Seroogy
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Geraldine Blanchard-Rohner
- Unit of Immunology, Vaccinology and Rheumatology, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Xiao P Peng
- Division of Genetic Medicine, Department of Pediatrics, Montefiore Medical Center, Bronx, NY
| | - Rae Brager
- Division of Rheumatology, Immunology and Allergy, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, Calif
| | - Eleanor Cook
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lindsay Phillips
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Ontario, Canada
| | - Snezana Maricic
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Ontario, Canada
| | - Tatiana Kalashnikova
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Beata Derfalvi
- Division of Immunology, Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Victoria R Dimitriades
- Division of Pediatric Allergy, Immunology & Rheumatology, UC Davis Health, Sacramento, Calif
| | - Luis E Murguía-Favela
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Anitha Shrikhande
- Department of Medicine and Pediatrics, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY
| | - MacGregor Steele
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Jo L Wilson
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nicola A M Wright
- Section of Hematology/Immunology, Alberta Children's Hospital, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ashish K Marwaha
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Ontario, Canada.
| |
Collapse
|
2
|
Kurucu N, Kutluk T, Sağlam A, Cagdas D, Haliloğlu M, Salancı BV, Aydın B, Yalçın B, Varan A, Üner A. Indolent B-cell non-Hodgkin lymphomas in children: high association with inborn errors of immunity. Leuk Lymphoma 2024; 65:1875-1882. [PMID: 38967495 DOI: 10.1080/10428194.2024.2374031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Indolent lymphomas are rare in children and mostly consist of pediatric type follicular (PTFL) and pediatric marginal zone lymphomas (PMZL) and extranodal marginal zone lymphoma (ENMZL). Twenty children with indolent lymphoma (10 PTFL, 6 PMZL, 3 ENMZL, 1 mixed type) among 307 Non-Hodgkin Lymphoma (NHL) were retrospectively evaluated. The mean age of the entire group was 10.4 ± 4.4 and was significantly lower in PTFL than in PMZL. Seven patients (35%) had an associated inborn error of immunity (IEI) which was higher than that seen in aggressive lymphomas (5.9%) (p < 0.0001). Seventeen patients (85%) had stage I/II disease. Two patients received no treatment after surgery. Eleven patients were treated only with 3-6 courses of rituximab. Four patients received 3-6 courses of R-CHOP protocol. The prognosis was excellent Five years overall and event-free survivals were 100% and 85%, respectively.
Collapse
MESH Headings
- Humans
- Male
- Female
- Child
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adolescent
- Retrospective Studies
- Prognosis
- Child, Preschool
- Vincristine/therapeutic use
- Rituximab/therapeutic use
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/therapy
- Prednisone/therapeutic use
- Neoplasm Staging
- Cyclophosphamide/therapeutic use
- Doxorubicin/therapeutic use
- Treatment Outcome
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/therapy
- Lymphoma, B-Cell, Marginal Zone/pathology
- Lymphoma, B-Cell, Marginal Zone/etiology
Collapse
Affiliation(s)
- Nilgün Kurucu
- Department of Pediatric Oncology, Hacettepe University Faculty of Medicine and Cancer Institute, Ankara, Turkey
| | - Tezer Kutluk
- Department of Pediatric Oncology, Hacettepe University Faculty of Medicine and Cancer Institute, Ankara, Turkey
| | - Arzu Sağlam
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mithat Haliloğlu
- Department of Pediatric Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Bilge Volkan Salancı
- Faculty of Medicine, Department of Nuclear Medicine, Hacettepe University, Ankara, Turkey
| | - Burça Aydın
- Department of Pediatric Oncology, Hacettepe University Faculty of Medicine and Cancer Institute, Ankara, Turkey
| | - Bilgehan Yalçın
- Department of Pediatric Oncology, Hacettepe University Faculty of Medicine and Cancer Institute, Ankara, Turkey
| | - Ali Varan
- Department of Pediatric Oncology, Hacettepe University Faculty of Medicine and Cancer Institute, Ankara, Turkey
| | - Ayşegül Üner
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Oskay Halacli S, Cagdas D, Esenboga S, Inan D, Yaz I, Cicek B, Bildik HN, Tezcan I. Comparative analysis of protein expression profiles with genotypes in the diagnosis of Inborn Errors of Immunity. Scand J Clin Lab Invest 2024; 84:547-556. [PMID: 39705235 DOI: 10.1080/00365513.2024.2439401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Inborn Errors of Immunity (IEIs) are genetic diseases resulting from harmful genetic variations that hinder the proper functioning of the immune system. The broad range of IEIs involves multiple systems, presenting characteristics similar to allergies, autoimmune or inflammatory diseases, and malignancies. Given this complexity, there is an urgent need for a precise multi-parametric molecular diagnostic approach. OBJECTIVE In this work, we demonstrated the effectiveness of accurate diagnosis by flow cytometry in patients with IEI by comparing genotype analysis with the expression levels of particular proteins and signaling activities. METHODS We examined the expression levels or signaling activities of 28 cell surface and intracellular proteins using flow cytometry in a cohort of 352 patients and 189 healthy controls, in conjunction with genotype analysis for comparison. Results: We identified alterations in protein expression in 60 individuals, among them, 55 exhibited the presence of an underlying pathogenic mutation. Complete loss of protein expression was observed in seven patients, constituting 2% of the total, while reduced protein expression was noted in 35 patients (9%). Notably, despite mutations in the relevant genes, protein expression levels were normal in five patients (2%), in all investigated patients. 37% of patients had elevated signaling activity, and 17% were suggestive of a particular IEI diagnosis following protein expression analysis. CONCLUSION The correspondence between flow cytometry-based protein analyses and genotype facilitates a prompt diagnosis, providing patients with swift access to therapeutic options.
Collapse
Affiliation(s)
- Sevil Oskay Halacli
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
- Translational Medicine Laboratories, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
- Translational Medicine Laboratories, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
- Translational Medicine Laboratories, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Dilan Inan
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
| | - Ismail Yaz
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
| | - Begum Cicek
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
| | - Hacer Neslihan Bildik
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey
- Translational Medicine Laboratories, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Bildik HN, Esenboga S, Halaclı SO, Karaatmaca B, Aytekin ES, Nabiyeva N, Akarsu A, Ocak M, Erman B, Tan C, Arikoglu T, Yaz I, Cicek B, Tezcan I, Cagdas D. A single center experience on PI3K/AKT/MTOR signaling defects: Towards pathogenicity assessment for four novel defects. Pediatr Allergy Immunol 2024; 35:e14245. [PMID: 39312287 DOI: 10.1111/pai.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Phosphoinositide 3 kinases (PI3K) are lipid kinases expressed in lymphocytes/myeloid cells. PI3K/AKT/mTOR signaling defects present with recurrent infections, autoimmunity, lymphoproliferation, and agammaglobulinemia. OBJECTIVE To characterize the PI3K/AKT/mTOR pathway defects and perform pathway analyses to assess novel variant pathogenicity. METHODS We included 12 patients (heterozygous PIK3CD (n = 9) and PIK3R1 (n = 1) (activated PI3K delta syndrome (APDS) with gain-of-function mutations) and homozygous PIK3R1 variant (n = 2)), performed clinical/laboratory/genetic evaluation, and flow cytometric PI3K/AKT/mTOR pathway analyses. RESULTS Median age at onset of complaints was 17.5 months (3 months to 12 years) and at diagnosis was 15.7 years (2.5-37) in APDS. Median diagnostic delay was 12.9 years (1.6-27). Recurrent respiratory tract infections (90%), lymphoproliferation (70%), autoimmune/inflammatory findings (60%), and allergy (40%) were common in APDS. Recurrent viral infections were present in 4/10 and malignancy (non-Hodgkin lymphoma and testicular yolk sac tumor) was present in 2/10 in APDS. Low CD4+ T cells(5/8) with increased CD4+ effector memory (8/8) and CD4+ TEMRA cells (6/8) were present in the given number of APDS patients. We diagnosed tubulointerstitial nephritis, Langerhans cell histiocytosis, and late-onset congenital adrenal hyperplasia in APDS. Allergic findings, lymphoproliferation/malignancy, and high IgM were present in the APDS but not in PIK3R1 deficiency. Low IgM/IgG/CD19+ B cell counts were characteristic in patients with PIK3R1 homozygous loss-of function mutations. CONCLUSION Differential diagnosis with combined immunodeficiency and diseases of immune dysregulation make molecular genetic analysis crucial for diagnosing mTOR pathway defects. It is easy to differentiate APDS and homozygous PIK3R1 defects with specific laboratory features. Additionally, mTOR pathway functional analysis is a definitive diagnostic and pathogenicity assessment tool for novel APDS mutations.
Collapse
Affiliation(s)
- Hacer Neslihan Bildik
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevil Oskay Halaclı
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Betül Karaatmaca
- Pediatric Allergy and Immunology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Elif Soyak Aytekin
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nadira Nabiyeva
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşegul Akarsu
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Melike Ocak
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Baran Erman
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tugba Arikoglu
- Department of Pediatrics, Division of Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ismail Yaz
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Begum Cicek
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Yang XT, Yang WL, Lau YL. NGS data analysis for molecular diagnosis of Inborn Errors of Immunity. Semin Immunol 2024; 74-75:101901. [PMID: 39509871 DOI: 10.1016/j.smim.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Inborn errors of immunity (IEI) encompass a group of disorders with a strong genetic component. Prompt and accurate diagnosis of these disorders is essential for effective clinical management. Next-generation sequencing (NGS) has significantly enhanced the diagnostic process by offering a comprehensive and scalable approach for identifying genomic variations causal for these disorders. Nevertheless, the bioinformatics analysis of NGS data poses several challenges. In this review, we explore these challenges and share our insights on addressing them, aiming to improve the overall diagnostic yield.
Collapse
Affiliation(s)
- X T Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - W L Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Y L Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Perez-Perez D, Santos-Argumedo L, Rodriguez-Alba JC, Lopez-Herrera G. Analysis of LRBA pathogenic variants and the association with functional protein domains and clinical presentation. Pediatr Allergy Immunol 2024; 35:e14179. [PMID: 38923448 DOI: 10.1111/pai.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
LRBA is a cytoplasmic protein that is ubiquitously distributed. Almost all LRBA domains have a scaffolding function. In 2012, it was reported that homozygous variants in LRBA are associated with early-onset hypogammaglobulinemia. Since its discovery, more than 100 pathogenic variants have been reported. This review focuses on the variants reported in LRBA and their possible associations with clinical phenotypes. In this work LRBA deficiency cases reported more than 11 years ago have been revised. A database was constructed to analyze the type of variants, age at onset, clinical diagnosis, infections, autoimmune diseases, and cellular and immunoglobulin levels. The review of cases from 2012 to 2023 showed that LRBA deficiency was commonly diagnosed in patients with a clinical diagnosis of Common Variable Immunodeficiency, followed by enteropathy, neonatal diabetes mellitus, ALPS, and X-linked-like syndrome. Most cases show early onset of presentation at <6 years of age. Most cases lack protein expression, whereas hypogammaglobulinemia is observed in half of the cases, and IgG and IgA levels are isotypes reported at low levels. Patients with elevated IgG levels exhibited more than one autoimmune manifestation. Patients carrying pathogenic variants leading to a premature stop codon show a severe phenotype as they have an earlier onset of disease presentation, severe autoimmune manifestations, premature death, and low B cells and regulatory T cell levels. Missense variants were more common in patients with low IgG levels and cytopenia. This work lead to the conclusion that the type of variant in LRBA has association with disease severity, which leads to a premature stop codon being the ones that correlates with severe disease.
Collapse
Affiliation(s)
- D Perez-Perez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| | - L Santos-Argumedo
- Biomedicine Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - J C Rodriguez-Alba
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
| | - G Lopez-Herrera
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| |
Collapse
|
9
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
10
|
Moser LM, Fekadu J, Willasch A, Rettinger E, Sörensen J, Jarisch A, Kirwil M, Lieb A, Holzinger D, Calaminus G, Bader P, Bakhtiar S. Treatment of inborn errors of immunity patients with inflammatory bowel disease phenotype by allogeneic stem cell transplantation. Br J Haematol 2023; 200:595-607. [PMID: 36214981 DOI: 10.1111/bjh.18497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Patients with inborn errors of immunity (IEI) can suffer from treatment-refractory inflammatory bowel disease (IBD) causing failure to thrive and consequences of long-term multiple immunosuppressive treatments. Allogeneic haematopoietic stem cell transplantation (alloHSCT) can serve as a curative treatment option. In this single-centre retrospective cohort study we report on 11 paediatric and young adult IEI patients with IBD and failure to thrive, who had exhausted symptomatic treatment options and received alloHSCT. The cohort included chronic granulomatous disease (CGD), lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency, STAT3 gain-of-function (GOF), Wiskott-Aldrich syndrome (WAS), dedicator of cytokinesis 8 (DOCK8) deficiency and one patient without genetic diagnosis. All patients achieved stable engraftment and immune reconstitution, and gastrointestinal symptoms were resolved after alloHSCT. The overall survival was 11/11 over a median follow-up of 34.7 months. Graft-versus-host disease (GVHD) was limited to grade I-II acute GVHD (n = 5), one case of grade IV acute GVHD and one case of limited chronic GVHD. Since treatment recommendations are limited, this work provides a centre-specific approach to treatment prior to transplant as well as conditioning in IEI patients with severe IBD.
Collapse
Affiliation(s)
- Laura M Moser
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Fekadu
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - André Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Jan Sörensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Andrea Jarisch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Marta Kirwil
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Adrian Lieb
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany.,Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Gabriele Calaminus
- Department for Children and Adolescents, University Hospital Bonn, Bonn, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Drabent P, Berrebi D. [Pediatric very early onset inflammatory bowel disease: Role of pathology]. Ann Pathol 2023. [PMID: 36863899 DOI: 10.1016/j.annpat.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are a heterogeneous group of multifactorial pathologies, often polygenic, due to a dysregulated immune response in a genetically susceptible host. In children under 6 years of age, a significant proportion of IBD, named "very early onset inflammatory bowel diseases" (VEO-IBD), are monogenic disorders in more than one third of cases. Over 80 genes have been linked to VEO-IBD and pathological descriptions are sparce. In this clarification, we describe the clinical aspects of monogenic VEO-IBD and the main causative genes, as well as the various histological patterns observed in intestinal biopsies. The management of a patient with VEO-IBD should be a coordinated effort by a multidisciplinary team including pediatric gastroenterologists, immunologists, geneticists, and of course pediatric pathologists.
Collapse
Affiliation(s)
- Philippe Drabent
- Service d'anatomie et cytologie pathologiques, hôpitaux universitaires Necker-Enfants malades et Robert Debré, AP-HP, université de Paris, 149, rue de Sèvres, 75015 Paris, France
| | - Dominique Berrebi
- Service d'anatomie et cytologie pathologiques, hôpitaux universitaires Necker-Enfants malades et Robert Debré, AP-HP, université de Paris, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
12
|
Autoimmune Lymphoproliferative Syndrome (ALPS) Disease and ALPS Phenotype: Are They Two Distinct Entities? Hemasphere 2023; 7:e845. [PMID: 36844186 PMCID: PMC9949771 DOI: 10.1097/hs9.0000000000000845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited disorder of lymphocyte homeostasis classically due to mutation of FAS, FASL, and CASP10 genes (ALPS-FAS/CASP10). Despite recent progress, about one-third of ALPS patients does not carry classical mutations and still remains gene orphan (ALPS-U, undetermined genetic defects). The aims of the present study were to compare the clinical and immunological features of ALPS-FAS/CASP10 versus those of ALPS-U affected subjects and to deepen the genetic characteristics of this latter group. Demographical, anamnestic, biochemical data were retrieved from medical record of 46 ALPS subjects. An enlarged panel of genes (next-generation sequencing) was applied to the ALPS-U group. ALPS-U subjects showed a more complex phenotype if compared to ALPS-FAS/CASP10 group, characterized by multiorgan involvement (P = 0.001) and positivity of autoimmune markers (P = 0.02). Multilineage cytopenia was present in both groups without differences with the exception of lymphocytopenia and autoimmune neutropenia that were more frequent in ALPS-U than in the ALPS-FAS/CASP10 group (P = 0.01 and P = 0.04). First- and second-line treatments were able to control the symptoms in 100% of the ALPS-FAS/CASP10 patients, while 63% of ALPS-U needed >2 lines of treatment and remission in some cases was obtained only after target therapy. In the ALPS-U group, we found in 14 of 28 (50%) patients 19 variants; of these, 4 of 19 (21%) were known as pathogenic and 8 of 19 (42%) as likely pathogenic. A characteristic flow cytometry panel including CD3CD4-CD8-+TCRαβ+, CD3+CD25+/CD3HLADR+, TCR αβ+ B220+, and CD19+CD27+ identified the ALPS-FAS/CASP10 group. ALPS-U seems to represent a distinct entity from ALPS-FAS/CASP10; this is relevant for management and tailored treatments whenever available.
Collapse
|
13
|
Freund T, Baxter SK, Walsh T, Golan H, Kapelushnik J, Abramsohn-Goldenberg M, Benor S, Sarid N, Ram R, Alcalay Y, Segel R, Renbaum P, Stepensky P, King MC, Torgerson TR, Hagin D. Clinically Complex LRBA Deficiency Due to a Founder Allele in the Georgian Jewish Population. J Clin Immunol 2023; 43:151-164. [PMID: 36063261 DOI: 10.1007/s10875-022-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
Pathogenic variants in LRBA, encoding the LPS Responsive Beige-Like Anchor (LRBA) protein, are responsible for recessive, early-onset hypogammaglobulinemia, severe multi-organ autoimmunity, and lymphoproliferation, with increased risk for malignancy. LRBA deficiency has a wide clinical spectrum with variable age of onset and disease severity. Three apparently unrelated patients with LRBA deficiency, of Georgian Jewish descent, were homozygous for LRBA c.6640C > T, p.R2214*, leading to a stop upstream of the LRBA BEACH domain. Despite carrying the same LRBA genotype, the three patients differed in clinical course: the first patient was asymptomatic until age 25 years; the second presented with failure to thrive at age 3 months; and the third presented at age 7 years with immune cytopenias and severe infections. Two of the patients developed malignancies: the first patient was diagnosed with recurrent Hodgkin's disease at age 36 years, and the second patient developed aggressive gastric cancer at age 15 years. Among Georgian Jews, the carrier frequency of the LRBA p.R2214* allele was 1.6% (4 of 236 Georgian Jewish controls). The allele was absent from other populations. Haplotype analysis showed a shared origin of the mutation. These three patients revealed a pathogenic LRBA founder allele in the Georgian Jewish population, support the diverse and complex clinical spectrum of LRBA deficiency, and support the possibility that LRBA deficiency predisposes to malignancy.
Collapse
Affiliation(s)
- Tal Freund
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah K Baxter
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hana Golan
- Pediatric Hematology Oncology Department, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Kapelushnik
- Department of Pediatric Oncology and Department of Hematology, Faculty of Health Sciences, Soroka Medical Center and The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Shira Benor
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Sarid
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Ram
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Alcalay
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reeval Segel
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Renbaum
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Allen Institute for Immunology, Seattle, WA, USA
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Ahmed A, Lippner E, Khanolkar A. Clinical Aspects of B Cell Immunodeficiencies: The Past, the Present and the Future. Cells 2022; 11:3353. [PMID: 36359748 PMCID: PMC9654110 DOI: 10.3390/cells11213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
B cells and antibodies are indispensable for host immunity. Our understanding of the mechanistic processes that underpin how B cells operate has left an indelible mark on the field of clinical pathology, and recently has also dramatically reshaped the therapeutic landscape of diseases that were once considered incurable. Evaluating patients with primary immunodeficiency diseases (PID)/inborn errors of immunity (IEI) that primarily affect B cells, offers us an opportunity to further our understanding of how B cells develop, mature, function and, in certain instances, cause further disease. In this review we provide a brief compendium of IEI that principally affect B cells at defined stages of their developmental pathway, and also attempt to offer some educated viewpoints on how the management of these disorders could evolve over the years.
Collapse
Affiliation(s)
- Aisha Ahmed
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth Lippner
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Catak MC, Akcam B, Bilgic Eltan S, Babayeva R, Karakus IS, Akgun G, Baser D, Bulutoglu A, Bayram F, Kasap N, Kiykim A, Hancioglu G, Kokcu Karadag SI, Kendir Demirkol Y, Ozen S, Cekic S, Ozcan D, Edeer Karaca N, Sasihuseyinoglu AS, Cansever M, Ozek Yucel E, Tamay Z, Altintas DU, Aydogmus C, Celmeli F, Cokugras H, Gulez N, Genel F, Metin A, Guner SN, Kutukculer N, Keles S, Reisli I, Kilic SS, Yildiran A, Karakoc-Aydiner E, Lo B, Ozen A, Baris S. Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy 2022; 77:3108-3123. [PMID: 35491430 DOI: 10.1111/all.15331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Lipopolysaccharide-responsive beige-like anchor protein (LRBA) deficiency and cytotoxic T-lymphocyte protein-4 (CTLA-4) insufficiency are recently described disorders that present with susceptibility to infections, autoimmunity, and lymphoproliferation. Clinical and immunological comparisons of the diseases with long-term follow-up have not been previously reported. We sought to compare the clinical and laboratory manifestations of both diseases and investigate the role of flow cytometry in predicting the genetic defect in patients with LRBA deficiency and CTLA-4 insufficiency. METHODS Patients were evaluated clinically with laboratory assessments for lymphocyte subsets, T follicular helper cells (TFH ), LRBA expression, and expression of CD25, FOXP3, and CTLA4 in regulatory T cells (Tregs) at baseline and 16 h post-stimulation. RESULTS LRBA-deficient patients (n = 29) showed significantly early age of symptom onset, higher rates of pneumonia, autoimmunity, chronic diarrhea, and failure to thrive compared to CTLA-4 insufficiency (n = 12). In total, 29 patients received abatacept with favorable responses and the overall survival probability was not different between transplanted versus non-transplanted patients in LRBA deficiency. Meanwhile, higher probability of survival was observed in CTLA-4-insufficient patients (p = 0.04). The T-cell subsets showed more deviation to memory cells in CTLA-4-insufficiency, accompanied by low percentages of Treg and dysregulated cTFH cells response in both diseases. Cumulative numbers of autoimmunities positively correlated with cTFH frequencies. Baseline CTLA-4 expression was significantly diminished in LRBA deficiency and CTLA-4 insufficiency, but significant induction in CTLA-4 was observed after short-term T-cell stimulation in LRBA deficiency and controls, while this elevation was less in CTLA-4 insufficiency, allowing to differentiate this disease from LRBA deficiency with high sensitivity (87.5%) and specificity (90%). CONCLUSION This cohort provided detailed clinical and laboratory comparisons for LRBA deficiency and CTLA-4 insufficiency. The flow cytometric approach is useful in predicting the defective gene; thus, targeted sequencing can be conducted to provide rapid diagnosis and treatment for these diseases impacting the CTLA-4 pathway.
Collapse
Affiliation(s)
- Mehmet C Catak
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Bengu Akcam
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Gamze Akgun
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Dilek Baser
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Alper Bulutoglu
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Feyza Bayram
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Cerrahpasa Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonca Hancioglu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sefika I Kokcu Karadag
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yasemin Kendir Demirkol
- Division of Pediatric Genetics, University of Health Sciences, Umraniye Education and Research Hospital, Istanbul, Turkey
| | - Selime Ozen
- Division of Pediatric Allergy and Immunology, University of Health Sciences, Dr. Behcet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Sukru Cekic
- Faculty of Medicine, Pediatric Allergy and Immunology, Uludag University, Bursa, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Neslihan Edeer Karaca
- Faculty of Medicine, Pediatric Allergy and Immunology, Ege University, Izmir, Turkey
| | | | - Murat Cansever
- Faculty of Medicine, Pediatric Immunology, Erciyes University, Kayseri, Turkey
| | - Esra Ozek Yucel
- Istanbul Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Zeynep Tamay
- Istanbul Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Derya U Altintas
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Cigdem Aydogmus
- Pediatric Allergy and Immunology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Fatih Celmeli
- Ministry of Health, Antalya Training and Research Hospital, Antalya, Turkey
| | - Haluk Cokugras
- Cerrahpasa Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nesrin Gulez
- Division of Pediatric Allergy and Immunology, University of Health Sciences, Dr. Behcet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Ferah Genel
- Division of Pediatric Allergy and Immunology, University of Health Sciences, Dr. Behcet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Ayse Metin
- Pediatric Immunology and Allergy, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Sukru N Guner
- Faculty of Medicine, Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Necil Kutukculer
- Faculty of Medicine, Pediatric Allergy and Immunology, Ege University, Izmir, Turkey
| | - Sevgi Keles
- Faculty of Medicine, Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Faculty of Medicine, Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Sara S Kilic
- Faculty of Medicine, Pediatric Allergy and Immunology, Uludag University, Bursa, Turkey
| | - Alisan Yildiran
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Bernice Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
16
|
Galati A, Muciaccia R, Marucci A, Di Paola R, Menzaghi C, Ortolani F, Rutigliano A, Rotondo A, Fischetto R, Piccinno E, Delvecchio M. Early-Onset Diabetes in an Infant with a Novel Frameshift Mutation in LRBA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11031. [PMID: 36078750 PMCID: PMC9517908 DOI: 10.3390/ijerph191711031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
We describe early-onset diabetes in a 6-month-old patient carrying an LRBA gene mutation. Mutations in this gene cause primary immunodeficiency with autoimmune disorders in infancy. At admission, he was in diabetic ketoacidosis, and treatment with fluid infusion rehydration and then i.v. insulin was required. He was discharged with a hybrid closed-loop system for insulin infusion and prevention of hypoglycemia (Minimed Medtronic 670G). He underwent a next-generation sequencing analysis for monogenic diabetes genes, which showed that he was compound heterozygous for two mutations in the LRBA gene. In the following months, he developed arthritis of hands and feet, chronic diarrhea, and growth failure. He underwent bone marrow transplantation with remission of diarrhea and arthritis, but not of diabetes and growth failure. The blood glucose control has always been at target (last HbA1c 6%) without any severe hypoglycemia. LRBA gene mutations are a very rare cause of autoimmune diabetes. This report describes the clinical course in a very young patient. The hybrid closed-loop system was safe and efficient in the management of blood glucose. This report describes the clinical course of diabetes in a patient with a novel LRBA gene mutation.
Collapse
Affiliation(s)
- Alessio Galati
- Department of Pediatrics, Giovanni XXIII Children Hospital, Azienda Ospedaliero Universitaria Consorziale Policlinico, 70124 Bari, Italy
| | - Rosalia Muciaccia
- Department of Pediatrics, Giovanni XXIII Children Hospital, Azienda Ospedaliero Universitaria Consorziale Policlinico, 70124 Bari, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Federica Ortolani
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Alessandra Rutigliano
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Arianna Rotondo
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Rita Fischetto
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Elvira Piccinno
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| | - Maurizio Delvecchio
- Metabolic Disease and Genetics Unit, Giovanni XXIII Children’s Hospital, AOU Policlinico di Bari, Piazza G. Cesare 11, 70126 Bari, Italy
| |
Collapse
|
17
|
Tuğcu GD, Eryılmaz Polat S, Metin A, Orhan D, Cinel G. Interstitial Lung Disease in an Adolescent Girl with Lipopolysaccharide-Responsive Beige-Like Anchor Deficiency. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2022; 35:133-138. [PMID: 36121783 DOI: 10.1089/ped.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background: Previously, lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency was categorized as a subtype of common variable immune deficiency. Research shows that LRBA deficiency is caused by dysregulation of T cell activation and expansion; it is placed under the category of immune dysregulation with cytotoxic T lymphocyte-associated protein 4 (CTLA-4) haploinsufficiency. Cohort studies have revealed a broad spectrum of clinical manifestations and variable phenotype expression, including immune dysregulation [enteropathy, autoimmune cytopenia, interstitial lung disease (ILD), etc.] on 1 hand and immune deficiency (hypogammaglobulinemia, recurrent infections, bronchiectasis, etc.) on the other hand. Chronic lung disease is frequently seen in LRBA deficiency and is associated with poor outcomes. Case Presentation: This case report evaluates a female who presented with recurrent pneumonia and bronchiectasis but did not respond to treatment; she was lastly diagnosed with ILD with detailed clinical, radiological, and pathological workup. Conclusions: The respiratory characteristics of patients with LRBA deficiency should be investigated, monitored, and treated from the time of its diagnosis. The awareness and involvement of pulmonologists to pulmonary morbidity of patients with LRBA deficiency in workup and clinical decision making are crucial.
Collapse
Affiliation(s)
- Gökçen Dilşa Tuğcu
- Department of Pediatric Pulmonology, University of Health Science, Ankara City Hospital, Çankaya, Turkey
| | - Sanem Eryılmaz Polat
- Department of Pediatric Pulmonology, University of Health Science, Ankara City Hospital, Çankaya, Turkey
| | - Ayşe Metin
- Department of Pediatric İmmunology, University of Health Science, Ankara City Hospital, Çankaya, Turkey
| | - Diclehan Orhan
- Department of Pediatric Pathology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Güzin Cinel
- Department of Pediatric Pulmonology, Ankara City Hospital, Yıldırım Beyazıt University, Çankaya, Turkey
| |
Collapse
|
18
|
Ballow M, Sánchez-Ramón S, Walter JE. Secondary Immune Deficiency and Primary Immune Deficiency Crossovers: Hematological Malignancies and Autoimmune Diseases. Front Immunol 2022; 13:928062. [PMID: 35924244 PMCID: PMC9340211 DOI: 10.3389/fimmu.2022.928062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Primary immunodeficiencies (PIDs), a heterogenous group of inborn errors of immunity, are predetermined at birth but may evolve with age, leading to a variable clinical and laboratory presentation. In contrast, secondary immunodeficiencies (SIDs) are acquired declines of immune cell counts and or/function. The most common type of SID is a decreased antibody level occurring as a consequence of extrinsic influences, such as an underlying condition or a side effect of some medications used to treat hematological malignancies and autoimmune disorders. Paradoxically, immune deficiencies initially attributed to secondary causes may partly be due to an underlying PID. Therefore, in the era of immune-modulating biologicals, distinguishing between primary and secondary antibody deficiencies is of great importance. It can be difficult to unravel the relationship between PID, SID and hematological malignancy or autoimmunity in the clinical setting. This review explores SID and PID crossovers and discusses challenges to diagnosis and treatment strategies. The case of an immunodeficient patient with follicular lymphoma treated with rituximab illustrates how SID in the setting of hematological cancer can mask an underlying PID, and highlights the importance of screening such patients. The risk of hematological cancer is increased in PID: for example, lymphomas in PID may be driven by infections such as Epstein-Barr virus, and germline mutations associated with PID are enriched among patients with diffuse large B-cell lymphoma. Clues suggesting an increased risk of hematological malignancy in patients with common variable immune deficiency (CVID) are provided, as well as pointers for distinguishing PID versus SID in lymphoma patients. Two cases of patients with autoimmune disorders illustrate how an apparent rituximab-induced antibody deficiency can be connected to an underlying PID. We highlight that PID is increasingly recognized among patients with autoimmune cytopenias, and provide guidance on how to identify PID and distinguish it from SID in such patients. Overall, healthcare professionals encountering patients with malignancy and/or autoimmunity who have post-treatment complications of antibody deficiencies or other immune abnormalities need to be aware of the possibility of PID or SID and how to differentiate them.
Collapse
Affiliation(s)
- Mark Ballow
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital Clínico San Carlos, Instituto de Medicina del Laboratorio (IML), Complutense University of Madrid, Madrid, Spain
| | - Jolan E. Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Danandeh K, Jabbari P, Rayzan E, Zoghi S, Shahkaramic S, Heredia RJ, Krolo A, Shamsian BS, Boztug K, Rezaei N. Novel NFkB mutation in a case of lymphoproliferative disorder case report. Endocr Metab Immune Disord Drug Targets 2022; 22:1040-1046. [PMID: 35392793 DOI: 10.2174/1871530322666220407091356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lymphoproliferative disorders include a heterogeneous list of disorders that commonly involve dysregulation of lymphocyte proliferation resulting in lymphadenopathy and bone marrow infiltration. These disorders have various presentations, most notably autoimmune manifestations, organomegaly, lymphadenopathy, dysgammaglobulinemia, and increased risk of chronic infections. CASE PRESENTATION A young boy presented with symptoms overlapping different lymphoproliferative disorders including episodes of chronic respiratory tract infections, dysgammaglobulinemia, lymphadenopathy associated with splenomegaly as well as skin rashes. Genetic studies revealed multiple heterozygous variants including a novel mutation in NFκB1 gene. CONCLUSION This novel mutation can reveal new aspects in the pathogenesis of lymphoproliferative disorders and propose new treatments for them.
Collapse
Affiliation(s)
- Khashayar Danandeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Jabbari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Rayzan
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sepideh Shahkaramic
- Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bibi Shahin Shamsian
- Department of Pediatric Hematology Oncology, Mofid Children\'s Hospital, Tehran, Iran
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Gao YL, Yao Y, Zhang X, Chen F, Meng XL, Chen XS, Wang CL, Liu YC, Tian X, Shou ST, Chai YF. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Front Immunol 2022; 13:829210. [PMID: 35281010 PMCID: PMC8914284 DOI: 10.3389/fimmu.2022.829210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a syndrome characterized by life-threatening organ dysfunction caused by the dysregulated host response to an infection. Sepsis, especially septic shock and multiple organ dysfunction is a medical emergency associated with high morbidity, high mortality, and prolonged after-effects. Over the past 20 years, regulatory T cells (Tregs) have been a key topic of focus in all stages of sepsis research. Tregs play a controversial role in sepsis based on their heterogeneous characteristics, complex organ/tissue-specific patterns in the host, the multi-dimensional heterogeneous syndrome of sepsis, the different types of pathogenic microbiology, and even different types of laboratory research models and clinical research methods. In the context of sepsis, Tregs may be considered both angels and demons. We propose that the symptoms and signs of sepsis can be attenuated by regulating Tregs. This review summarizes the controversial roles and Treg checkpoints in sepsis.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| | - Ying Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People’s Hospital of Shandong Province, Rizhao, China
| | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang-long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin-sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao-lan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| |
Collapse
|
21
|
Yao J, Gu H, Mou W, Chen Z, Ma J, Ma H, Li N, Zhang R, Wang T, Jiang J, Wu R. Various phenotypes of LRBA gene with compound heterozygous variation: A case series report of pediatric cytopenia patients. Int J Immunopathol Pharmacol 2022; 36:3946320221125591. [PMID: 36074705 PMCID: PMC9465590 DOI: 10.1177/03946320221125591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: LPS-responsive beige-like anchor (LRBA) deficiency is one of the most common
monogenic disorders causing common variable immunodeficiency (CVID) and
CVID-like disorders. However, the clinical spectrum of compound heterozygous
(CHZ) LRBA variation should be extended. In this study, we presented five
cases of compound heterozygous LRBA with various refractory cytopenias. Materials and Methods: Retrospective analysis of the clinical manifestations, management, and
outcomes of five cases (from five pedigrees) with LRBA gene
CHZ variants which initially manifested as single/multilineage immune
cytopenias was performed. Results: 1. Gene variations: All five patients inherited the compound heterozygous
LRBA variations from their parents which were thought to be pathogenic.
BEACH, DUF4704, and LamG were the main affected domains of LRBA gene in this
case series. 2. Immune dysregulation of clinic: (1) Hypogammaglobulinemia
were recorded in four patients, and the proportion of Treg was decreased in
two patients. Only one patient had been with increased TCRαβ+CD4/CD8
double-negative T cells (DNT). (2) Lymphoproliferative manifestations were
seen in three patients. (3) All five patients were complained with
cytopenia, although they showed different clinical manifestations. None of
the parents was asymptomatic. (4) Other immune disorders: P5 also had
relapsed infections and autoimmune endocrinopathy. 3. Management and
outcomes: P1 and P5 responded well to immunomodulatory therapy and P3 was
effectively treated with hemophagocytic lymphohistiocytosis (HLH) first-line
regimen chemotherapy. P4 showed no responses to steroids and IVIG. However,
TPO-R agonist was effective. Conclusion: Unlike homozygous mutations, compound heterozygous LRBA variation should
always be kept in mind for the various phenotypes and different treatment
responses.
Collapse
Affiliation(s)
- Jiafeng Yao
- Hematology Center, National Center for Children`s Health, 117984Beijing Children`s Hospital, Capital Medical University, Beijing, China
| | - Hao Gu
- Hematologic Disease Laboratory, National Center for Children's Health, 117984Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, National Center for Children's Health, 117984Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhenping Chen
- Laboratory of Tumor Immunology, National Center for Children's Health, 117984Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie Ma
- Hematology Center, National Center for Children`s Health, 117984Beijing Children`s Hospital, Capital Medical University, Beijing, China
| | - Honghao Ma
- Hematology Center, National Center for Children`s Health, 117984Beijing Children`s Hospital, Capital Medical University, Beijing, China
| | - Nan Li
- Hematology Center, National Center for Children`s Health, 117984Beijing Children`s Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Hematology Center, National Center for Children`s Health, 117984Beijing Children`s Hospital, Capital Medical University, Beijing, China
| | - Tianyou Wang
- Hematologic Disease Laboratory, National Center for Children's Health, 117984Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jin Jiang
- Hematologic Disease Laboratory, National Center for Children's Health, 117984Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Runhui Wu
- Hematology Center, National Center for Children`s Health, 117984Beijing Children`s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Salami F, Shariati S, Rasouli SE, Delavari S, Tavakol M, Sadri H, Asghari B, Yazdani R, Rezaei N, Abolhassani H, Azizi G. The Effects of Stimulation with PMA/Ionomycin on CD4+ T cell Proliferation and Surface CD4 Molecule Modulation of Patients with LRBA Deficiency and CVID with the Unsolved Genetic Defect. Endocr Metab Immune Disord Drug Targets 2021; 22:539-544. [PMID: 34886783 DOI: 10.2174/1871530321666211209162834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiencies. LPS-responsive beige-like anchor protein (LRBA) deficiency is a combined immunodeficiency characterized by a CVID-like phenotype. Affected patients by LRBA and CVID present a wide range of clinical manifestations, including hypogammaglobulinemia, recurrent infections, autoimmunity, as well as T cell abnormality. METHODS The study population comprised of patients with CVID (n=10), LRBA deficiency (n=11), and healthy controls (n=12). CD4+ T cell frequency and CD4 MFI (mean fluorescence intensity) were evaluated using flow cytometry before and after stimulation with PMA/ION. RESULTS The frequencies of CD4+ T cells were significantly lower in patients with LRBA deficiency than in HCs before and after treatment. In the unstimulated state, the CD4+ T cells frequency in CVID patients was significantly lower than in HCs. There were no statistically significant differences between patients and healthy individuals in CD4+ T cell proliferation. Compared to HCs, LRBA and CVID patients showed a lower CD4 MFI in unstimulated conditions. Furthermore, CD4 MFI decreased in both patients and the control group following activation. CONCLUSION Despite the reported decrease in CD4+ T cell frequency in patients with CVID and LRBA deficiency, our findings demonstrated that their CD4+ T cells have a normal proliferative response to stimuli similar to healthy individuals.
Collapse
Affiliation(s)
- Fereshte Salami
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran. Iran
| | - Sahar Shariati
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran. Iran
| | - Seyed Erfan Rasouli
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj. Iran
| | - Samaneh Delavari
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran. Iran
| | - Marziyeh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj. Iran
| | - Homa Sadri
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj. Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan. Iran
| | - Reza Yazdani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran. Iran
| | - Nima Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran. Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm. Sweden
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj. Iran
| |
Collapse
|
23
|
Hafezi N, Zaki-Dizaji M, Nirouei M, Asadi G, Sharifinejad N, Jamee M, Erfan Rasouli S, Hamedifar H, Sabzevari A, Chavoshzadeh Z, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Clinical, immunological, and genetic features in 780 patients with autoimmune lymphoproliferative syndrome (ALPS) and ALPS-like diseases: A systematic review. Pediatr Allergy Immunol 2021; 32:1519-1532. [PMID: 33963613 DOI: 10.1111/pai.13535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Autoimmune lymphoproliferative syndrome (ALPS) is a group of genetic disorders characterized by early-onset lymphoproliferation, autoimmune cytopenias, and susceptibility to lymphoma. The majority of ALPS patients carry heterozygous germline mutations in the TNFRSF6 gene. In this study, we conducted a systematic review of patients with ALPS and ALPS-like syndrome. METHODS The literature search was performed in Web of Science, Scopus, and PubMed databases to find eligible studies. Additionally, the reference list of all included papers was hand-searched for additional studies. Demographic, clinical, immunological, and molecular data were extracted and compared between the ALPS and ALPS-like syndrome. RESULTS Totally, 720 patients with ALPS (532 genetically determined and 189 genetically undetermined ALPS) and 59 cases with ALPS-like phenotype due to mutations in genes other than ALPS genes were assessed. In both ALPS and ALPS-like patients, splenomegaly was the most common clinical presentation followed by autoimmune cytopenias and lymphadenopathy. Among other clinical manifestations, respiratory tract infections were significantly higher in ALPS-like patients than ALPS. The immunological analysis showed a lower serum level of IgA, IgG, and lymphocyte count in ALPS-like patients compared to ALPS. Most (85%) of the ALPS and ALPS-like cases with determined genetic defects carry mutations in the FAS gene. About one-third of patients received immunosuppressive therapy with conventional or targeted immunotherapy agents. A small fraction of patients (3.3%) received hematopoietic stem cell transplantation with successful engraftment, and all except two patients survived after transplantation. CONCLUSION Our results showed that the FAS gene with 85% frequency is the main etiological cause of genetically diagnosed patients with ALPS phenotype; therefore, the genetic defect of the majority of suspected ALPS patients could be confirmed by mutation analysis of FAS gene.
Collapse
Affiliation(s)
- Nasim Hafezi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Matineh Nirouei
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN, Alborz University of Medical Sciences, Karaj, Iran
| | - Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Erfan Rasouli
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN, Alborz University of Medical Sciences, Karaj, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of medical sciences, Karaj, Iran.,CinnaGen Research and production Co, Alborz, Iran
| | - Araz Sabzevari
- CinnaGen Medical Biotechnology Research Center, Alborz University of medical sciences, Karaj, Iran.,Orchid pharmed company, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Rais A, Mekki N, Fedhila F, Alosaimi MF, Ben Khaled M, Zameli A, Agrebi N, Sellami MK, Geha R, Ben-Mustapha I, Barbouche MR. Case Report: FOXP3 Mutation in a Patient Presenting With ALPS. Front Immunol 2021; 12:692107. [PMID: 34531853 PMCID: PMC8438314 DOI: 10.3389/fimmu.2021.692107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
ALPS and IPEX are two well-characterized inborn errors of immunity with immune dysregulation, considered as two master models of monogenic auto-immune diseases. Thus, with autoimmunity as their primary clinical manifestation, these two entities may show clinical overlap. Traditionally, immunological biomarkers are used to establish an accurate differential diagnosis. Herein, we describe a patient who presented with clinical features and biomarkers fulfilling the diagnostic criteria of ALPS. Severe apoptotic defect was also shown in the patient's cell lines and PHA-activated peripheral blood lymphocytes. Sanger sequencing of the FAS gene did not reveal any causal mutation. NGS screening revealed a novel deleterious variant located in the N terminal repressor domain of FOXP3 but no mutations in the FAS pathway-related genes. TEMRA cells (terminally differentiated effector memory cells re-expressing CD45RA) and PD1 expression were increased arguing in favor of T-cell exhaustion, which could be induced by unrestrained activation of T effector cells because of Treg deficiency. Moreover, defective FOXP3 observed in the patient could intrinsically induce increased proliferation and resistance to apoptosis in T effector cells. This observation expands the spectrum of FOXP3 deficiency and underscores the role of NGS in detecting mutations that induce overlapping phenotypes among inborn errors of immunity with immune dysregulation. In addition, these findings suggest a potential link between FOXP3 and FAS pathways.
Collapse
Affiliation(s)
- Afef Rais
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Faten Fedhila
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Department of Pediatrics A, Children's Hospital, Tunis, Tunisia
| | | | - Monia Ben Khaled
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Pediatric Immuno-Hematology unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Amal Zameli
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Nourhen Agrebi
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Maryam Kallel Sellami
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia.,Department of Immunology, La Rabta University Hospital, Tunis, Tunisia
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
25
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
26
|
Tang WJ, Hu WH, Huang Y, Wu BB, Peng XM, Zhai XW, Qian XW, Ye ZQ, Xia HJ, Wu J, Shi JR. Potential protein–phenotype correlation in three lipopolysaccharide-responsive beige-like anchor protein-deficient patients. World J Clin Cases 2021; 9:5873-5888. [PMID: 34368306 PMCID: PMC8316938 DOI: 10.12998/wjcc.v9.i21.5873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA) deficiency have a variety of clinical symptoms, but there is no apparent genotype–phenotype correlation, and patients carrying the same mutations may have different phenotypes. Therefore, it is not easy for doctors to make a decision regarding hematopoietic stem cell transplantation (HSCT) for LRBA-deficient patients. We hypothesized that there may be a protein–phenotype correlation to indicate HSCT for LRBA-deficient patients.
AIM To report on three Chinese LRBA-deficient patients and determine the correlation between residual protein expression and disease phenotypes.
METHODS Clinical data of three Chinese LRBA-deficient patients were collected, and protein levels were detected by Western blot analysis. In addition, LRBA mutation information of another 83 previously reported patients was summarized.
RESULTS All the major clinical findings indicated enteropathy, but patients 1 and 3 presented with more severe symptoms than patient 2. Endoscopy and histology indicated nonspecific colitis for patients 1 and 3 but Crohn's disease-like colitis for patient 2. Compound heterozygous mutations in LRBA were found in patient 1, and homozygous mutations in LRBA were found in patient 2 and patient 3. Only patient 2 responded well to traditional immunosuppressive treatment. Residual expression of the LRBA protein in patients 1 and 3 was very low, but in patient 2, a more than 0.5-fold in expression of the LRBA protein was found compared to that in the control. After HSCT, patient 1 had increased LRBA protein expression. We summarized the genetic information of 86 patients, and the mutations in patients 1 and 3 were novel mutations.
CONCLUSION We described three Chinese LRBA-deficient patients, two of whom carried novel mutations. These patients had no genotype-phenotype correlations, but their residual LRBA protein expression might be associated with disease outcome and could be an indicator for HSCT.
Collapse
Affiliation(s)
- Wen-Juan Tang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wen-Hui Hu
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Bing-Bing Wu
- The Molecular Genetic Diagnosis Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Min Peng
- The Molecular Genetic Diagnosis Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Wen Zhai
- Department of Hematology Oncology, Children's Hospital of Fudan university, National Children's Medical Center, Shanghai 201102, China
| | - Xiao-Wen Qian
- Department of Hematology Oncology, Children's Hospital of Fudan university, National Children's Medical Center, Shanghai 201102, China
| | - Zi-Qing Ye
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hai-Jiao Xia
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jie Wu
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jie-Ru Shi
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
27
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Ramirez NJ, Posadas-Cantera S, Caballero-Oteyza A, Camacho-Ordonez N, Grimbacher B. There is no gene for CVID - novel monogenetic causes for primary antibody deficiency. Curr Opin Immunol 2021; 72:176-185. [PMID: 34153571 DOI: 10.1016/j.coi.2021.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
'There is no gene for fate' (citation from the movie 'GATTACA') - and there is no gene for CVID. Common Variable ImmunoDeficiency (CVID) is the most prevalent primary immunodeficiency in humans. CVID is characterized by an increased susceptibility to infections, hypogammaglobulinemia, reduced switched memory B cell numbers in peripheral blood and a defective response to vaccination, often complicated by autoimmune and autoinflammatory conditions. However, as soon as a genetic diagnosis has been made in a patient with CVID, the diagnosis must be changed to the respective genetic cause (www.esid.org). Therefore, there are genetic causes for primary antibody deficiencies, but not for CVID. Primary antibody deficiencies (PADs) are a heterogeneous group of disorders. Several attempts have been made to gain further insights into the pathogenesis of PAD, using unbiased approaches such as whole exome or genome sequencing. Today, in just about 35% of cases with PAD, monogenic mutations (including those in the gene TNFRSF13B) can be identified in a set of 68 genes [1•]. These mutations occur either sporadically or are inherited and do explain an often complex phenotype. In our review, we not only discuss gene defects identified in PAD patients previously diagnosed with CVID and/or CVID-like disorders such as IKZF1, CTNNBL1, TNFSF13 and BACH2, but also genetic defects which were initially described in non-CVID patients but have later also been observed in patients with PAD such as PLCG2, PIK3CG, PMS2, RNF31, KMT2D, STAT3. We also included interesting genetic defects in which the pathophysiology suggests a close relation to other known defects of the adaptive immune response, such as DEF6, SAMD9 and SAMD9L, and hence a CVID-like phenotype may be observed in the future. However, alternative mechanisms most likely add to the development of an antibody-deficient phenotype, such as polygenic origins, epigenetic changes, and/or environmental factors.
Collapse
Affiliation(s)
- Neftali J Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Integrated Research Training Group (IRTG) Medical Epigenetics, Collaborative Research Centre 992, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Cagdas D, Halacli SO, Tan C, Esenboğa S, Karaatmaca B, Cetinkaya PG, Balcı-Hayta B, Ayhan A, Uner A, Orhan D, Boztug K, Özen S, Topaloğlu R, Sanal O, Tezcan İ. Diversity in STK4 Deficiency and Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3752-3766.e4. [PMID: 34146746 DOI: 10.1016/j.jaip.2021.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Serine-threonine kinase-4 (STK4) deficiency is an autosomal recessive (AR) combined immunodeficiency (CID). OBJECTIVE We aimed to define characteristic clinical and laboratory features to aid the differential diagnosis and determine the most suitable therapy. METHODS In addition to nine patients diagnosed, we reviewed 15 patients from medical literature. We compared B lymphocyte subgroups of our cohort with age-matched healthy controls. RESULTS In our cohort, the median age at symptom onset and age of diagnosis are 6years-8months (mo)(6-248mo) and 7years-5mo (6-260mo), respectively. The main clinical findings were infections (9/9), autoimmune/inflammatory diseases (7/9), and atopy (4/9). CD4 lymphopenia (9/9), lymphopenia (7/9), intermittent eosinophilia (4/9), transient neutropenia (3/9), low immunoglobulin (Ig) M (4/9), and high IgE (4/9) were common. Decreased recent thymic emigrants, naive and central memory T cells, albeit increased effector memory T cells were present. The increase in plasmablasts (p=0.003) and the decrease in switched memory B cells (p=0.022) were significant. Out of a total of 24 patients, cutaneous viral infections (n=20), recurrent pneumonia (n=18), Epstein Barr Virus (EBV)-associated lymphoproliferation (n=11), atopic dermatitis (n=10), autoimmune cytopenia (n=7), and lymphoma (n=6) were frequently seen. Lymphopenia, CD4 lymphopenia, high Ig G, A, and E were the most common laboratory characteristics. CONCLUSION The differential diagnosis with AR-hyperimmunoglobulin E syndrome is crucial as atopy and CD4 lymphopenia are prominent in both diseases. Immunoglobulins and antibacterial/antiviral prophylaxis are the mainstays of treatment. Clinicians may use immunomodulatory therapies during inflammatory/autoimmune complications. However, more data is needed to recommend hematopoietic stem cell transplantation (HSCT) as a safe therapy.
Collapse
Affiliation(s)
- Deniz Cagdas
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology.
| | - Sevil Oskay Halacli
- Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - Cagman Tan
- Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - Saliha Esenboğa
- Hacettepe University Medical School, Department of Pediatric Immunology
| | - Betül Karaatmaca
- Hacettepe University Medical School, Department of Pediatric Immunology
| | | | | | - Arzu Ayhan
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Aysegul Uner
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Diclehan Orhan
- Hacettepe University Medical School, Department of Pediatric Pathology
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | - Seza Özen
- Hacettepe University Medical School, Department of Pediatric Rheumatology
| | - Rezan Topaloğlu
- Hacettepe University Medical School, Department of Pediatric Nephrology
| | - Ozden Sanal
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| | - İlhan Tezcan
- Hacettepe University Medical School, Department of Pediatric Immunology; Hacettepe University Medical School, Institute of Child Health, Department of Pediatric Immunology
| |
Collapse
|
30
|
Both T, Dalm VASH, Richardson SA, van Schie N, van den Broek LM, de Vries AC, van Hagen PM, Rombach SM. Inflammatory bowel disease in primary immunodeficiency disorders is a heterogeneous clinical entity requiring an individualized treatment strategy: A systematic review. Autoimmun Rev 2021; 20:102872. [PMID: 34118459 DOI: 10.1016/j.autrev.2021.102872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To describe the prevalence, clinical presentation and current treatment regimens of inflammatory bowel disease (IBD) in patients with primary immunodeficiency disorders (PIDs). METHODS A systematic review was conducted. The following databases were searched: MEDLINE, Embase, Web of Science, the Cochrane Library and Google Scholar. RESULTS A total of 838 articles were identified, of which 36 were included in this review. The prevalence of IBD in PIDs ranges between 3.4% and 61.2%, depending on the underlying PID. Diarrhea and abdominal pain were reported in 64.3% and 52.4% of the patients, respectively. Colon ulceration was the most frequent finding on endoscopic evaluation, while cryptitis, granulomas, ulcerations and neutrophilic/lymphocytic infiltrates were the most frequently reported histopathological abnormalities. Described treatment regimens included oral corticosteroids and other oral immunosuppressive agents, including mesalazine, azathioprine and cyclosporin, leading to clinical improvement in the majority of patients. In case of treatment failure, biological therapies including TNF- α blocking agents, are considered. CONCLUSIONS The overall prevalence of IBD in patients with PID is high, but varies between different PIDs. Physicians should be aware of these complications and focus on characteristic symptoms to reduce diagnostic delay and delay in initiation of treatment. Treatment of IBD in PIDs depends on severity of symptoms and may differ between various PIDs based on distinct underlying pathogenesis. An individualized diagnostic and therapeutic approach is therefore warranted.
Collapse
Affiliation(s)
- Tim Both
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Savannah A Richardson
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Naïma van Schie
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Luuk M van den Broek
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saskia M Rombach
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Jamee M, Hosseinzadeh S, Sharifinejad N, Zaki-Dizaji M, Matloubi M, Hasani M, Baris S, Alsabbagh M, Lo B, Azizi G. Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review. Clin Exp Immunol 2021; 205:28-43. [PMID: 33788257 DOI: 10.1111/cei.13600] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) haploinsufficiency (CHAI) and lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency (LATAIE) are newly identified inborn errors of immunity with shared molecular pathomechanisms and clinical manifestations. In this review, we aimed to provide differential comparisons regarding demographic, clinical, immunological and molecular characteristics between these two similar conditions. A literature search was conducted in PubMed, Web of Science and Scopus databases and included studies were systematically evaluated. Overall, 434 (222 CHAI and 212 LATAIE) patients were found in 101 eligible studies. The CHAI patients were mainly reported from North America and western Europe, while LATAIE patients were predominantly from Asian countries. In CHAI, positive familial history (P < 0·001) and in LATAIE, consanguineous parents (P < 0·001) were more common. In CHAI patients the rates of granulomas (P < 0·001), malignancies (P = 0·001), atopy (P = 0·001), cutaneous disorders (P < 0·001) and neurological (P = 0·002) disorders were higher, while LATAIE patients were more commonly complicated with life-threatening infections (P = 0·002), pneumonia (P = 0·006), ear, nose and throat disorders (P < 0·001), organomegaly (P = 0·023), autoimmune enteropathy (P = 0·038) and growth failure (P < 0·001). Normal lymphocyte subsets and immunoglobulins except low serum levels of CD9+ B cells (14·0 versus 38·4%, P < 0·001), natural killer (NK) cells (21 versus 41·1%, P < 0·001), immunoglobulin (Ig)G (46·9 versus 41·1%, P = 0·291) and IgA (54·5 versus 44·7%, P = 0·076) were found in the majority of CHAI and LATAIE patients, respectively. The most frequent biological immunosuppressive agents prescribed for CHAI and LATAIE patients were rituximab and abatacept, respectively. Further investigations into the best conditioning and treatment regimens pre- and post-transplantation are required to improve the survival rate of transplanted CHAI and LATAIE patients.
Collapse
Affiliation(s)
- M Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Hosseinzadeh
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - N Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - M Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - M Matloubi
- Medical Immunology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - M Hasani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - S Baris
- Pediatric Allergy and Immunology, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Marmara University Hospital, Istanbul, Turkey
| | - M Alsabbagh
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - B Lo
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - G Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
32
|
Gámez-Díaz L, Grimbacher B. Immune checkpoint deficiencies and autoimmune lymphoproliferative syndromes. Biomed J 2021; 44:400-411. [PMID: 34384744 PMCID: PMC8514790 DOI: 10.1016/j.bj.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited non-malignant and non-infectious lymphoproliferative syndrome caused by mutations in genes affecting the extrinsic apoptotic pathway (FAS, FASL, CASP10). The resulting FAS-mediated apoptosis defect accounts for the expansion and accumulation of autoreactive (double-negative) T cells leading to cytopenias, splenomegaly, lymphadenopathy, autoimmune disorders, and risk of lymphoma. However, there are other monogenetic disorders known as ALPS-like syndromes that can be clinically similar to ALPS but are genetically and biologically different, such as observed in patients with immune checkpoint deficiencies, particularly cytotoxic T-lymphocyte antigen 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive beige-like anchor protein LRBA deficiency. CTLA-4 insufficiency is caused by heterozygous mutations in CTLA-4, an essential negative immune regulator that is constitutively expressed on regulatory T (Treg) cells. Mutations in CTLA-4 affect CTLA-4 binding to CD80-CD86 costimulatory molecules, CTLA-4 homodimerization, or CTLA-4 intracellular vesicle trafficking upon cell activation. Abnormal CTLA-4 trafficking is also observed in patients with LRBA deficiency, a syndrome caused by biallelic mutations in LRBA that abolishes the LRBA protein expression. Both immune checkpoint deficiencies are biologically characterized by low levels of CTLA-4 protein on the cell surface of Tregs, accounting for the autoimmune manifestations observed in CTLA4-insufficient and LRBA-deficient patients. In addition, both immune checkpoint deficiencies present with an overlapping but heterogeneous clinical picture despite the difference in inheritance and penetrance. In this review, we describe the most prominent clinical features of ALPS, CTLA-4 insufficiency and LRBA deficiency, emphasizing their corresponding biological mechanisms. We also provide some clinical and laboratory approaches to diagnose these three rare immune disorders, together with therapeutic strategies that have worked best at improving prognosis and quality life of patients.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
33
|
Uhlig HH, Charbit-Henrion F, Kotlarz D, Shouval DS, Schwerd T, Strisciuglio C, de Ridder L, van Limbergen J, Macchi M, Snapper SB, Ruemmele FM, Wilson DC, Travis SP, Griffiths AM, Turner D, Klein C, Muise AM, Russell RK. Clinical Genomics for the Diagnosis of Monogenic Forms of Inflammatory Bowel Disease: A Position Paper From the Paediatric IBD Porto Group of European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2021; 72:456-473. [PMID: 33346580 PMCID: PMC8221730 DOI: 10.1097/mpg.0000000000003017] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is important to identify patients with monogenic IBD as management may differ from classical IBD. In this position statement we formulate recommendations for the use of genomics in evaluating potential monogenic causes of IBD across age groups. METHODS The consensus included paediatric IBD specialists from the Paediatric IBD Porto group of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and specialists from several monogenic IBD research consortia. We defined key topics and performed a systematic literature review to cover indications, technologies (targeted panel, exome and genome sequencing), gene panel setup, cost-effectiveness of genetic screening, and requirements for the clinical care setting. We developed recommendations that were voted upon by all authors and Porto group members (32 voting specialists). RESULTS We recommend next-generation DNA-sequencing technologies to diagnose monogenic causes of IBD in routine clinical practice embedded in a setting of multidisciplinary patient care. Routine genetic screening is not recommended for all IBD patients. Genetic testing should be considered depending on age of IBD-onset (infantile IBD, very early-onset IBD, paediatric or young adult IBD), and further criteria, such as family history, relevant comorbidities, and extraintestinal manifestations. Genetic testing is also recommended in advance of hematopoietic stem cell transplantation. We developed a diagnostic algorithm that includes a gene panel of 75 monogenic IBD genes. Considerations are provided also for low resource countries. CONCLUSIONS Genomic technologies should be considered an integral part of patient care to investigate patients at risk for monogenic forms of IBD.
Collapse
Affiliation(s)
- Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Fabienne Charbit-Henrion
- Université de Paris, INSERM UMR 1163 Immunité Intestinale, APHP, Hôpital Necker Enfants Malades, Service de Génétique moléculaire, Paris, France
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dror S. Shouval
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Johan van Limbergen
- Amsterdam University Medical Centres, Emma Children’s Hospital, The Netherlands and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marina Macchi
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M. Ruemmele
- Université de Paris, APHP, Hôpital Necker Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | - David C. Wilson
- Child Life and Health, University of Edinburgh, Department of Paediatric Gastroenterology, The Royal Hospital for Sick Children, Edinburgh
| | - Simon P.L. Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Anne M. Griffiths
- The Hospital for Sick Children, University of Toronto
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
| | - Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Israel
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Aleixo M. Muise
- The Hospital for Sick Children, University of Toronto
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
| | - Richard K. Russell
- Child Life and Health, University of Edinburgh, Department of Paediatric Gastroenterology, The Royal Hospital for Sick Children, Edinburgh
| |
Collapse
|
34
|
Boz V, Valencic E, Girardelli M, Pin A, Gàmez-Diaz L, Tommasini A, Lega S, Bramuzzo M. Case Report: Refractory Autoimmune Gastritis Responsive to Abatacept in LRBA Deficiency. Front Immunol 2021; 12:619246. [PMID: 33717114 PMCID: PMC7952427 DOI: 10.3389/fimmu.2021.619246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Primary immunodeficiency (PID) with immune dysregulation may present with early onset gastrointestinal autoimmune disorders. When gastrointestinal autoimmunity is associated with multiple extraintestinal immune system dysfunction the diagnosis of PID is straightforward. However, with the advent of next generation sequencing technologies, genetic defects in PID genes have been increasingly recognized even when a single or no extraintestinal signs of immune dysregulation are present. A genetic diagnosis is especially important considering the expanding armamentarium of therapies designed to inhibit specific molecular pathways. We describe a boy with early-onset severe, refractory autoimmune gastritis and biallelic mutations in the LRBA gene causing a premature STOP-codon who was successfully treated with CTLA4-Ig, abatacept, with long term clinical and endoscopic remission. The case underscores the importance to consider a monogenetic defect in early onset autoimmune disorders, since the availability of targeted treatments may significantly improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Laura Gàmez-Diaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Sara Lega
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Matteo Bramuzzo
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
35
|
Szczawińska-Popłonyk A, Grześk E, Schwartzmann E, Materna-Kiryluk A, Małdyk J. Case Report: Autoimmune Lymphoproliferative Syndrome vs. Chronic Active Epstein-Barr Virus Infection in Children: A Diagnostic Challenge. Front Pediatr 2021; 9:798959. [PMID: 35036396 PMCID: PMC8757380 DOI: 10.3389/fped.2021.798959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a disorder characterized by a disruption of the lymphocyte apoptosis pathway, self-tolerance, and immune system homeostasis. Defects in genes within the first apoptosis signal (FAS)-mediated pathway cause an expansion of autoreactive double-negative T cells leading to non-malignant lymphoproliferation, autoimmune disorders, and an increased risk of lymphoma. The aim of the study was to show the diagnostic dilemmas and difficulties in the process of recognizing ALPS in the light of chronic active Epstein-Barr virus (CAEBV) infection. Clinical, immunological, flow cytometric, biomarkers, and molecular genetic approaches of a pediatric patient diagnosed with FAS-ALPS and CAEBV are presented. With the ever-expanding spectrum of molecular pathways associated with autoimmune lymphoproliferative disorders, multiple genetic defects of FAS-mediated apoptosis, primary immunodeficiencies with immune dysregulation, malignant and autoimmune disorders, and infections are included in the differential diagnosis. Further studies are needed to address the issue of the inflammatory and neoplastic role of CAEBV as a triggering and disease-modifying factor in ALPS.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Elzbieta Grześk
- Department of Pediatrics, Hematology and Oncology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Eyal Schwartzmann
- English Division, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadwiga Małdyk
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Sharifinejad N, Azizi G, Behniafard N, Zaki-Dizaji M, Jamee M, Yazdani R, Abolhassani H, Aghamohammadi A. Protein Kinase C-Delta Defect in Autoimmune Lymphoproliferative Syndrome-Like Disease: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2020; 51:331-342. [PMID: 33047643 DOI: 10.1080/08820139.2020.1829638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Protein kinase C is a family of serine/threonine kinases that play a key role in the adaptive immune cell signaling, as well as regulation of growth, apoptosis, and differentiation of a variety of cell types. Patients homozygous for a null mutation of the Protein Kinase C Delta (PRKCD) gene, present clinical feature of immune dysregulation with susceptibility to Epstein-Barr virus infection. However, a minority of patients present the autoimmune lymphoproliferative syndrome (ALPS). METHODS The data were collected by direct interview and examining the patient's clinical record. Whole-exome sequencing was performed to detect the underlying genetic mutation in the patient. We also conducted electronic searches for ALPS-like reported patients in PubMed, Web of Science, and Scopus databases. RESULTS In this study, we reported a 13-year-old boy who presented with autoimmunity, lymphoproliferation, recurrent pneumonia, cardiomyopathy, and dermatological manifestations. An elevation of double-negative T cells, CD8+ T cells, serum IgG level, as well as a reduction in NK cells, was observed in the patient. A homozygous frameshift mutation (c.1293_1294insA) in exon 13 of the PRKCD gene was confirmed. The literature search showed 39 ALPS-like patients with monogenic defects which only six (15.3%) of them were due to PRKCD genes. CONCLUSION PRKCD should be considered in the context of ALPS clinical manifestations with prominent dermatological involvements.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Refractory Autoimmune Cytopenia in a Young Boy with a Novel LRBA Mutation Successfully Managed with Sirolimus. J Clin Immunol 2020; 40:1184-1186. [PMID: 32915433 DOI: 10.1007/s10875-020-00835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
|
38
|
Vardi I, Chermesh I, Werner L, Barel O, Freund T, McCourt C, Fisher Y, Pinsker M, Javasky E, Weiss B, Rechavi G, Hagin D, Snapper SB, Somech R, Konnikova L, Shouval DS. Monogenic Inflammatory Bowel Disease: It's Never Too Late to Make a Diagnosis. Front Immunol 2020; 11:1775. [PMID: 33013830 PMCID: PMC7509434 DOI: 10.3389/fimmu.2020.01775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background: More than 50 different monogenic disorders have been identified as directly causing inflammatory bowel diseases, typically manifesting in the first years of life. We present the clinical course and immunological work-up of an adult patient who presented in adolescent years with an atypical gastrointestinal phenotype and was diagnosed more than two decades later with a monogenic disorder with important therapeutic implications. Methods: Whole exome sequencing was performed in a 37-years-old patient with a history of diarrhea since adolescence. Sanger sequencing was used to validate the suspected variant. Mass cytometry (CyTOF) and flow cytometry were conducted on peripheral blood mononuclear cells for deep immunophenotyping. Next-generation sequencing of the TCRB and IgH was performed for global immune repertoire analysis of circulating lymphocytes. Results: We identified a novel deleterious c.1455C>A (p.Y485X) mutation in LRBA. CyTOF studies demonstrated significant changes in immune landscape in the LRBA-deficient patient, including an increase in myeloid derived suppressor cells and double-negative T cells, decreased B cells, low ratio of naïve:memory T cells, and reduced capacity of T cells to secrete various cytokines following stimulation, including tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In addition, this patient exhibited low frequency of regulatory T cells, with a reduction in their CTLA4 expression and interleukin (IL)-10 secretion. Finally, we show marked oligoclonal expansion of specific B- and T-cell clones in the peripheral blood of the LRBA-deficient patient. Conclusions: LRBA deficiency is characterized by marked immunological changes in innate and adaptive immune cells. This case highlights the importance of advanced genetic studies in patients with a unique phenotype, regardless of their age at presentation.
Collapse
Affiliation(s)
- Iddo Vardi
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated With Technion-Israel Institute of Technology, Haifa, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Tal Freund
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Collin McCourt
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Yael Fisher
- Institute of Pathology, Rambam Health Care Campus, Affiliated With Technion-Israel Institute of Technology, Haifa, Israel
| | - Marina Pinsker
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Elisheva Javasky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Pediatric Department Ward A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Maglione PJ. Chronic Lung Disease in Primary Antibody Deficiency: Diagnosis and Management. Immunol Allergy Clin North Am 2020; 40:437-459. [PMID: 32654691 DOI: 10.1016/j.iac.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic lung disease is a complication of primary antibody deficiency (PAD) associated with significant morbidity and mortality. Manifestations of lung disease in PAD are numerous. Thoughtful application of diagnostic approaches is imperative to accurately identify the form of disease. Much of the treatment used is adapted from immunocompetent populations. Recent genomic and translational medicine advances have led to specific treatments. As chronic lung disease has continued to affect patients with PAD, we hope that continued advancements in our understanding of pulmonary pathology will ultimately lead to effective methods that alleviate impact on quality of life and survival.
Collapse
Affiliation(s)
- Paul J Maglione
- Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, R304, Boston, MA 02118, USA.
| |
Collapse
|
40
|
Pecoraro A, Crescenzi L, Varricchi G, Marone G, Spadaro G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front Immunol 2020; 11:338. [PMID: 32184784 PMCID: PMC7059194 DOI: 10.3389/fimmu.2020.00338] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent primary immunodeficiency (PID) in adulthood and is characterized by severe reduction of immunoglobulin serum levels and impaired antibody production in response to vaccines and pathogens. Beyond the susceptibility to infections, CVID encompasses a wide spectrum of clinical manifestations related to a complex immune dysregulation that also affects liver. Although about 50% CVID patients present persistently deranged liver function, burden, and nature of liver involvement have not been systematically investigated in most cohort studies published in the last decades. Therefore, the prevalence of liver disease in CVID widely varies depending on the study design and the sampling criteria. This review seeks to summarize the evidence about the most relevant causes of liver involvement in CVID, including nodular regenerative hyperplasia (NRH), infections and malignancies. We also describe the clinical features of liver disease in some monogenic forms of PID included in the clinical spectrum of CVID as ICOS, NFKB1, NFKB2, CTLA-4, PI3Kδ pathway, ADA2, and IL21-R genetic defects. Finally, we discuss the clinical applications of the various diagnostic tools and the possible therapeutic approaches for the management of liver involvement in the context of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ludovica Crescenzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
41
|
Ramzi N, Jamee M, Bakhtiyari M, Rafiemanesh H, Zainaldain H, Tavakol M, Rezaei A, Kalvandi M, Zian Z, Mohammadi H, Jadidi-Niaragh F, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Bronchiectasis in common variable immunodeficiency: A systematic review and meta-analysis. Pediatr Pulmonol 2020; 55:292-299. [PMID: 31833673 DOI: 10.1002/ppul.24599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency disorder characterized by infectious and noninfectious complications. Bronchiectasis continues to be a common respiratory problem and therapeutic challenge in CVID. The aim of this study is to estimate the overall prevalence of bronchiectasis and its associated phenotype in patients with CVID. METHODS A systematic literature search was performed in Web of Science, PubMed, and Scopus from the earliest available date to February 2019 with standard keywords. All pooled analyses of bronchiectasis prevalence and the corresponding 95% confidence intervals (CIs) were based on random-effects models. RESULTS Fifty-five studies comprising 8535 patients with CVID were included in the meta-analysis. Overall prevalence of bronchiectasis was 34% (95% CI: 30-38; I2 = 90.19%). CVID patients with bronchiectasis had significantly lower serum immunoglobulin A (IgA) and IgM levels at the time of diagnosis compared with those without bronchiectasis. Among the clinical features, the frequencies of splenomegaly, pneumonia, otitis media, and lymphocytic interstitial pneumonia were significantly higher in CVID patients with bronchiectasis compared with those without bronchiectasis, respectively. CONCLUSION A higher prevalence of bronchiectasis in patients with CVID should be managed by controlling recurrent and severe pneumonia episodes which are immune dysregulation since this complication is associated with poor prognosis in these patients.
Collapse
Affiliation(s)
- Nasim Ramzi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Zainaldain
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Amir Rezaei
- Department of Pediatrics, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Mustafa Kalvandi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
42
|
Nambu R, Muise AM. Advanced Understanding of Monogenic Inflammatory Bowel Disease. Front Pediatr 2020; 8:618918. [PMID: 33553075 PMCID: PMC7862769 DOI: 10.3389/fped.2020.618918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders that cause relapsing inflammation in the gastrointestinal tract and comprise three major subgroups of Crohn's disease (CD), ulcerative colitis (UC), and IBD-unclassified (IBDU). Recent advances in genomic technologies have furthered our understanding of IBD pathogenesis. It includes differentiation rare monogenic disorders exhibiting IBD and IBD-like inflammation (monogenic IBD) from patients with the common polygenic form of IBD. Several novel genes responsible for monogenic IBD have been elucidated, and the number of reports has increased due to advancements in molecular functional analysis. Identification of these pathogenic genetic mutations has helped in elucidating the details of the immune response associated with gastrointestinal inflammation and in providing individualized treatments for patients with severe IBD that is often unresponsive to conventional therapy. The majority of monogenic IBD studies have focused on young children diagnosed <6 years of age (very early-onset IBD); however, a recent study revealed high prevalence of monogenic IBD in older children aged >6 years of age as well. Meanwhile, although patients with monogenic IBD generally show co-morbidities and/or extraintestinal manifestation at the time of diagnosis, cases of IBD developing as the initial symptom with unremarkable prodromal symptoms have been reported. It is crucial that the physicians properly match genetic analytical data with clinical diagnosis and/or differential diagnosis. In this review, we summarize the essential clues that may physicians make a correct diagnosis of monogenic disease, including classification, prevalence and clinical phenotype based on available literatures.
Collapse
Affiliation(s)
- Ryusuke Nambu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,SickKids Inflammatory Bowel Disease Center, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan
| | - Aleixo M Muise
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,SickKids Inflammatory Bowel Disease Center, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics, Institute of Medical Science and Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Tesch VK, Abolhassani H, Shadur B, Zobel J, Mareika Y, Sharapova S, Karakoc-Aydiner E, Rivière JG, Garcia-Prat M, Moes N, Haerynck F, Gonzales-Granado LI, Santos Pérez JL, Mukhina A, Shcherbina A, Aghamohammadi A, Hammarström L, Dogu F, Haskologlu S, İkincioğulları AI, Köstel Bal S, Baris S, Kilic SS, Karaca NE, Kutukculer N, Girschick H, Kolios A, Keles S, Uygun V, Stepensky P, Worth A, van Montfrans JM, Peters AMJ, Meyts I, Adeli M, Marzollo A, Padem N, Khojah AM, Chavoshzadeh Z, Avbelj Stefanija M, Bakhtiar S, Florkin B, Meeths M, Gamez L, Grimbacher B, Seppänen MRJ, Lankester A, Gennery AR, Seidel MG. Long-term outcome of LRBA deficiency in 76 patients after various treatment modalities as evaluated by the immune deficiency and dysregulation activity (IDDA) score. J Allergy Clin Immunol 2019; 145:1452-1463. [PMID: 31887391 DOI: 10.1016/j.jaci.2019.12.896] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Recent findings strongly support hematopoietic stem cell transplantation (HSCT) in patients with severe presentation of LPS-responsive beige-like anchor protein (LRBA) deficiency, but long-term follow-up and survival data beyond previous patient reports or meta-reviews are scarce for those patients who do not receive a transplant. OBJECTIVE This international retrospective study was conducted to elucidate the longitudinal clinical course of patients with LRBA deficiency who do and do not receive a transplant. METHOD We assessed disease burden and treatment responses with a specially developed immune deficiency and dysregulation activity score, reflecting the sum and severity of organ involvement and infections, days of hospitalization, supportive care requirements, and performance indices. RESULTS Of 76 patients with LRBA deficiency from 29 centers (median follow-up, 10 years; range, 1-52), 24 underwent HSCT from 2005 to 2019. The overall survival rate after HSCT (median follow-up, 20 months) was 70.8% (17 of 24 patients); all deaths were due to nonspecific, early, transplant-related mortality. Currently, 82.7% of patients who did not receive a transplant (43 of 52; age range, 3-69 years) are alive. Of 17 HSCT survivors, 7 are in complete remission and 5 are in good partial remission without treatment (together, 12 of 17 [70.6%]). In contrast, only 5 of 43 patients who did not receive a transplant (11.6%) are without immunosuppression. Immune deficiency and dysregulation activity scores were significantly lower in patients who survived HSCT than in those receiving conventional treatment (P = .005) or in patients who received abatacept or sirolimus as compared with other therapies, and in patients with residual LRBA expression. Higher disease burden, longer duration before HSCT, and lung involvement were associated with poor outcome. CONCLUSION The lifelong disease activity, implying a need for immunosuppression and risk of malignancy, must be weighed against the risks of HSCT.
Collapse
Affiliation(s)
- Victoria Katharina Tesch
- Research Unit for Pediatric Hematology and Immunology, Medical University Graz, Graz, Austria; Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Bella Shadur
- Department of Bone Marrow Transplantation, Hadassah, Hebrew University Medical Centre, Jerusalem, Israel; Garvan Institute of Medical Research, Department of Immunology, Darlinghurst, Australia
| | - Joachim Zobel
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Yuliya Mareika
- Bone Marrow Transplantation Unit, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Svetlana Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Pediatric Immunology and Allergy Division, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Jeffrey Modell Foundation Excellence Center, Barcelona, Spain
| | - Nicolette Moes
- Department of Pediatric Gastroenterology, Antwerp University Hospital, Edegem, and Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Lab and Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Luis I Gonzales-Granado
- Immunodeficiencies Unit, Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain
| | - Juan Luis Santos Pérez
- Infectious Diseases and Immunodeficiencies Unit, Service of Pediatrics, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Anna Mukhina
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Aydan I İkincioğulları
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sevgi Köstel Bal
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Safa Baris
- Faculty of Medicine, Pediatric Immunology and Allergy Division, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Sara Sebnem Kilic
- Pediatric Immunology-Rheumatology, Medical Faculty Department of Pediatrics, Uludag University Bursa, Bursa, Turkey
| | - Neslihan Edeer Karaca
- Ege University Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - Necil Kutukculer
- Ege University Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - Hermann Girschick
- Children's Hospital, Vivantes Berlin Friedrichshain, Berlin, Germany
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sevgi Keles
- Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Vedat Uygun
- Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah, Hebrew University Medical Centre, Jerusalem, Israel
| | - Austen Worth
- Institute of Child Health, University College London, London, United Kingdom
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, UMC Utrecht, The Netherlands
| | - Anke M J Peters
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Freiburg, Germany
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, and the Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mehdi Adeli
- Sidra Medicine/Hamad Medical Corporation, Doha, Qatar
| | - Antonio Marzollo
- Pediatric Hematology-Oncology Unit, Department of Women's and Children's Health, Azienda Ospedaliera-University of Padova, Padova, Italy
| | - Nurcicek Padem
- Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Amer M Khojah
- Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Zahra Chavoshzadeh
- Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Magdalena Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Benoit Florkin
- Immuno-Hémato-Rhumatologie Pédiatrique, Service de Pédiatrie, CHR Citadelle, Liege, Belgium
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health and Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Laura Gamez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST-Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Mikko R J Seppänen
- Rare Diseases Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland; Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki, and HUS Helsinki University Hospital, Helsinki, Finland; Translational Immunology, Research Programs Unit and Clinicum, University of Helsinki, Helsinki, Finland
| | - Arjan Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Medical University Graz, Graz, Austria; Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria.
| | | |
Collapse
|
44
|
Ameratunga R, Lehnert K, Woon ST. All Patients With Common Variable Immunodeficiency Disorders (CVID) Should Be Routinely Offered Diagnostic Genetic Testing. Front Immunol 2019; 10:2678. [PMID: 31824486 PMCID: PMC6883368 DOI: 10.3389/fimmu.2019.02678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|