1
|
Urbański B, Urbańska Z, Bąbol-Pokora K, Subocz E, Młynarski W, Janczar S. Inherited or Immunological Thrombocytopenia: The Complex Nature of Platelet Disorders in 22q11.2 Deletion Syndrome. Semin Thromb Hemost 2025. [PMID: 39805292 DOI: 10.1055/s-0044-1801383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is one of the most common congenital malformation syndromes resulting from disrupted embryonic development of pharyngeal pouches. The classical triad of symptoms described by Angelo DiGeorge is frequently accompanied by hematological and immune disorders. While it is well-established that patients with 22q11.2DS have an increased risk of recurrent autoimmune cytopenias, including immune thrombocytopenia, the platelet abnormalities in this population are more complex and multifaceted. Given this issue, we conducted a comprehensive literature review on platelet disorders in 22q11.2DS using accessible databases (PubMed and Scopus). We aimed to outline previous studies limitations and most urgent challenges concerning thrombocytopenia in these patients. One characteristic finding frequently observed in 22q11.2DS is mild macrothrombocytopenia caused presumably by the loss of one GP1BB allele, encoding the element of the GPIb-IX-V complex. This structure plays a central role in thrombocyte adhesion, aggregation, and subsequent activation. Recent studies suggest that defective megakaryopoiesis and impaired vasculogenesis may strongly influence platelet and hemostasis disorders in 22q11.2DS. Furthermore, the phenotypic manifestation may be modulated by epigenetic factors and gene expression modifiers located outside the deletion region. Although the final hemorrhagic phenotype is typically mild, these patients may require more frequent transfusions following major surgical procedures. Despite the risk of thrombocytopenia and thrombocytopathy, there is a lack of large-scale research on hematological anomalies in 22q11.2DS, and the available results are often inconclusive. Given the complexity of hemostatic disorders, it is essential to establish specific recommendations for perioperative management and autoimmune cytopenias treatment within this population.
Collapse
Affiliation(s)
- Bartosz Urbański
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Urbańska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Subocz
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Cillo F, Coppola E, Habetswallner F, Cecere F, Pignata L, Toriello E, De Rosa A, Grilli L, Ammendola A, Salerno P, Romano R, Cirillo E, Merla G, Riccio A, Pignata C, Giardino G. Understanding the Variability of 22q11.2 Deletion Syndrome: The Role of Epigenetic Factors. Genes (Basel) 2024; 15:321. [PMID: 38540380 PMCID: PMC10969806 DOI: 10.3390/genes15030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
Initially described as a triad of immunodeficiency, congenital heart defects and hypoparathyroidism, 22q11.2 deletion syndrome (22q11.2DS) now encompasses a great amount of abnormalities involving different systems. Approximately 85% of patients share a 3 Mb 22q11.2 region of hemizygous deletion in which 46 protein-coding genes are included. However, the hemizygosity of the genes of this region cannot fully explain the clinical phenotype and the phenotypic variability observed among patients. Additional mutations in genes located outside the deleted region, leading to "dual diagnosis", have been described in 1% of patients. In some cases, the hemizygosity of the 22q11.2 region unmasks autosomal recessive conditions due to additional mutations on the non-deleted allele. Some of the deleted genes play a crucial role in gene expression regulation pathways, involving the whole genome. Typical miRNA expression patterns have been identified in 22q11.2DS, due to an alteration in miRNA biogenesis, affecting the expression of several target genes. Also, a methylation epi-signature in CpG islands differentiating patients from controls has been defined. Herein, we summarize the evidence on the genetic and epigenetic mechanisms implicated in the pathogenesis of the clinical manifestations of 22q11.2 DS. The review of the literature confirms the hypothesis that the 22q11.2DS phenotype results from a network of interactions between deleted protein-coding genes and altered epigenetic regulation.
Collapse
Affiliation(s)
- Francesca Cillo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Federico Habetswallner
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Laura Grilli
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Antonio Ammendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
| | - Paolo Salerno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| |
Collapse
|
3
|
Accardo V, Pagnini I, Maccora I, Marrani E, Mastrolia MV, Simonini G. Safety and efficacy of biologic immunosuppressive treatment in juvenile idiopathic arthritis associated with inborn errors of immunity. Front Pediatr 2024; 12:1353825. [PMID: 38468871 PMCID: PMC10925618 DOI: 10.3389/fped.2024.1353825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Objectives This study aims to describe clinical features, therapeutic outcomes, and safety profiles in patients affected by juvenile idiopathic arthritis (JIA) and inborn errors of immunity (IEI) treated with biological Disease-modifying antirheumatic drugs (DMARDs). Methods We enrolled three patients who were followed in the Pediatric Rheumatology Unit at Meyer Children's Hospital in Florence; these patients were affected by JIA, according to ILAR criteria, and IEI, according to the IUIS Phenotypical Classification for Human Inborn Errors of Immunity. Among them, two patients had 22q11.2 deletion syndrome (22q11.2DS) and one patient had X-linked agammaglobulinemia (XLA). Results Case 1: A 6-year and 2-month-old boy was affected by 22q11.2DS, associated with oligoarticular JIA, at the age of 2 years. He was treated with non-steroidal anti-inflammatory drugs (NSAIDs) and methotrexate, along with oral glucocorticoids but with no benefits. Treatment with etanercept allowed him to achieve remission after 10 months. Case 2: A 6-year and 2-month-old girl was affected by 22q11.2DS, associated with oligoarticular JIA, at the age of 3 years and 11 months. She was treated with NSAIDs, joint injections, and methotrexate but without clinical response. Treatment with Adalimumab allowed her to achieve remission after 6 months. Case 3: A 12-year and 2-month-old boy was affected by XLA, associated with polyarticular JIA, at the age of 9 years and 11 months. He was treated with NSAIDs, methotrexate, joint injections, and oral glucocorticoids with no benefits. He failed to respond to anti-TNF-alpha, tocilizumab, and abatacept. Currently, he is undergoing therapy with sirolimus plus abatacept, which allowed him to achieve remission after 4 months. Conclusions Results suggest that the use of immunosuppressive biological therapies can control disease activity in these patients. No adverse drug-related reactions were observed during the follow-up.
Collapse
Affiliation(s)
- V. Accardo
- Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Costagliola G, Legitimo A, Bertini V, Alberio AMQ, Valetto A, Consolini R. Distinct Immunophenotypic Features in Patients Affected by 22q11.2 Deletion Syndrome with Immune Dysregulation and Infectious Phenotype. J Clin Med 2023; 12:7579. [PMID: 38137647 PMCID: PMC10743584 DOI: 10.3390/jcm12247579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The clinical expression of 22q11.2 deletion syndrome (22q11.2 DS) is extremely variable, as patients can present with recurrent or severe infections, immune dysregulation, atopic diseases, or extra-immunological manifestations. The immunological background underlying the different disease manifestations is not completely elucidated. The aim of this study was to identify the immunophenotypic peculiarities of 22q11.2 DS patients presenting with different disease expressions. This study included 34 patients with 22q11.2 DS, divided into three groups according to the clinical phenotype: isolated extra-immunological manifestations (G1), infectious phenotype with increased/severe infections (G2), and immune dysregulation (G3). The patients underwent extended immunophenotyping of the T and B lymphocytes and analysis of the circulating dendritic cells (DCs). In patients with an infectious phenotype, a significant reduction in CD3+ and CD4+ cells and an expansion of CD8 naïve cells was evidenced. On the other hand, the immunophenotype of the patients with immune dysregulation showed a skewing toward memory T cell populations, and reduced levels of recent thymic emigrants (RTEs), while the highest levels of RTEs were detected in the patients with isolated extra-immunological manifestations. This study integrates the current literature, contributing to elucidating the variability in the immune status of patients with 22q11.2DS with different phenotypic expressions, particularly in those with infectious phenotype and immune dysregulation.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Annalisa Legitimo
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Veronica Bertini
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | | | - Angelo Valetto
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
5
|
Yi BY, Kamath S, Luu M, Cidon M, Braskett M. Ustekinumab for psoriasis and psoriatic arthritis in adolescents with 22q11.2 deletion syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3799-3801. [PMID: 37716528 DOI: 10.1016/j.jaip.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Affiliation(s)
- Belina Y Yi
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, the Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Sonia Kamath
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, Calif
| | - Minnelly Luu
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, Calif
| | - Michal Cidon
- Division of Rheumatology, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, Calif
| | - Melinda Braskett
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, Calif
| |
Collapse
|
6
|
Szczawińska-Popłonyk A, Schwartzmann E, Chmara Z, Głukowska A, Krysa T, Majchrzycki M, Olejnicki M, Ostrowska P, Babik J. Chromosome 22q11.2 Deletion Syndrome: A Comprehensive Review of Molecular Genetics in the Context of Multidisciplinary Clinical Approach. Int J Mol Sci 2023; 24:ijms24098317. [PMID: 37176024 PMCID: PMC10179617 DOI: 10.3390/ijms24098317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The 22q11.2 deletion syndrome is a multisystemic disorder characterized by a marked variability of phenotypic features, making the diagnosis challenging for clinicians. The wide spectrum of clinical manifestations includes congenital heart defects-most frequently conotruncal cardiac anomalies-thymic hypoplasia and predominating cellular immune deficiency, laryngeal developmental defects, midline anomalies with cleft palate and velar insufficiency, structural airway defects, facial dysmorphism, parathyroid and thyroid gland hormonal dysfunctions, speech delay, developmental delay, and neurocognitive and psychiatric disorders. Significant progress has been made in understanding the complex molecular genetic etiology of 22q11.2 deletion syndrome underpinning the heterogeneity of clinical manifestations. The deletion is caused by chromosomal rearrangements in meiosis and is mediated by non-allelic homologous recombination events between low copy repeats or segmental duplications in the 22q11.2 region. A range of genetic modifiers and environmental factors, as well as the impact of hemizygosity on the remaining allele, contribute to the intricate genotype-phenotype relationships. This comprehensive review has been aimed at highlighting the molecular genetic background of 22q11.2 deletion syndrome in correlation with a clinical multidisciplinary approach.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Eyal Schwartzmann
- Medical Student Scientific Society, English Division, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Zuzanna Chmara
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Antonina Głukowska
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Tomasz Krysa
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Maksymilian Majchrzycki
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Maurycy Olejnicki
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Paulina Ostrowska
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Joanna Babik
- Gynecology and Obstetrics with Pregnancy Pathology Unit, Franciszek Raszeja Municipal Hospital, 60-834 Poznań, Poland
| |
Collapse
|
7
|
Biggs SE, Gilchrist B, May KR. Chromosome 22q11.2 Deletion (DiGeorge Syndrome): Immunologic Features, Diagnosis, and Management. Curr Allergy Asthma Rep 2023; 23:213-222. [PMID: 36897497 PMCID: PMC9999075 DOI: 10.1007/s11882-023-01071-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE OF REVIEW This review focuses on immunologic findings, relationships among immunologic findings and associated conditions of autoimmunity and atopy, and management of immunologic disease in chromosome 22q11.2 deletion syndrome (22q11.2DS, historically known as DiGeorge syndrome). RECENT FINDINGS The implementation of assessment of T cell receptor excision circles (TRECs) in newborn screening has led to increased detection of 22q11.2 deletion syndrome. While not yet applied in clinical practice, cell-free DNA screening for 22q11.2DS also has the potential to improve early detection, which may benefit prompt evaluation and management. Multiple studies have further elucidated phenotypic features and potential biomarkers associated with immunologic outcomes, including the development of autoimmune disease and atopy. The clinical presentation of 22q11.2DS is highly variable particularly with respect to immunologic manifestations. Time to recovery of immune system abnormalities is not well-defined in current literature. An understanding of the underlying causes of immunologic changes found in 22q11.2DS, and the progression and evolution of immunologic changes over the lifespan have expanded over time and with improved survival. An included case highlights the variability of presentation and potential severity of T cell lymphopenia in partial DiGeorge syndrome and demonstrates successful spontaneous immune reconstitution in partial DiGeorge syndrome despite initial severe T cell lymphopenia.
Collapse
Affiliation(s)
- Sarah E Biggs
- Division of Allergy-Immunology & Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Bailee Gilchrist
- Division of Allergy-Immunology & Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kathleen R May
- Division of Allergy-Immunology & Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
Óskarsdóttir S, Boot E, Crowley TB, Loo JCY, Arganbright JM, Armando M, Baylis AL, Breetvelt EJ, Castelein RM, Chadehumbe M, Cielo CM, de Reuver S, Eliez S, Fiksinski AM, Forbes BJ, Gallagher E, Hopkins SE, Jackson OA, Levitz-Katz L, Klingberg G, Lambert MP, Marino B, Mascarenhas MR, Moldenhauer J, Moss EM, Nowakowska BA, Orchanian-Cheff A, Putotto C, Repetto GM, Schindewolf E, Schneider M, Solot CB, Sullivan KE, Swillen A, Unolt M, Van Batavia JP, Vingerhoets C, Vorstman J, Bassett AS, McDonald-McGinn DM. Updated clinical practice recommendations for managing children with 22q11.2 deletion syndrome. Genet Med 2023; 25:100338. [PMID: 36729053 DOI: 10.1016/j.gim.2022.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/03/2023] Open
Abstract
This review aimed to update the clinical practice guidelines for managing children and adolescents with 22q11.2 deletion syndrome (22q11.2DS). The 22q11.2 Society, the international scientific organization studying chromosome 22q11.2 differences and related conditions, recruited expert clinicians worldwide to revise the original 2011 pediatric clinical practice guidelines in a stepwise process: (1) a systematic literature search (1992-2021), (2) study selection and data extraction by clinical experts from 9 different countries, covering 24 subspecialties, and (3) creation of a draft consensus document based on the literature and expert opinion, which was further shaped by survey results from family support organizations regarding perceived needs. Of 2441 22q11.2DS-relevant publications initially identified, 2344 received full-text reviews, including 1545 meeting criteria for potential relevance to clinical care of children and adolescents. Informed by the available literature, recommendations were formulated. Given evidence base limitations, multidisciplinary recommendations represent consensus statements of good practice for this evolving field. These recommendations provide contemporary guidance for evaluation, surveillance, and management of the many 22q11.2DS-associated physical, cognitive, behavioral, and psychiatric morbidities while addressing important genetic counseling and psychosocial issues.
Collapse
Affiliation(s)
- Sólveig Óskarsdóttir
- Department of Pediatric Rheumatology and Immunology, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Erik Boot
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands; The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.
| | - Terrence Blaine Crowley
- The 22q and You Center, Clinical Genetics Center, and Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joanne C Y Loo
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
| | - Jill M Arganbright
- Department of Otorhinolaryngology, Children's Mercy Hospital and University of Missouri Kansas City School of Medicine, Kansas City, MO
| | - Marco Armando
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Adriane L Baylis
- Department of Plastic and Reconstructive Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Elemi J Breetvelt
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Genetics & Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - René M Castelein
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madeline Chadehumbe
- Division of Neurology, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christopher M Cielo
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary and Sleep Medicine, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Steven de Reuver
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephan Eliez
- Fondation Pôle Autisme, Department of Psychiatry, Geneva University School of Medecine, Geneva, Switzerland
| | - Ania M Fiksinski
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands; Department of Pediatric Psychology, University Medical Centre, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Brian J Forbes
- Division of Ophthalmology, The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Emily Gallagher
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA
| | - Sarah E Hopkins
- Division of Neurology, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Oksana A Jackson
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Cleft Lip and Palate Program, Division of Plastic, Reconstructive and Oral Surgery, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lorraine Levitz-Katz
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Endocrinology and Diabetes, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Hematology, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Maria R Mascarenhas
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Gastroenterology, Hepatology and Nutrition, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Julie Moldenhauer
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, 22q and You Center, The Children's Hospital of Philadelphia, Philadelphia, PA; Departments of Obstetrics and Gynecology and Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | - Ani Orchanian-Cheff
- Library and Information Services and The Institute of Education Research (TIER), University Health Network, Toronto, Ontario, Canada
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Gabriela M Repetto
- Rare Diseases Program, Institute for Sciences and Innovation in Medicine, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Erica Schindewolf
- Richard D. Wood Jr. Center for Fetal Diagnosis and Treatment, 22q and You Center, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maude Schneider
- Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Cynthia B Solot
- Department of Speech-Language Pathology and Center for Childhood Communication, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Allergy and Immunology, 22q and You Center, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ann Swillen
- Center for Human Genetics, University Hospital UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marta Unolt
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy; Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Jason P Van Batavia
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Urology, 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Claudia Vingerhoets
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jacob Vorstman
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne S Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Genetics & Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Donna M McDonald-McGinn
- The 22q and You Center, Clinical Genetics Center, and Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Human Biology and Medical Genetics, Sapienza University, Rome, Italy.
| |
Collapse
|
9
|
Mongkonsritragoon W, Huang J, Fredrickson M, Seth D, Poowuttikul P. Positive Newborn Screening for Severe Combined Immunodeficiency: What Should the Pediatrician Do? CLINICAL MEDICINE INSIGHTS: PEDIATRICS 2023; 17:11795565231162839. [PMID: 37025258 PMCID: PMC10071162 DOI: 10.1177/11795565231162839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 04/03/2023]
Abstract
Severe combined immunodeficiency (SCID) is a group of diseases characterized by low T-cell count and impaired T-cell function, resulting in severe cellular and humoral immune defects. If not diagnosed and treated promptly, infants affected by this condition can develop severe infections which will result in death. Delayed treatment can markedly reduce the survival outcome of infants with SCID. T-cell receptor excision circle (TREC) levels are measured on newborn screening to promptly identify infants with SCID. It is important for primary care providers and pediatricians to understand the approach to managing infants with positive TREC-based newborn screening as they may be the first contact for infants with SCID. Primary care providers should be familiar with providing anticipatory guidance to the family in regard to protective isolation, measures to minimize the risk of infection, and the coordination of care with the SCID coordinating center team of specialists. In this article, we use case-based scenarios to review the principles of TREC-based newborn screening, the genetics and subtypes of SCID, and management for an infant with a positive TREC-based newborn screen.
Collapse
Affiliation(s)
- Wimwipa Mongkonsritragoon
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Jenny Huang
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Mary Fredrickson
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
| | - Divya Seth
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Pavadee Poowuttikul
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
- Pavadee Poowuttikul, Division Chief of
Allergy/Immunology and Rheumatology, Training Program Director of
Allergy/Immunology, Medical Director of Primary Immunodeficiency Newborn
Screening Follow-up Coordinating Center, Central Michigan University, Children’s
Hospital of Michigan, 3950 Beaubien, 4th Floor, Pediatric Specialty Building,
Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Navigating diagnostic options for inborn errors of immunity in children: a case-based illustration. Curr Opin Pediatr 2022; 34:589-594. [PMID: 36081368 DOI: 10.1097/mop.0000000000001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW In recent years, there has been a dramatic increase in the number of recognized inborn errors of immunity (IEI), many of which present in childhood. This review discusses diagnostic approaches for some of the more common presentations of IEI in childhood. RECENT FINDINGS Implementation of newborn screening (NBS) using the T cell receptor excision circle (TREC) assay has led to the timely identification of patients with severe combined immunodeficiency (SCID) as well as both syndromic and nonsyndromic forms of T cell lymphopenia, including DiGeorge syndrome. Improvements in the availability of immunophenotyping assays, genetic testing and advanced diagnostic techniques such as the artificial thymic organoid system can improve diagnostic clarity and impact management plans. Diagnostic improvements in humoral immunodeficiency include development of novel assays to quantify and functionally evaluate polysaccharide vaccine response. SUMMARY IEI represent a rapidly growing field, particularly in paediatrics. Use of state-of-the-art diagnostic testing can facilitate rapid identification of IEI, hopefully allowing for initiation of prompt treatment and improved patient outcomes.
Collapse
|
11
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
12
|
Yu HH, Chien YH, Lu MY, Hu YC, Lee JH, Wang LC, Lin YT, Yang YH, Chiang BL. Clinical and Immunological Defects and Outcomes in Patients with Chromosome 22q11.2 Deletion Syndrome. J Clin Immunol 2022; 42:1721-1729. [PMID: 35925483 DOI: 10.1007/s10875-022-01340-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chromosome 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans and can present with highly variable clinical manifestations. Immune deficiencies occur because of thymic hypoplasia or aplasia. METHODS This retrospective study included patients diagnosed with 22q11.2DS at a medical center between 2000 and 2021. We analyzed the association between clinical phenotypes, immunological abnormalities, age, and outcomes. RESULTS Eighty-seven patients with 22q11.2DS had a median diagnostic age of 1.78 months. Patients presented with congenital heart disease (CHD; 86.2%), major infections (75.9%), and failure to thrive (FTT; 58.6%). Autoimmunity, neuropsychiatric disorders, and hypoparathyroidism were significantly associated. Neonatal seizures were associated with early diagnosis before 2 months (OR 8.56, 95% CI 1.21-60.58, P = 0.032). Immunological abnormalities included lymphopenia (93.1%), T lymphopenia (71.9%), CD4+ T lymphopenia (64.1%), a lack of hepatitis B vaccine antibodies (46.2%), and complete DiGeorge syndrome (cDGS) (2.3%). Severe lymphopenia and T lymphopenia improved at 3 years of age. Two patients with cDGS were treated with hematopoietic stem cell transplantation, and one survived. The mortality rate was 12.8% and the estimated 35-year survival probability was 77.5%. Major infections experienced > four times were significantly associated with a decreased survival rate of 60%. Patients with CHD without FTT or recurrent infections had a better 20-year survival rate (96.2%). CONCLUSIONS CHD, major infection, and FTT were common manifestations and poor prognostic factors. Autoimmunity, neuropsychiatric disorders, and hypoparathyroidism were significantly associated. Although T lymphopenia may improve with age, patients with 22q11.2DS require lifelong monitoring for immune dysregulation.
Collapse
Affiliation(s)
- Hsin-Hui Yu
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Ya-Chiao Hu
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Jyh-Hong Lee
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Li-Chieh Wang
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yu-Tsan Lin
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Paediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
13
|
Khan YW, Williams KW. Inborn Errors of Immunity Associated with Elevated IgE. Ann Allergy Asthma Immunol 2022; 129:552-561. [PMID: 35872242 DOI: 10.1016/j.anai.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To review the characteristic clinical and laboratory features of inborn errors of immunity that are associated with elevated IgE levels DATA SOURCE: Primary peer-reviewed literature. STUDY SELECTION Original research articles reviewed include interventional studies, retrospective studies, case-control studies, cohort studies and review articles related to the subject matter. RESULTS An extensive literature review was completed to allow for comprehensive evaluation of several monogenic inborn errors of immunity. This review includes a description of the classic clinical features, common infections, characteristic laboratory findings, specific diagnostic methods (when applicable), and genetic basis of disease of each syndrome. A comprehensive flow diagram was created to assist them in the diagnosis and evaluation of patients with elevated IgE levels who may require evaluation for an IEI. CONCLUSION IEI should be considered in patients with elevated IgE levels, especially if they have recurrent infections, eczematous dermatitis, malignancy, lymphoproliferation, autoimmunity, and/or connective tissue abnormalities.
Collapse
Affiliation(s)
- Yasmin W Khan
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, South Carolina, USA.
| |
Collapse
|
14
|
Lymphoma in Partial DiGeorge Syndrome: Report of 2 Cases. J Pediatr Hematol Oncol 2022; 44:e819-e822. [PMID: 34966099 DOI: 10.1097/mph.0000000000002388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Primary immunodeficiency diseases are associated with an increased tendency for noninfectious complications of autoimmunity and malignancy, particularly leukemia and lymphoma. The mechanisms of immune dysregulation have been linked to the combination of dysregulated immune cells and environmental factors such as infections. In particular, dysfunction in T-cell subsets and Epstein-Barr virus contributes to the development of autoimmunity and lymphoproliferative disease in primary immunodeficiency diseases. There are scant reports of patients with partial DiGeorge syndrome and Epstein-Barr virus-driven lymphoma. We report 1 patients with partial DiGeorge syndrome who developed lymphoma, and review reported cases in the literature.
Collapse
|
15
|
Framme JL, Lundqvist C, Lundell AC, van Schouwenburg PA, Lemarquis AL, Thörn K, Lindgren S, Gudmundsdottir J, Lundberg V, Degerman S, Zetterström RH, Borte S, Hammarström L, Telemo E, Hultdin M, van der Burg M, Fasth A, Oskarsdóttir S, Ekwall O. Long-Term Follow-Up of Newborns with 22q11 Deletion Syndrome and Low TRECs. J Clin Immunol 2022; 42:618-633. [PMID: 35080750 PMCID: PMC9016018 DOI: 10.1007/s10875-021-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/12/2021] [Indexed: 01/03/2023]
Abstract
Background Population-based neonatal screening using T-cell receptor excision circles (TRECs) identifies infants with profound T lymphopenia, as seen in cases of severe combined immunodeficiency, and in a subgroup of infants with 22q11 deletion syndrome (22q11DS). Purpose To investigate the long-term prognostic value of low levels of TRECs in newborns with 22q11DS. Methods Subjects with 22q11DS and low TRECs at birth (22q11Low, N=10), matched subjects with 22q11DS and normal TRECs (22q11Normal, N=10), and matched healthy controls (HC, N=10) were identified. At follow-up (median age 16 years), clinical and immunological characterizations, covering lymphocyte subsets, immunoglobulins, TRECs, T-cell receptor repertoires, and relative telomere length (RTL) measurements were performed. Results At follow-up, the 22q11Low group had lower numbers of naïve T-helper cells, naïve T-regulatory cells, naïve cytotoxic T cells, and persistently lower TRECs compared to healthy controls. Receptor repertoires showed skewed V-gene usage for naïve T-helper cells, whereas for naïve cytotoxic T cells, shorter RTL and a trend towards higher clonality were found. Multivariate discriminant analysis revealed a clear distinction between the three groups and a skewing towards Th17 differentiation of T-helper cells, particularly in the 22q11Low individuals. Perturbations of B-cell subsets were found in both the 22q11Low and 22q11Normal group compared to the HC group, with larger proportions of naïve B cells and lower levels of memory B cells, including switched memory B cells. Conclusions This long-term follow-up study shows that 22q11Low individuals have persistent immunologic aberrations and increased risk for immune dysregulation, indicating the necessity of lifelong monitoring. Clinical Implications This study elucidates the natural history of childhood immune function in newborns with 22q11DS and low TRECs, which may facilitate the development of programs for long-term monitoring and therapeutic choices. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01201-5.
Collapse
Affiliation(s)
- Jenny Lingman Framme
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Pediatrics, Halland Hospital Halmstad, Halmstad, Region Halland, Sweden.
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pauline A van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Andri L Lemarquis
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karolina Thörn
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Susanne Lindgren
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Judith Gudmundsdottir
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Children's Medical Center, National University Hospital of Iceland, Reykjavík, Iceland
| | - Vanja Lundberg
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Stephan Borte
- ImmunoDeficiencyCenter Leipzig (IDCL), Municipal Hospital St. Georg Leipzig, Leipzig, Germany
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Neo, Karolinska Institute, Stockholm, Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Anders Fasth
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sólveig Oskarsdóttir
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Crowley TB, Campbell IM, Liebling EJ, Lambert MP, Levitt Katz LE, Heimall J, Bailey A, McGinn DE, McDonald McGinn DM, Sullivan KE. Distinct immune trajectories in patients with chromosome 22q11.2 deletion syndrome and immune-mediated diseases. J Allergy Clin Immunol 2022; 149:445-450. [PMID: 34144109 PMCID: PMC11853714 DOI: 10.1016/j.jaci.2021.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Identification of biomarkers associated with immune-mediated diseases in 22q11.2 deletion syndrome is an evolving field. OBJECTIVES We sought to use a carefully phenotyped cohort to study immune parameters associated with autoimmunity and atopy in 22q11.2 deletion syndrome to define biomarkers associated with immune-mediated disease in this syndrome. METHODS Chart review validated autoimmune disease and atopic condition diagnoses. Laboratory data were extracted for each subcohort and plotted according to age. A random-effects model was used to define statistical significance. RESULTS CD19, CD4, and CD4/45RA lymphocyte populations were not different from the general cohort for patients with atopic conditions. CD4/45RA T cells were significantly lower in the subjects with immune thrombocytopenia compared with the general cohort, and CD4 T-cell counts were lower in patients with autoimmune thyroid disease. CONCLUSIONS The mechanisms of autoimmunity in cytopenias may be distinct from those of solid-organ autoimmunity in 22q11.2 deletion syndrome. This study identifies potential biomarkers for risk stratification among commonly obtained laboratory studies.
Collapse
Affiliation(s)
- T Blaine Crowley
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Ian M Campbell
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Emily J Liebling
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Michele P Lambert
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Lorraine E Levitt Katz
- Division of Endocrinol & Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Jennifer Heimall
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Alice Bailey
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Daniel E McGinn
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Donna M McDonald McGinn
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa.
| |
Collapse
|
17
|
Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021; 43:65-83. [PMID: 33532929 PMCID: PMC7925499 DOI: 10.1007/s00281-020-00835-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
During their intrathymic development, nascent T cells are empowered to protect against pathogens and to be operative for a life-long acceptance of self. While autoreactive effector T (Teff) cell progenitors are eliminated by clonal deletion, the intrathymic mechanisms by which thymic regulatory T cell (tTreg) progenitors maintain specificity for self-antigens but escape deletion to exert their regulatory functions are less well understood. Both tTreg and Teff development and selection result from finely coordinated interactions between their clonotypic T cell receptors (TCR) and peptide/MHC complexes expressed by antigen-presenting cells, such as thymic epithelial cells and thymic dendritic cells. tTreg function is dependent on expression of the FOXP3 transcription factor, and induction of FOXP3 gene expression by tTreg occurs during their thymic development, particularly within the thymic medulla. While initial expression of FOXP3 is downstream of TCR activation, constitutive expression is fixed by interactions with various transcription factors that are regulated by other extracellular signals like TCR and cytokines, leading to epigenetic modification of the FOXP3 gene. Most of the understanding of the molecular events underlying tTreg generation is based on studies of murine models, whereas gaining similar insight in the human system has been very challenging. In this review, we will elucidate how inborn errors of immunity illuminate the critical non-redundant roles of certain molecules during tTreg development, shedding light on how their abnormal development and function cause well-defined diseases that manifest with autoimmunity alone or are associated with states of immune deficiency and autoinflammation.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|