1
|
Lefèvre G, Borget I, Lefèvre C, Maherzi C, Nucit A, Hennaoui M, Schmidt A, Lennon H, Grenier B, Daydé F, Mahlaoui N. Healthcare resource utilization and costs in immunodeficient patients receiving subcutaneous Ig: Real-world evidence from France. PLoS One 2025; 20:e0313694. [PMID: 39854356 PMCID: PMC11759344 DOI: 10.1371/journal.pone.0313694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/29/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Subcutaneous immunoglobulin (SCIg) replacement therapy is indicated for patients with hypogammaglobulinemia caused by primary (PID) and secondary immunodeficiencies (SID). OBJECTIVE To compare healthcare resource utilization (HCRU) and related direct medical costs of patients in France treated with weekly conventional SCIg (cSCIg) vs monthly hyaluronidase-facilitated SCIg (fSCIg). METHODS This retrospective study of Ig-naïve patients with PID or SID newly receiving a SCIg between 2016 and 2018, extracted from the French National Healthcare reimbursement database (SNDS), analyzed the SCIg-related HCRU and reimbursed costs generated from in-hospital (hospitalizations and SCIg doses) or at-home (nurse visits [NV] and pump provider visits [PPV], drug doses) SCIg administration. RESULTS Overall, 2,012 patients (PID:534; SID:1,478) were analyzed. The follow-up duration varied between 7.5 and 8.7 months according to sub-groups. Compared with fSCIg-treated patients, monthly mean rates of NV and PPV were respectively 2.5 and 3.1 times higher in PID, and 1.6 and 3.1 times higher in SID cSCIg-treated patients. Monthly mean rates for SCIg administration-related hospitalizations were lower overall, while their costs were 1.6 and 1.8 times higher for cSCIg than fSCIg subgroups, in PIDs and SIDs respectively; these results are due to more frequent hospitalizations with fSCIg being mainly shorter, without stayover. Total HCRU costs from the French NHI's perspective were estimated to be lower with fSCIg vs cSCIg, in PIDs and SIDs. CONCLUSION This study provides real-world evidence of SCIg administration in a large French population. Patients with PID or SID treated with fSCIg had fewer at-home HCRU and lower overall costs for in-hospital or at-home SCIg administration compared with cSCIg-treated patients.
Collapse
Affiliation(s)
- Guillaume Lefèvre
- Institute of Immunology, Institute for Translational Research in Inflammation (Infinite ‐ U1286), University of Lille, CHU Lille, Inserm, Lille, France
| | - Isabelle Borget
- Department of Biostatistics and Epidemiology, Gustave Roussy, Paris-Saclay University, Gif-sur-Yvette, Villejuif, France
- Oncostat ‐ U1018, Inserm, Paris-Saclay University, “Ligue Contre le Cancer” Labeled Team, Gif-sur-Yvette, Villejuif, France
- GRADES, Paris-Saclay University, Gif-sur-Yvette, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | - Nizar Mahlaoui
- French National Reference Center for Primary Immunodeficiencies (CEREDIH) and Pediatric Immunology, Hematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique ‐ Hôpitaux de Paris (APHP), Paris, France
| |
Collapse
|
2
|
Aissaoui O, Moundir A, Drissi Boughanbour A, El Bakkouri J, Benhsaien I, Ailal F, Chlilek A, Jouanguy E, Casanova JL, Bousfiha AA. Prevalence of pathogenic variants of inborn errors of immunity in critically ill children admitted to the pediatric intensive care unit for sepsis: A Moroccan cohort study. LA TUNISIE MEDICALE 2025; 103:93-97. [PMID: 39812200 PMCID: PMC11906231 DOI: 10.62438/tunismed.v103i1.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/08/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Pediatric sepsis remains a leading cause of morbidity and mortality in Africa. Nearly half of pediatric sepsis deaths occur in previously healthy children. The role of inborn errors of immunity (IEI) in susceptibility to sepsis is yet to be identified and their prevalence amongst previously healthy children admitted to the pediatric intensive care unit (PICU) is unclear. We aimed to assess prevalence of IEI among a cohort of children admitted to the PICU for community acquired sepsis and to describe demographic, microbiological, and genetic features of this cohort. METHODS We listed a cohort of children admitted to our PICU for sepsis from January 2021 to March 2023. Demographic data was collected, and microbiological tests were performed. Written consent was obtained and whole exome sequencing (WES) was performed after DNA extraction. RESULTS Thirty cases were included. Mean age at admission was 46 months (1-180), microorganisms were identified in 20 cases (66%). Bacterial sepsis was identified in 8 cases, viral sepsis in 6 cases and fungal sepsis in 2 cases. Mean pediatric sequential sepsis related organ failure assessment (pSOFA) score at admission was 6,46 (2-18). Mechanical ventilation was necessary in 18 cases. Inotropes were used in 17 cases and renal replacement therapy initiated in 3 cases. Pathogenic variants of IEI were identified in 5 out of 30 cases (17%). These variants were identified in the following genes BACH2, TLR7, TINF2, NFK2B and MAGT1. Overall mortality was 50% and mean intensive care unit (ICU) stay was 9,26 (1-60) days. CONCLUSION Prevalence of pathogenic variants of IEI among children admitted to the PICU for sepsis was 17%. Our study findings support systematic screening of IEI amongst critically ill children admitted to the PICU for sepsis in order to increase our comprehension of sepsis phenotypes and improve outcomes in this group of critically ill children.
Collapse
Affiliation(s)
- Ouissal Aissaoui
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Abderrahim HAROUCHI Mother-child hospital, Pediatric Anesthesiology and Intensive Care Unit, Laboratory of clinical immunology, inflammation and allergy (LICIA), Casablanca, Morocco
| | - Abderrahmane Moundir
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Ibn Rochd University hospital, Pediatric Infectious Diseases and Clinical Immunology Unit, Laboratory of clinical immunology, inflammation and allergy (LICIA), Casablanca, Morocco
| | - Asmaa Drissi Boughanbour
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Abderrahim HAROUCHI Mother-child hospital, Laboratory of immunology, Laboratory of clinical immunology, inflammation and allergy, Casablanca, Morocco
| | - Jalila El Bakkouri
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Abderrahim HAROUCHI Mother-child hospital, Laboratory of immunology, Laboratory of clinical immunology, inflammation and allergy, Casablanca, Morocco
| | - Ibtihal Benhsaien
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Ibn Rochd University hospital, Pediatric Infectious Diseases and Clinical Immunology Unit, Laboratory of clinical immunology, inflammation and allergy (LICIA), Casablanca, Morocco
| | - Fatima Ailal
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Ibn Rochd University hospital, Pediatric Infectious Diseases and Clinical Immunology Unit, Laboratory of clinical immunology, inflammation and allergy (LICIA), Casablanca, Morocco
| | - Abdelaziz Chlilek
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Abderrahim HAROUCHI Mother-child hospital, Pediatric Anesthesiology and Intensive Care Unit, Laboratory of clinical immunology, inflammation and allergy (LICIA), Casablanca, Morocco
| | - Emmanuelle Jouanguy
- University of Paris, Imagine Institute, Necker Hospital for Sick Children, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean Laurent Casanova
- University of Paris, Imagine Institute, Necker Hospital for Sick Children, Department of Pediatrics, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ahmed Aziz Bousfiha
- University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Abderrahim HAROUCHI Mother-child hospital, Pediatric Anesthesiology and Intensive Care Unit, Laboratory of clinical immunology, inflammation and allergy (LICIA), Casablanca, Morocco
| |
Collapse
|
3
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Obeidat L, Abu-Halaweh M, Alzyoud R, Albsoul E, Zaravinos A. Genetic causes of primary immunodeficiency in the Jordanian population. Biomed Rep 2024; 21:160. [PMID: 39268404 PMCID: PMC11391178 DOI: 10.3892/br.2024.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/10/2024] [Indexed: 09/15/2024] Open
Abstract
Ιnborn errors of immunity (IEI) represents a heterogenous collection of >480 immune system anomalies, leading to severe infections, autoimmune disorders and malignancies. While these conditions are rare globally, their prevalence is notably higher in the Jordanian population, attributed to elevated rates of consanguinity. The intricate nature of IEI has driven the adoption of genomic technologies for the identification of associated genetic defects. In the present study, whole-exome sequencing was performed on nine Jordanian IEI patient samples, confirming germline single-nucleotide variations (SNVs) in 14 genes through Sanger sequencing. Of note, signal transducer and activator of transcription 1 (STAT1), elastase, neutrophil expressed (ELANE) and interferon induced with helicase c domain 1 (IFIH1) harbored mutations that were previously unreported in the Jordanian IEI population. In addition, mutations in capping protein regulator and myosin 1 linker 2 (c.3683C>T), TNFα-induced protein 3-interacting protein 1 (TNIP1) (c.460C>G) and STAT1 (c.1061T>C) were confirmed, marking their association with Jordanian IEI. For robustness, the genomic databases Ensemble, Genome AD and ClinVar were used to confirm the SNVs' associations with IEI. Kyoto Encyclopedia of Genes and Genomes pathway analysis also showed involvement of the IL-17 signaling pathway (including IL-17 receptor A), T-helper type 17 cell differentiation (including STAT1), the JAK-STAT signaling pathway (including STAT2 and tyrosine kinase 2), neutrophil extracellular trap formation (including ELANE), cocaine addiction [G protein signaling modulator 1 (GPSM1)] and cytokine-cytokine receptor interaction (IL-17 receptor C). In summary, exome sequencing identified a likely causative genetic defect in ELANE (PID-28), STAT1 (PID-30) and IFIH1 (PID-33). The present findings reveal the association of novel STAT1, ELANE mutations with the clinical phenotype of the patients, as well as known mutations in NLRP12, GPSM1 and TNIP1, in addition to novel ELANE, STAT1 and IFIH1 mutations associated in the context of Jordanian IEI.
Collapse
Affiliation(s)
- Loiy Obeidat
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 2404, Cyprus
| | - Marwan Abu-Halaweh
- Primary Immunodeficiency Department, Queen Rania Al Abdullah Hospital for Children, King Hussein Medical Center, Queen Rania Al Abdullah Hospital for Children, Amman, Jordan
| | - Raed Alzyoud
- Section of Immunology, Allergy and Rheumatology, Queen Rania Children's Hospital, Queen Rania Al Abdullah Hospital For Children, Amman 11855, Jordan
| | - Eman Albsoul
- Genetics Laboratory, Philadelphia University, Amman 19392, Jordan
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 2404, Cyprus
| |
Collapse
|
5
|
Ringshausen FC, Baumann I, de Roux A, Dettmer S, Diel R, Eichinger M, Ewig S, Flick H, Hanitsch L, Hillmann T, Koczulla R, Köhler M, Koitschev A, Kugler C, Nüßlein T, Ott SR, Pink I, Pletz M, Rohde G, Sedlacek L, Slevogt H, Sommerwerck U, Sutharsan S, von Weihe S, Welte T, Wilken M, Rademacher J, Mertsch P. [Management of adult bronchiectasis - Consensus-based Guidelines for the German Respiratory Society (DGP) e. V. (AWMF registration number 020-030)]. Pneumologie 2024; 78:833-899. [PMID: 39515342 DOI: 10.1055/a-2311-9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bronchiectasis is an etiologically heterogeneous, chronic, and often progressive respiratory disease characterized by irreversible bronchial dilation. It is frequently associated with significant symptom burden, multiple complications, and reduced quality of life. For several years, there has been a marked global increase in the prevalence of bronchiectasis, which is linked to a substantial economic burden on healthcare systems. This consensus-based guideline is the first German-language guideline addressing the management of bronchiectasis in adults. The guideline emphasizes the importance of thoracic imaging using CT for diagnosis and differentiation of bronchiectasis and highlights the significance of etiology in determining treatment approaches. Both non-drug and drug treatments are comprehensively covered. Non-pharmacological measures include smoking cessation, physiotherapy, physical training, rehabilitation, non-invasive ventilation, thoracic surgery, and lung transplantation. Pharmacological treatments focus on the long-term use of mucolytics, bronchodilators, anti-inflammatory medications, and antibiotics. Additionally, the guideline covers the challenges and strategies for managing upper airway involvement, comorbidities, and exacerbations, as well as socio-medical aspects and disability rights. The importance of patient education and self-management is also emphasized. Finally, the guideline addresses special life stages such as transition, family planning, pregnancy and parenthood, and palliative care. The aim is to ensure comprehensive, consensus-based, and patient-centered care, taking into account individual risks and needs.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Ingo Baumann
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Andrés de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Deutschland
| | - Sabine Dettmer
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Roland Diel
- Institut für Epidemiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland; LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Grosshansdorf, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum, Bochum, Deutschland
| | - Holger Flick
- Klinische Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, LKH-Univ. Klinikum Graz, Medizinische Universität Graz, Graz, Österreich
| | - Leif Hanitsch
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Thomas Hillmann
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Essen, Deutschland
| | - Rembert Koczulla
- Abteilung für Pneumologische Rehabilitation, Philipps Universität Marburg, Marburg, Deutschland
| | | | - Assen Koitschev
- Klinik für Hals-, Nasen-, Ohrenkrankheiten, Klinikum Stuttgart - Olgahospital, Stuttgart, Deutschland
| | - Christian Kugler
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Thomas Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein gGmbH, Koblenz, Deutschland
| | - Sebastian R Ott
- Pneumologie/Thoraxchirurgie, St. Claraspital AG, Basel; Universitätsklinik für Pneumologie, Allergologie und klinische Immunologie, Inselspital, Universitätsspital und Universität Bern, Bern, Schweiz
| | - Isabell Pink
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Mathias Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Gernot Rohde
- Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Deutschland
| | - Ludwig Sedlacek
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Hortense Slevogt
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Center for Individualised Infection Medicine, Hannover, Deutschland
| | - Urte Sommerwerck
- Klinik für Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin, Cellitinnen-Severinsklösterchen Krankenhaus der Augustinerinnen, Köln, Deutschland
| | | | - Sönke von Weihe
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Tobias Welte
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | | | - Jessica Rademacher
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München (LMU), Comprehensive Pneumology Center (CPC), Deutsches Zentrum für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
6
|
Rivière JG, Carot-Sans G, Piera-Jiménez J, de la Torre S, Cos X, Serra-Picamal X, Soler-Palacin P. Development of an Expert-Based Scoring System for Early Identification of Patients with Inborn Errors of Immunity in Primary Care Settings - the PIDCAP Project. J Clin Immunol 2024; 45:26. [PMID: 39432052 PMCID: PMC11493793 DOI: 10.1007/s10875-024-01825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Early diagnosis of inborn errors of immunity (IEIs) has been shown to reduce mortality, morbidity, and healthcare costs. The need for early diagnosis has led to the development of computational tools that trigger earlier clinical suspicion by physicians. Primary care professionals serve as the first line for improving early diagnosis. To this end, a computer-based tool (based on extended Jeffrey Modell Foundation (JMF) Warning Signs) was developed to assist physicians with diagnosis decisions for IEIs in the primary care setting. Two expert-guided scoring systems (one pediatric, one adult) were developed. IEI warning signs were identified and a panel of 36 experts reached a consensus on which signs to include and how they should be weighted. The resulting scoring system was tested against a retrospective registry of patients with confirmed IEI using primary care EHRs. A pilot study to assess the feasibility of implementation in primary care was conducted. The scoring system includes 27 warning signs for pediatric patients and 24 for adults, adding additional clinically relevant criteria established by expert consensus to the JMF Warning Signs. Cytopenias, ≥ 2 systemic infections, recurrent fever and bronchiectasis were the leading warning signs in children, as bronchiectasis, autoimmune diseases, cytopenias, and > 3 pneumonias were in adults. The PIDCAP (Primary Immune Deficiency "Centre d'Atenció Primària" that stands for Primary Care Center in Catalan) tool was implemented in the primary care workstation in a pilot area. The expert-based approach has the potential to lessen under-reporting and minimize diagnostic delays of IEIs. It can be seamlessly integrated into clinical primary care workstations.
Collapse
Affiliation(s)
- Jacques G Rivière
- Infection and Immunity in Pediatric Patients Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Catalonia, Spain.
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Infantil I de La Dona Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain.
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
| | - Gerard Carot-Sans
- Catalan Health Service, Barcelona, Catalonia, Spain
- Digitalization for the Sustainability of the Healthcare System (DS3) Research Group, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Jordi Piera-Jiménez
- Catalan Health Service, Barcelona, Catalonia, Spain
- Digitalization for the Sustainability of the Healthcare System (DS3) Research Group, L'Hospitalet de Llobregat, Catalonia, Spain
- Faculty of Informatics, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Sergi de la Torre
- Catalan Health Service, Barcelona, Catalonia, Spain
- Digitalization for the Sustainability of the Healthcare System (DS3) Research Group, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Xavier Cos
- Institut Català de La Salut (ICS), Barcelona, Catalonia, Spain
- The Foundation University Institute for Primary Health Care Research Jordi Gol I Gurina (IDIAPJGol), Barcelona, Spain
| | | | - Pere Soler-Palacin
- Infection and Immunity in Pediatric Patients Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Catalonia, Spain.
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Infantil I de La Dona Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain.
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Galletta F, Gambadauro A, Foti Randazzese S, Passanisi S, Sinatra V, Caminiti L, Zirilli G, Manti S. Pathophysiology of Congenital High Production of IgE and Its Consequences: A Narrative Review Uncovering a Neglected Setting of Disorders. Life (Basel) 2024; 14:1329. [PMID: 39459629 PMCID: PMC11509725 DOI: 10.3390/life14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Elevated serum IgE levels serve as a critical marker for uncovering hidden immunological disorders, particularly inborn errors of immunity (IEIs), which are often misdiagnosed as common allergic conditions. IgE, while typically associated with allergic diseases, plays a significant role in immune defense, especially against parasitic infections. However, extremely high levels of IgE can indicate more severe conditions, such as Hyper-IgE syndromes (HIES) and disorders with similar features, including Omenn syndrome, Wiskott-Aldrich syndrome, and IPEX syndrome. Novel insights into the genetic mutations responsible for these conditions highlight their impact on immune regulation and the resulting clinical features, including recurrent infections, eczema, and elevated IgE. This narrative review uniquely integrates recent advances in the genetic understanding of IEIs and discusses how these findings impact both diagnosis and treatment. Additionally, emerging therapeutic strategies, such as hematopoietic stem cell transplantation (HSCT) and gene therapies, are explored, underscoring the potential for personalized treatment approaches. Emphasizing the need for precise diagnosis and tailored interventions aims to enhance patient outcomes and improve the quality of care for those with elevated IgE levels and associated immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Stefano Passanisi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| | | | | | | | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| |
Collapse
|
8
|
Qian W, Wu M, Wang G. Case of T-B+NK+ X-Linked Severe Combined Immunodeficiency Disease. Case Rep Med 2024; 2024:4278595. [PMID: 39450341 PMCID: PMC11502132 DOI: 10.1155/2024/4278595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024] Open
Abstract
We report a case of T-B+NK+ severe combined immunodeficiency disease (SCID) caused by IL2RG gene mutation (NM_000206.3 [IL2RG]: c.925-2A > G). The patient, a 2-month-old male, experienced multiple infections and decreased white blood cells in the early postnatal period. Antibiotic treatment was ineffective and ultimately resulted in multiple organ failure. The second-generation gene sequencing of patient showed that the IL2RG gene had a hemizygous mutation NM_000206.3 (IL2RG): c.925-2A > G, indicating a classical splice site mutation. According to the guidelines of the American College of Medical Genetics (ACMG), NM_00206.3 (IL2RG): c.925-2A > G variants can be classified as pathogenic (PVS1&PM1&PM6).
Collapse
Affiliation(s)
- Wenya Qian
- Department of Pediatrics, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Min Wu
- Department of Pediatrics, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guanling Wang
- Department of Pediatrics, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Isobe K, Saida S, Honda Y, Nihira H, Hiejima E, Izawa K, Kubota H, Kato I, Umeda K, Hiramatsu H, Yasumi T, Takita J. Successful cord blood transplantation using reduced intensity conditioning in a 5-month-old patient with IL-10RA deficiency. Pediatr Blood Cancer 2024; 71:e31056. [PMID: 38721857 DOI: 10.1002/pbc.31056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/27/2024]
Affiliation(s)
- Kiyotaka Isobe
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Saida
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Eitaro Hiejima
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Hirohito Kubota
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
- Department of Pediatrics, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
10
|
Baloh CH, Chong H. Inborn Errors of Immunity. Med Clin North Am 2024; 108:703-718. [PMID: 38816112 DOI: 10.1016/j.mcna.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Inborn errors of immunity occur in 1 in 1000 to 1 in 5000 individuals and are characterized by immune deficiency and immune dysregulation. The primary care provider (PCP) should be familiar with key features of these diagnoses including recurrent and/or severe infections, hyperinflammation, malignancy, and autoimmunity and have a low threshold to refer for evaluation. The PCP can begin a laboratory evaluation before referral by sending a complete blood count (CBC) with differential, antibody levels, vaccine titers, and possibly other tests. Management approaches vary from antibiotic prophylaxis to hematopoietic stem cell transplantation depending on the specific diagnosis.
Collapse
Affiliation(s)
- Carolyn H Baloh
- Division of Allergy and Clinical Immunology, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, BTM/Hale Building, 5th Floor, Boston, MA 02115, USA.
| | - Hey Chong
- Division of Allergy and Immunology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, AOB 3300, Pittsburgh, PA 15224, USA
| |
Collapse
|
11
|
Ellerbroek PM, Hanitsch LG, Witte T, Lougaris V, van Hagen P, van Paassen P, Chen J, Fielhauer K, McCoy B, Nagy A, Yel L. Long-term safety of hyaluronidase-facilitated subcutaneous immunoglobulin 10%: a European post-authorization study. Immunotherapy 2024; 16:679-691. [PMID: 38888495 PMCID: PMC11404692 DOI: 10.1080/1750743x.2024.2354091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/03/2024] [Indexed: 06/20/2024] Open
Abstract
Aim: To assess the long-term safety of hyaluronidase-facilitated subcutaneous immunoglobulin (fSCIG) 10% in European routine clinical practice.Materials & methods: This prospective, noninterventional, open-label, post-authorization safety study (EUPAS5812) sourced data on adverse events, immunogenicity, treatment regimens and product administration for 106 adult patients prescribed fSCIG 10% across 17 sites in six European countries from July 2014 to February 2020.Results: In total, 1171 treatment-emergent adverse events were reported in 94 patients (88.7%); 25.5% of these events were considered related to fSCIG 10%. Positive binding antibody titers developed in three patients; no neutralizing antibodies to recombinant human hyaluronidase were detected.Conclusion: This real-world study of fSCIG 10% is the longest to date and confirms its long-term safety and tolerability in adults with antibody deficiency diseases.
Collapse
Affiliation(s)
- Pauline M Ellerbroek
- Department of Internal Medicine & Infectious Diseases, University Medical Centre of Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Leif G Hanitsch
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin & Humboldt Universität zu Berlin, Augustenburger Platz 1 & Berlin Institute of Health, BIH Centre for Regenerative Therapies, Berlin, 13353, Germany
| | | | - Vassilios Lougaris
- Department of Clinical & Experimental Sciences, Università degli Studi di Brescia, Brescia, 25121, Italy
| | - P Martin van Hagen
- Erasmus University Medical Center, Departments of Internal Medicine & Immunology, Rotterdam, 3015 GD, The Netherlands
| | - Pieter van Paassen
- Maastricht University, Faculty of Health, Medicine & Life Sciences, Maastricht, 6229 ER, The Netherlands
| | - Jie Chen
- Takeda Development Center Americas, Inc., Cambridge, MA02139, USA
| | | | - Barbara McCoy
- Baxalta Innovations GmbH, a Takeda company, Vienna, 1221, Austria
| | - Andras Nagy
- Baxalta Innovations GmbH, a Takeda company, Vienna, 1221, Austria
| | - Leman Yel
- Takeda Development Center Americas, Inc., Cambridge, MA02139, USA
| |
Collapse
|
12
|
Campbell E, Shaker MS, Williams KW. Clinical updates in inborn errors of immunity: a focus on the noninfectious clinical manifestations. Curr Opin Pediatr 2024; 36:228-236. [PMID: 38299990 DOI: 10.1097/mop.0000000000001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW In the last 5 years, several new inborn errors of immunity (IEI) have been described, especially in the areas of immune dysregulation and autoinflammation. As a result, the clinical presentation of IEIs has broadened. We review the heterogeneous presentation of IEIs and detail several of the recently described IEIs with a focus on the noninfectious manifestations commonly seen. RECENT FINDINGS IEIs may present with early onset and/or multiple autoimmune manifestations, increased risk for malignancy, lymphoproliferation, severe atopy, autoinflammation and/or hyperinflammation. Because of this, patients can present to a wide array of providers ranging from primary care to various pediatric subspecialists. The International Union of Immunological Societies (IUIS) expert committee has created a phenotypic classification of IEIs in order to help clinicians narrow their evaluation based on the laboratory and clinical findings. SUMMARY Both primary care pediatricians and pediatric subspecialists need to be aware of the common clinical features associated with IEI and recognize when to refer to allergy-immunology for further evaluation. Early diagnosis can lead to earlier treatment initiation and improve clinical outcomes for our patients.
Collapse
Affiliation(s)
- Emily Campbell
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Marcus S Shaker
- Section of Allergy and Clinical Immunology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
13
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
14
|
Baum E, Huang W, Vincent-Delorme C, Brunelle P, Antebi A, Dafsari HS. Novel Genetic and Phenotypic Expansion in Ameliorated PUF60-Related Disorders. Int J Mol Sci 2024; 25:2053. [PMID: 38396730 PMCID: PMC10889399 DOI: 10.3390/ijms25042053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Heterozygous variants in the Poly(U) Binding Splicing Factor 60kDa gene (PUF60) have been associated with Verheij syndrome, which has the key features of coloboma, short stature, skeletal abnormalities, developmental delay, palatal abnormalities, and congenital heart and kidney defects. Here, we report five novel patients from unrelated families with PUF60-related disorders exhibiting novel genetic and clinical findings with three truncating variants, one splice-site variant with likely reduced protein expression, and one missense variant. Protein modeling of the patient's missense variant in the PUF60 AlphaFold structure revealed a loss of polar bonds to the surrounding residues. Neurodevelopmental disorders were present in all patients, with variability in speech, motor, cognitive, social-emotional and behavioral features. Novel phenotypic expansions included movement disorders as well as immunological findings with recurrent respiratory, urinary and ear infections, atopic diseases, and skin abnormalities. We discuss the role of PUF60 in immunity with and without infection based on recent organismic and cellular studies. As our five patients showed less-severe phenotypes than classical Verheij syndrome, particularly with the absence of key features such as coloboma or palatal abnormalities, we propose a reclassification as PUF60-related neurodevelopmental disorders with multi-system involvement. These findings will aid in the genetic counseling of patients and families.
Collapse
Affiliation(s)
- Emily Baum
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Wenming Huang
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | | | - Perrine Brunelle
- Institut de Génétique Médicale, University of Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Adam Antebi
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
- Department of Pediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders characterized by increased susceptibility to infection and/or aberrant regulation of immunological pathways. This review summarizes and highlights the new IEI disorders in the International Union of Immunological Societies (IUIS) 2022 report and current trends among new PIDs. RECENT FINDINGS Since the 2019 IUIS report and the 2021 IUIS interim update, the IUIS IEI classification now includes 485 validated IEIs. Increasing utilization of genetic testing and advances in the strategic evaluation of genetic variants has continued to drive the identification of, not only novel IEI disorders, but additional genetic etiologies for known IEI disorders and phenotypes. SUMMARY The recognition of new IEIs continues to advance at a rapid pace, which is due in part to increased performance and application of genetic modalities as well as expansion of the underlying science that is applied to convincingly establish causality. These disorders, as a whole, continue to emphasize the specificity of immunity, complexity of immune mechanisms, and the fine balance that defines immune homeostasis.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Mohsin N, Hunt D, Yan J, Jabbour AJ, Nghiem P, Choi J, Zhang Y, Freeman AF, Bergerson JRE, Dell’Orso S, Lachance K, Kulikauskas R, Collado L, Cao W, Lack J, Similuk M, Seifert BA, Ghosh R, Walkiewicz MA, Brownell I. Genetic Risk Factors for Early-Onset Merkel Cell Carcinoma. JAMA Dermatol 2024; 160:172-178. [PMID: 38170500 PMCID: PMC10765310 DOI: 10.1001/jamadermatol.2023.5362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
Importance Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Of the patients who develop MCC annually, only 4% are younger than 50 years. Objective To identify genetic risk factors for early-onset MCC via genomic sequencing. Design, Setting, and Participants The study represents a multicenter collaboration between the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute of Allergy and Infectious Diseases (NIAID), and the University of Washington. Participants with early-onset and later-onset MCC were prospectively enrolled in an institutional review board-approved study at the University of Washington between January 2003 and May 2019. Unrelated controls were enrolled in the NIAID Centralized Sequencing Program (CSP) between September 2017 and September 2021. Analysis was performed from September 2021 and March 2023. Early-onset MCC was defined as disease occurrence in individuals younger than 50 years. Later-onset MCC was defined as disease occurrence at age 50 years or older. Unrelated controls were evaluated by the NIAID CSP for reasons other than familial cancer syndromes, including immunological, neurological, and psychiatric disorders. Results This case-control analysis included 1012 participants: 37 with early-onset MCC, 45 with later-onset MCC, and 930 unrelated controls. Among 37 patients with early-onset MCC, 7 (19%) had well-described variants in genes associated with cancer predisposition. Six patients had variants associated with hereditary cancer syndromes (ATM = 2, BRCA1 = 2, BRCA2 = 1, and TP53 = 1) and 1 patient had a variant associated with immunodeficiency and lymphoma (MAGT1). Compared with 930 unrelated controls, the early-onset MCC cohort was significantly enriched for cancer-predisposing pathogenic or likely pathogenic variants in these 5 genes (odds ratio, 30.35; 95% CI, 8.89-106.30; P < .001). No germline disease variants in these genes were identified in 45 patients with later-onset MCC. Additional variants in DNA repair genes were also identified among patients with MCC. Conclusions and Relevance Because variants in certain DNA repair and cancer predisposition genes are associated with early-onset MCC, genetic counseling and testing should be considered for patients presenting at younger than 50 years.
Collapse
Affiliation(s)
- Noreen Mohsin
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Devin Hunt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Jia Yan
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | | | - Paul Nghiem
- Division of Dermatology, University of Washington, Seattle
| | - Jaehyuk Choi
- Northwestern University Department of Dermatology and Department of Biochemistry and Molecular Genetics, Chicago, Illinois
| | - Yue Zhang
- Northwestern University Department of Dermatology and Department of Biochemistry and Molecular Genetics, Chicago, Illinois
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland
| | | | | | | | | | - Loren Collado
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Wenjia Cao
- Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland
| | - Morgan Similuk
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Bryce A. Seifert
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Rajarshi Ghosh
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Magdalena A. Walkiewicz
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
17
|
Papanastasiou G, Yang G, Fotiadis DI, Dikaios N, Wang C, Huda A, Sobolevsky L, Raasch J, Perez E, Sidhu G, Palumbo D. Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies. COMMUNICATIONS MEDICINE 2023; 3:189. [PMID: 38123736 PMCID: PMC10733406 DOI: 10.1038/s43856-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Primary immunodeficiency (PI) is a group of heterogeneous disorders resulting from immune system defects. Over 70% of PI is undiagnosed, leading to increased mortality, co-morbidity and healthcare costs. Among PI disorders, combined immunodeficiencies (CID) are characterized by complex immune defects. Common variable immunodeficiency (CVID) is among the most common types of PI. In light of available treatments, it is critical to identify adult patients at risk for CID and CVID, before the development of serious morbidity and mortality. METHODS We developed a deep learning-based method (named "TabMLPNet") to analyze clinical history from nationally representative medical claims from electronic health records (Optum® data, covering all US), evaluated in the setting of identifying CID/CVID in adults. Further, we revealed the most important CID/CVID-associated antecedent phenotype combinations. Four large cohorts were generated: a total of 47,660 PI cases and (1:1 matched) controls. RESULTS The sensitivity/specificity of TabMLPNet modeling ranges from 0.82-0.88/0.82-0.85 across cohorts. Distinctive combinations of antecedent phenotypes associated with CID/CVID are identified, consisting of respiratory infections/conditions, genetic anomalies, cardiac defects, autoimmune diseases, blood disorders and malignancies, which can possibly be useful to systematize the identification of CID and CVID. CONCLUSIONS We demonstrated an accurate method in terms of CID and CVID detection evaluated on large-scale medical claims data. Our predictive scheme can potentially lead to the development of new clinical insights and expanded guidelines for identification of adult patients at risk for CID and CVID as well as be used to improve patient outcomes on population level.
Collapse
Affiliation(s)
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Dimitris I Fotiadis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, FORTH, Ioannina, Greece
- Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | | | - Chengjia Wang
- School of Mathematical and Computer Sciences, Heriot Watt, Edinburgh, UK
- Edinburgh Centre for Robotics, Edinburgh, UK
| | | | | | | | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA
| | | | | |
Collapse
|
18
|
Senter J, Wagner K, Gabryszewski SJ, Wolfset N, Reid W, Sun D. Severe Pneumonia in a Previously Healthy Infant. Clin Pediatr (Phila) 2023; 62:1595-1598. [PMID: 36964682 DOI: 10.1177/00099228231163381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Affiliation(s)
- James Senter
- Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristina Wagner
- Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stanislaw J Gabryszewski
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicole Wolfset
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Whitney Reid
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Di Sun
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
Lev A, Somech R, Somekh I. Newborn screening for severe combined immunodeficiency and inborn errors of immunity. Curr Opin Pediatr 2023; 35:692-702. [PMID: 37707504 DOI: 10.1097/mop.0000000000001291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
PURPOSE OF REVIEW Severe combined immune deficiency (SCID) is the most devastating genetic disease of the immune system with an unfavorable outcome unless diagnosed early in life. Newborn screening (NBS) programs play a crucial role in facilitating early diagnoses and timely interventions for affected infants. RECENT FINDINGS SCID marked the pioneering inborn error of immunity (IEI) to undergo NBS, a milestone achieved 15 years ago through the enumeration of T-cell receptor excision circles (TRECs) extracted from Guthrie cards. This breakthrough has revolutionized our approach to SCID, enabling not only presymptomatic identification and prompt treatments (including hematopoietic stem cell transplantation), but also enhancing our comprehension of the global epidemiology of SCID. SUMMARY NBS is continuing to evolve with the advent of novel diagnostic technologies and treatments. Following the successful implementation of SCID-NBS programs, a call for the early identification of additional IEIs is the next step, encompassing a broader spectrum of IEIs, facilitating early diagnoses, and preventing morbidity and mortality.
Collapse
Affiliation(s)
- Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | | |
Collapse
|
20
|
Joachim A, Aussel R, Gélard L, Zhang F, Mori D, Grégoire C, Villazala Merino S, Gaya M, Liang Y, Malissen M, Malissen B. Defective LAT signalosome pathology in mice mimics human IgG4-related disease at single-cell level. J Exp Med 2023; 220:e20231028. [PMID: 37624388 PMCID: PMC10457416 DOI: 10.1084/jem.20231028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Mice with a loss-of-function mutation in the LAT adaptor (LatY136F) develop an autoimmune and type 2 inflammatory disorder called defective LAT signalosome pathology (DLSP). We analyzed via single-cell omics the trajectory leading to LatY136F DLSP and the underlying CD4+ T cell diversification. T follicular helper cells, CD4+ cytotoxic T cells, activated B cells, and plasma cells were found in LatY136F spleen and lung. Such cell constellation entailed all the cell types causative of human IgG4-related disease (IgG4-RD), an autoimmune and inflammatory condition with LatY136F DLSP-like histopathological manifestations. Most previously described T cell-mediated autoimmune manifestations require persistent TCR input. In contrast, following their first engagement by self-antigens, the autoreactive TCR expressed by LatY136F CD4+ T cells hand over their central role in T cell activation to CD28 costimulatory molecules. As a result, all subsequent LatY136F DLSP manifestations, including the production of autoantibodies, solely rely on CD28 engagement. Our findings elucidate the etiology of the LatY136F DLSP and qualify it as a model of IgG4-RD.
Collapse
Affiliation(s)
- Anais Joachim
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Rudy Aussel
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Léna Gélard
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Fanghui Zhang
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Daiki Mori
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Claude Grégoire
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Sergio Villazala Merino
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mauro Gaya
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Yinming Liang
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Marie Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
21
|
Fayand A, Hentgen V, Posseme C, Lacout C, Picard C, Moguelet P, Cescato M, Sbeih N, Moreau TRJ, Zhu YYJ, Charuel JL, Corneau A, Deibener-Kaminsky J, Dupuy S, Fusaro M, Hoareau B, Hovnanian A, Langlois V, Le Corre L, Maciel TT, Miskinyte S, Miyara M, Moulinet T, Perret M, Schuhmacher MH, Rignault-Bricard R, Viel S, Vinit A, Soria A, Duffy D, Launay JM, Callebert J, Herbeuval JP, Rodero MP, Georgin-Lavialle S. Successful treatment of JAK1-associated inflammatory disease. J Allergy Clin Immunol 2023; 152:972-983. [PMID: 37343845 DOI: 10.1016/j.jaci.2023.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Gain-of-function variants of JAK1 drive a rare immune dysregulation syndrome associated with atopic dermatitis, allergy, and eosinophilia. OBJECTIVES This study sought to describe the clinical and immunological characteristics associated with a new gain-of-function variant of JAK1 and report the therapeutic efficacy of Janus kinase (JAK) inhibition. METHODS The investigators identified a family affected by JAK1-associated autoinflammatory disease and performed clinical assessment and immunological monitoring on 9 patients. JAK1 signaling was studied by flow and mass cytometry in patients' cells at basal state or after immune stimulation. A molecular disease signature in the blood was studied at the transcriptomic level. Patients were treated with 1 of 2 JAK inhibitors: either baricitinib or upadacitinib. Clinical, cellular, and molecular response were evaluated over a 2-year period. RESULTS Affected individuals displayed a syndromic disease with prominent allergy including atopic dermatitis, ichthyosis, arthralgia, chronic diarrhea, disseminated calcifying fibrous tumors, and elevated whole blood histamine levels. A variant of JAK1 localized in the pseudokinase domain was identified in all 9 affected, tested patients. Hyper-phosphorylation of STAT3 was found in 5 of 6 patients tested. Treatment of patients' cells with baricitinib controlled most of the atypical hyper-phosphorylation of STAT3. Administration of baricitinib to patients led to rapid improvement of the disease in all adults and was associated with reduction of systemic inflammation. CONCLUSIONS Patients with this new JAK1 gain-of-function pathogenic variant displayed very high levels of blood histamine and showed a variable combination of atopy with articular and gastrointestinal manifestations as well as calcifying fibrous tumors. The disease, which appears to be linked to STAT3 hyperactivation, was well controlled under treatment by JAK inhibitors in adult patients.
Collapse
Affiliation(s)
- Antoine Fayand
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France; Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Véronique Hentgen
- Pediatric Infectious Disease Group, Créteil, France; Department General Pediatrics, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Céline Posseme
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Carole Lacout
- Genetic Laboratory, Trousseau Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France; Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, Paris, France
| | - Philippe Moguelet
- Department of Pathology, Sorbonne Université, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Margaux Cescato
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Nabiha Sbeih
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Université de Paris Cité, Paris, France
| | - Thomas R J Moreau
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Yixiang Y J Zhu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Jean-Luc Charuel
- Département of Immunology, Groupement Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Aurélien Corneau
- Production et Analyse de données en Sciences de la vie et en Santé (PASS), Plateforme de Cytométrie de la Pitié-Salpêtrière, Unité Mixte de Service (UMS) 037, Sorbonne Université, Paris, France
| | - Joelle Deibener-Kaminsky
- Department of Internal Medicine and Clinical Immunology, Nancy University Hospital, University of Lorraine, Nancy, France; Molecular Engineering and Articular Physiopathology, Unité Mixte de Recherche 7365, Centre national de la recherche scientifique (CNRS), University of Lorraine, Nancy, France
| | - Stéphanie Dupuy
- BioMedTech Facilities, Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de services (US) 36, Centre national de la recherche scientifique (CNRS) Unité d'appui et de recherche (UAR) 2009, Université de Paris Cité, Paris, France
| | - Mathieu Fusaro
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, Paris, France
| | - Benedicte Hoareau
- Production et Analyse de données en Sciences de la vie et en Santé (PASS), Plateforme de Cytométrie de la Pitié-Salpêtrière, Unité Mixte de Service (UMS) 037, Sorbonne Université, Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Imagine Institute, Université de Paris Cité, Paris, France; Department of Genomics Medicine of Rare Diseases, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Vincent Langlois
- Department of Internal Medicine, Jacques Monod Hospital, Le Havre, France
| | - Laurent Le Corre
- Macromolecular Modeling Platform, Laboratoire de Chimie et Biochimie, Pharmacologiques et Toxicologiques, Centre national de la recherche scientifique (CNRS), Unité Mixte de Recherche (UMR) 8601, Université de Paris Cité, Paris, France
| | - Thiago T Maciel
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Université de Paris Cité, Paris, France
| | - Snaigune Miskinyte
- Laboratory of Genetic Skin Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Makoto Miyara
- Département of Immunology, Groupement Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Centre d'Immunologie et des Maladies Infectieuses, Institut national de la santé et de la recherche médicale (INSERM) U1135, Hôpital Pitié-Salpêtrière AP-HP, Sorbonne Université, Paris, France
| | - Thomas Moulinet
- Department of Internal Medicine and Clinical Immunology, Nancy University Hospital, University of Lorraine, Nancy, France; Molecular Engineering and Articular Physiopathology, Unité Mixte de Recherche 7365, Centre national de la recherche scientifique (CNRS), University of Lorraine, Nancy, France
| | - Magali Perret
- Immunology Laboratory, Lyon Sud Hospital, Hospices Civils de Lyon, University of Claude Bernard-Lyon 1, Lyon, France
| | | | - Rachel Rignault-Bricard
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Université de Paris Cité, Paris, France
| | - Sébastien Viel
- Department of Genomics Medicine of Rare Diseases, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Angélique Vinit
- Production et Analyse de données en Sciences de la vie et en Santé (PASS), Plateforme de Cytométrie de la Pitié-Salpêtrière, Unité Mixte de Service (UMS) 037, Sorbonne Université, Paris, France
| | - Angèle Soria
- Dermatology-Allergology Department, Sorbonne Université, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Jean-Marie Launay
- Service of Biochemistry and Molecular Biology, Institut national de la santé et de la recherche médicale (INSERM) U942, Hospital Lariboisière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, Institut national de la santé et de la recherche médicale (INSERM) U942, Hospital Lariboisière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Jean Philippe Herbeuval
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Mathieu P Rodero
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Sophie Georgin-Lavialle
- Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France.
| |
Collapse
|
22
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Maassen W, Legger G, Kul Cinar O, van Daele P, Gattorno M, Bader-Meunier B, Wouters C, Briggs T, Johansson L, van der Velde J, Swertz M, Omoyinmi E, Hoppenreijs E, Belot A, Eleftheriou D, Caorsi R, Aeschlimann F, Boursier G, Brogan P, Haimel M, van Gijn M. Curation and expansion of the Human Phenotype Ontology for systemic autoinflammatory diseases improves phenotype-driven disease-matching. Front Immunol 2023; 14:1215869. [PMID: 37781402 PMCID: PMC10536149 DOI: 10.3389/fimmu.2023.1215869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Accurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs. Methods We collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient. Results Our results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2. Discussion This study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.
Collapse
Affiliation(s)
- Willem Maassen
- Genomics Coordination Centre, Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Geertje Legger
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Ovgu Kul Cinar
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Paul van Daele
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
- Department of Immunology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannini Gaslini, Genoa, Italy
| | - Brigitte Bader-Meunier
- Department of Paediatric Immunology-Hematology and Rheumatology, Necker University Hospital - APHP, Paris, France
- Laboratory of Immunogenetics of Paediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, France
| | - Carine Wouters
- Department of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
| | - Tracy Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Lennart Johansson
- Genomics Coordination Centre, Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Joeri van der Velde
- Genomics Coordination Centre, Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Morris Swertz
- Genomics Coordination Centre, Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Ebun Omoyinmi
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Esther Hoppenreijs
- Department of Pediatric Rheumatology, Pediatrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexandre Belot
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, INSERM, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM, Claude Bernard University, Lyon, France
| | - Despina Eleftheriou
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Roberta Caorsi
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannini Gaslini, Genoa, Italy
| | - Florence Aeschlimann
- Department of Paediatric Immunology-Hematology and Rheumatology, Necker University Hospital - APHP, Paris, France
- Division of Pediatric Rheumatology, University Children’s Hospital Basel, Basel, Switzerland
| | - Guilaine Boursier
- Laboratory of Rare and Autoinflammatory Genetic Diseases and Reference Centre for Autoinflammatory Diseases and Amyloidosis (CEREMAIA), Department of Medical Genetics, Rare Diseases and Personalized Medicine, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Paul Brogan
- Inflammation and Rheumatology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Marielle van Gijn
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Moriya K, Nakano T, Honda Y, Tsumura M, Ogishi M, Sonoda M, Nishitani-Isa M, Uchida T, Hbibi M, Mizoguchi Y, Ishimura M, Izawa K, Asano T, Kakuta F, Abukawa D, Rinchai D, Zhang P, Kambe N, Bousfiha A, Yasumi T, Boisson B, Puel A, Casanova JL, Nishikomori R, Ohga S, Okada S, Sasahara Y, Kure S. Human RELA dominant-negative mutations underlie type I interferonopathy with autoinflammation and autoimmunity. J Exp Med 2023; 220:e20212276. [PMID: 37273177 PMCID: PMC10242411 DOI: 10.1084/jem.20212276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/28/2022] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.
Collapse
Affiliation(s)
- Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takashi Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohamed Hbibi
- Pediatric Service University Hospital Center Hassan II Fès, Faculty of Medicine and Pharmacy Sidi Mohamed Ben Abdellah University, Fès, Morocco
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Fumihiko Kakuta
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Daiki Abukawa
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aziz Bousfiha
- Faculty of Medicine and Pharmacy. Hassan II University, Casablanca, Morocco
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
25
|
Tadros S, Prévot J, Meyts I, Sánchez-Ramón S, Erwa NH, Fischer A, Lefevre G, Hotchko M, Jaworski PM, Leavis H, Boersma C, Drabwell J, van Hagen M, Van Coillie S, Pergent M, Burns SO, Mahlaoui N. The PID Odyssey 2030: outlooks, unmet needs, hurdles, and opportunities - proceedings from the IPOPI global multi-stakeholders' summit (June 2022). Front Immunol 2023; 14:1245718. [PMID: 37654496 PMCID: PMC10465327 DOI: 10.3389/fimmu.2023.1245718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
IPOPI held its first Global Multi-Stakeholders' Summit on 23-24 June 2022 in Cascais, Portugal. This IPOPI initiative was designed to set the stage for a stimulating forward-thinking meeting and brainstorming discussion among stakeholders on the future priorities of the PID community. All participants were actively engaged in the entire Summit, bringing provocative questions to ensure a high level of discussion and engagement, and partnered in identifying the outlooks, unmet needs, hurdles and opportunities of PIDs for 2030. The topics that were covered include diagnosis (e.g., newborn screening [NBS], genomic sequencing- including ethical aspects on the application of genomics on NBS, the role of more accurate and timely diagnostics in impacting personalized management), treatment (e.g., the therapeutic evolution of immunoglobulins in a global environment, new therapies such as targeted therapies, new approaches in curative therapies), the interactions of Primary ID with Secondary ID, Autoinflammatory Diseases and other diseases as the field experiences an incessant evolution, and also the avenues for research in the field of humanities and human sciences such as Patient-Reported Outcome Measures (PROMs), Patient-Reported Experience Measures (PREMs), and Health-Related Quality Of Life (HRQoL). During this meeting, all participants contributed to the drafting of recommendations based on our common understanding of the future opportunities, challenges, and scenarios. As a collection of materials, perspectives and summaries, they are succinct and impactful and may help determine some of the next key steps for the PID community.
Collapse
Affiliation(s)
- Susan Tadros
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | | | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Silvia Sánchez-Ramón
- Department of Immunology, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), IML and IdISSC, Madrid, Spain
| | - Nahla H. Erwa
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Alain Fischer
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Collège de France, Paris, France
- Imagine Institute, UMR Inserm 1163, Paris, France
| | - Guillaume Lefevre
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE Institut de recherche translationnelle sur l'inflammation, Lille, France
- Institut d'Immunologie, CHU Lille, Lille, France
| | | | - Peter M. Jaworski
- Strategy, Ethics, Economics, and Public Policy, McDonough School of Business, Georgetown University, Washington, DC, United States
| | - Helen Leavis
- Department of Rheumatology & Clinical Immunology, University Medical Center (UMC), Utrecht University, Utrecht, Netherlands
| | - Cornelis Boersma
- Health-Ecore B.V., Zeist, Netherlands
- Unit of Global Health, Department of Health Sciences, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
- Department of Management Sciences, Open University, Heerlen, Netherlands
| | | | - Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Siobhan O. Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Nizar Mahlaoui
- IPOPI, Brussels, Belgium
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
26
|
Reis BCSD, Soares Faccion R, de Carvalho FAA, Moore DCBC, Zuma MCC, Plaça DR, Salerno Filgueiras I, Leandro Mathias Fonseca D, Cabral-Marques O, Bonomo AC, Savino W, Freitas FCDP, Faoro H, Passetti F, Robaina JR, de Oliveira FRC, Novaes Bellinat AP, Zeitel RDS, Salú MDS, de Oliveira MBG, Rodrigues-Santos G, Prata-Barbosa A, de Vasconcelos ZFM. Rare genetic variants involved in multisystem inflammatory syndrome in children: a multicenter Brazilian cohort study. Front Cell Infect Microbiol 2023; 13:1182257. [PMID: 37588055 PMCID: PMC10426286 DOI: 10.3389/fcimb.2023.1182257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Despite the existing data on the Multisystem Inflammatory Syndrome in Children (MIS-C), the factors that determine these patients evolution remain elusive. Answers may lie, at least in part, in genetics. It is currently under investigation that MIS-C patients may have an underlying innate error of immunity (IEI), whether of monogenic, digenic, or even oligogenic origin. Methods To further investigate this hypothesis, 30 patients with MIS-C were submitted to whole exome sequencing. Results Analyses of genes associated with MIS-C, MIS-A, severe covid-19, and Kawasaki disease identified twenty-nine patients with rare potentially damaging variants (50 variants were identified in 38 different genes), including those previously described in IFNA21 and IFIH1 genes, new variants in genes previously described in MIS-C patients (KMT2D, CFB, and PRF1), and variants in genes newly associated to MIS-C such as APOL1, TNFRSF13B, and G6PD. In addition, gene ontology enrichment pointed to the involvement of thirteen major pathways, including complement system, hematopoiesis, immune system development, and type II interferon signaling, that were not yet reported in MIS-C. Discussion These data strongly indicate that different gene families may favor MIS- C development. Larger cohort studies with healthy controls and other omics approaches, such as proteomics and RNAseq, will be precious to better understanding the disease dynamics.
Collapse
Affiliation(s)
- Bárbara Carvalho Santos Dos Reis
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Roberta Soares Faccion
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Daniella Campelo Batalha Cox Moore
- Unidade de Pacientes Graves, Departamento de Pediatria, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - Maria Celia Chaves Zuma
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Desirée Rodrigues Plaça
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia), FCF, USP, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
| | - Dennyson Leandro Mathias Fonseca
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, SP, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Adriana Cesar Bonomo
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Wilson Savino
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Helisson Faoro
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | - Fabio Passetti
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | | | | | | | - Raquel de Seixas Zeitel
- Pediatric Intensive Care Unit, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Margarida dos Santos Salú
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Pediatric Intensive Care Unit, Hospital Martagão Gesteira, Salvador, BA, Brazil
| | | | | | - Arnaldo Prata-Barbosa
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
- Pediatric Intensive Care Unit, Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
27
|
Heropolitańska-Pliszka E, Pac M, Pietrucha B, Machura E, Pukas-Bochenek A, Chrobak E, Bień E, Malanowska M, Pituch-Noworolska A, Drygała S, Kamieniak M, Kasprzak J, Mach-Tomalska M. Subcutaneous immunoglobulin 20% (Ig20Gly) treatment regimens in pediatric patients with primary immunodeficiencies - real-world data from the IG TATRY study. Expert Rev Clin Immunol 2023; 19:1281-1291. [PMID: 37489744 DOI: 10.1080/1744666x.2023.2240514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Subcutaneous administration of immunoglobulins is associated with fewer systemic adverse events and easier infusion compared to intravenous administration. Ig20Gly is a 20% immunoglobulin formulation effective and safe in patients with primary immune deficiency diseases (PIDDs). Real-world data are scarce, therefore our study aimed to examine the real-life treatment regimen and clinical outcomes of Ig20Gly in Polish children with PIDDs. RESEARCHDESIGN We retrospectively analyzed the medical documentation of 75 pediatric patients aged 0-17 years (mean 9.9) who received Ig20Gly (Cuvitru®; Baxalta US, Inc.; part of Takeda, MA, U.S.A.). RESULTS The median exposure to treatment of the study population was 22.3 months. At the end of the study, 59 (78.7%) were still on Ig20Gly. The median monthly dose was 0.40 g/kg. The median treatment interval was 7.7 days. Most patients (96%) used one infusion site. The median infusion rate increased with patient age. The median IgG level in the study population, 8.0 g/L, was stable. There was one case of serious bacterial infection. CONCLUSION This is the largest, long-term real-world study to date on the treatment patterns of Ig20Gly in pediatric patients with PIDDs. The results of this study support the feasibility and tolerability of Ig20Gly usage in PIDD patients across the pediatric age spectrum. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov (NCT04636502).
Collapse
Affiliation(s)
| | - Małgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Edyta Machura
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Anna Pukas-Bochenek
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Ewelina Chrobak
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Ewa Bień
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Malanowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | | | - Szymon Drygała
- Takeda Pharma Sp. Z.O.o, Medical Affairs, Warsaw, Poland
| | | | - Jakub Kasprzak
- Takeda Pharma Sp. Z.O.o, Medical Affairs, Warsaw, Poland
| | - Monika Mach-Tomalska
- Department of Immunology, University Children's Hospital of Cracow, Cracow, Poland
| |
Collapse
|
28
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023; 151:1429-1447. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
29
|
Tzivelekis S, Orange J, Poulos C, Meckley LM, Peay H, Sutphin J, Hernandez-Trujillo VP, Wasserman RL. Development of a novel shared decision making aid for primary immunodeficiency diseases. Immunotherapy 2023; 15:647-656. [PMID: 37158075 DOI: 10.2217/imt-2022-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Aim: To describe development of a shared decision making (SDM) aid in treating primary immunodeficiency diseases (PID) with immunoglobulin replacement therapy (IGRT). Materials & methods: Expert engagement and qualitative formative research informed development. IGRT administration features were prioritized using object-case best-worst scaling (BWS) methodology. The aid was assessed by US adults self-reporting PID and revised following interviews/mock treatment-choice discussions with immunologists. Results: Patients participating in interviews (n = 19) and mock treatment-choice discussions (n = 5) deemed the aid useful/accessible and supported the utility of BWS, with content and BWS exercises refined following participant feedback. Conclusion: Formative research led to an improved SDM aid/BWS exercise, and illustrated how the aid may improve treatment decision making. The aid may help less-experienced patients and facilitate efficient SDM.
Collapse
Affiliation(s)
| | - Jordan Orange
- Columbia University Irving Medical Center, 632 W168th Street, New York, NY 10032, USA
| | - Christine Poulos
- RTI Health Solutions, 3040 Cornwallis Road, Research Triangle Park, Durham, NC 27709, USA
| | - Lisa M Meckley
- Takeda, 650 East Kendall Street, Cambridge, MA 02142, USA
| | - Holly Peay
- RTI International, 3040 Cornwallis Road, Research Triangle Park, Durham, NC 27709, USA
| | - Jessie Sutphin
- Duke Clinical Research Institute, Duke University, 200 Morris Street, Durham NC 27705-3976, USA
- RTI Health Solutions, 3040 Cornwallis Road, Research Triangle Park, Durham, NC 27709, USA
| | | | - Richard L Wasserman
- Allergy Partners of North Texas, Suite B-332, 7777 Forest Lane, Dallas, TX 75230, USA
| |
Collapse
|
30
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
31
|
Fraga-Olvera A, Saavedra-Salinas MÁ, Beltrán-Mendoza JQ, Mendieta-Flores E. [Prevalence of persistent hypogammaglobulinemia in patients with autoimmune rheumatic disease who received treatment with Rituximab in a national medical center in Mexico]. REVISTA ALERGIA MÉXICO 2023; 69:171-182. [PMID: 37218045 DOI: 10.29262/ram.v69i4.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/31/2023] [Indexed: 05/24/2023] Open
Abstract
OBJECTIVE To describe the prevalence of persistent hypogammaglobulinemia in patients receiving Rituximab as a treatment for autoimmune rheumatological diseases. METHODS A transversal, retrospective and unicentric study, carried out in patients with autoimmune rheumatic diseases who were admitted to the Rheumatology service of the Hospital de Especialidades Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Mexico City, to receive treatment with rituximab between January 2013 and January 2018. Descriptive and inferential statistics of serum levels of immunoglobulins, clinical-demographic characteristics, diagnosis, and treatment received were performed. RESULTS from 262 patients with autoimmune rheumatological disease who received treatment with Rituximab; We identified 8 patients with persistent hypogammaglobulinemia (6 women and 2 men), this is a prevalence of 3.1%. No associated factors with the development of hypogammaglobulinemia were identified. CONCLUSIONS Until now, no associated prognostic or predictive factors have been identified with persistent hypogammaglobulinemia. Additional prospective studies are required to understand more precisely the implications of persistent hypogammaglobulinemia in patients with autoimmune diseases.
Collapse
|
32
|
Imai K, Oh A, Morishita A, Inoue Y. Physician awareness and understanding of primary immunodeficiency disorders: a web-based study in Japan. Immunol Med 2023; 46:45-57. [PMID: 36330855 DOI: 10.1080/25785826.2022.2137966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary immunodeficiencies (PIDs)/Inborn errors of immunity (IEI) consist of a complex genetic group of disorders that cause susceptibility to infections, inflammation, immune dysregulation, autoimmunity, and malignancy. One of the key steps to reach an early diagnosis is improving knowledge of PID among the medical community. In this study, a web-based survey was conducted among 355 Japanese physicians, consisting of 121 pediatricians, 116 hematologists, and 118 general internal medicine physicians, to assess their awareness and knowledge about the diagnostic flow of PID. One of the major problems this study identified was the unawareness of optimal IgG trough levels among the physicians, while around half the physicians knew about the symptoms of PID. Results from the hypothetical case study revealed that over 70% of physicians considered PID after obtaining the past medical history of patients and 75.2% of physicians showed interest in gaining more knowledge about PID. The survey findings revealed that proper questioning to understand the exact medical history of patients may lead to basic immunological examination. There is a need to improve knowledge about PID, e.g., the '10 warning signs of PID' and '4 stages of testing for PID', and to motivate physicians to ensure earlier diagnosis of PID.
Collapse
Affiliation(s)
- Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Oh
- Japan Medical Office, Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | | | - Yoichi Inoue
- Japan Medical Office, Takeda Pharmaceutical Company Limited, Tokyo, Japan
| |
Collapse
|
33
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
34
|
Moser LM, Fekadu J, Willasch A, Rettinger E, Sörensen J, Jarisch A, Kirwil M, Lieb A, Holzinger D, Calaminus G, Bader P, Bakhtiar S. Treatment of inborn errors of immunity patients with inflammatory bowel disease phenotype by allogeneic stem cell transplantation. Br J Haematol 2023; 200:595-607. [PMID: 36214981 DOI: 10.1111/bjh.18497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Patients with inborn errors of immunity (IEI) can suffer from treatment-refractory inflammatory bowel disease (IBD) causing failure to thrive and consequences of long-term multiple immunosuppressive treatments. Allogeneic haematopoietic stem cell transplantation (alloHSCT) can serve as a curative treatment option. In this single-centre retrospective cohort study we report on 11 paediatric and young adult IEI patients with IBD and failure to thrive, who had exhausted symptomatic treatment options and received alloHSCT. The cohort included chronic granulomatous disease (CGD), lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency, STAT3 gain-of-function (GOF), Wiskott-Aldrich syndrome (WAS), dedicator of cytokinesis 8 (DOCK8) deficiency and one patient without genetic diagnosis. All patients achieved stable engraftment and immune reconstitution, and gastrointestinal symptoms were resolved after alloHSCT. The overall survival was 11/11 over a median follow-up of 34.7 months. Graft-versus-host disease (GVHD) was limited to grade I-II acute GVHD (n = 5), one case of grade IV acute GVHD and one case of limited chronic GVHD. Since treatment recommendations are limited, this work provides a centre-specific approach to treatment prior to transplant as well as conditioning in IEI patients with severe IBD.
Collapse
Affiliation(s)
- Laura M Moser
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Fekadu
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - André Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Jan Sörensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Andrea Jarisch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Marta Kirwil
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Adrian Lieb
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany.,Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Gabriele Calaminus
- Department for Children and Adolescents, University Hospital Bonn, Bonn, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
35
|
Cheng GS, Crothers K, Aliberti S, Bergeron A, Boeckh M, Chien JW, Cilloniz C, Cohen K, Dean N, Dela Cruz CS, Dickson RP, Greninger AL, Hage CA, Hohl TM, Holland SM, Jones BE, Keane J, Metersky M, Miller R, Puel A, Ramirez J, Restrepo MI, Sheshadri A, Staitieh B, Tarrand J, Winthrop KL, Wunderink RG, Evans SE. Immunocompromised Host Pneumonia: Definitions and Diagnostic Criteria: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2023; 20:341-353. [PMID: 36856712 PMCID: PMC9993146 DOI: 10.1513/annalsats.202212-1019st] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria.
Collapse
|
36
|
Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, Martin-Fernandez M, Conil C, Rinchai D, Momenilandi M, Mahdaviani A, Keramatipour M, Rosain J, Yang R, Khan T, Neehus AL, Materna M, Han JE, Peel J, Mele F, Weisshaar M, Jovic S, Bastard P, Lévy R, Le Voyer T, Zhang P, Renkilaraj MRLM, Arango-Franco CA, Pelham S, Seeleuthner Y, Pochon M, Ata MMA, Ali FA, Migaud M, Soudée C, Kochetkov T, Molitor A, Carapito R, Bahram S, Boisson B, Fieschi C, Mansouri D, Marr N, Okada S, Shahrooei M, Parvaneh N, Chavoshzadeh Z, Cobat A, Bogunovic D, Abel L, Tangye S, Ma CS, Béziat V, Sallusto F, Boisson-Dupuis S, Bustamante J, Casanova JL, Puel A. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci Immunol 2023; 8:eabq5204. [PMID: 36763636 PMCID: PMC10069949 DOI: 10.1126/sciimmunol.abq5204] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Patients with autosomal recessive (AR) IL-12p40 or IL-12Rβ1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clement Conil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Simon Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | | | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Tatiana Kochetkov
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, Paris, France
| | - Davood Mansouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha Qatar
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, Japan
| | | | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Teheran University of Medical Sciences, Teheran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stuart Tangye
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy S. Ma
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
37
|
Dell’Orso G, Bagnasco F, Giardino S, Pierri F, Ferrando G, Di Martino D, Micalizzi C, Guardo D, Volpi S, Sabatini F, Miano M, Gattorno M, Dufour C, Faraci M. Hematopoietic stem cell transplantation for inborn errors of immunity: 30-year single-center experience. Front Immunol 2023; 14:1103080. [PMID: 36825011 PMCID: PMC9941625 DOI: 10.3389/fimmu.2023.1103080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents an effective treatment for a variety of inborn errors of immunity (IEI). We report the experience of children affected by IEI who received allo-HSCT over a period of 32 years at IRCCS Istituto Giannina Gaslini, Genoa, Italy. HSCTs were performed in 67 children with IEI. Kaplan-Meier estimates of overall survival (OS) rate at 5 years in the whole group of patients was 83.4% after a median follow-up of 4 years. Median age at transplant was 2.5 years. Eight allo-HSCTs were complicated by either primary or secondary graft failure (GF), the overall incidence of this complication being 10.9%. Incidence of grade 3-4 acute GvHD (aGvHD) was 18.7%, significantly lower in the haploidentical transplant cohort (p = 0.005). Year of transplant (≤2006 vs. >2006) was the main factor influencing the outcome. In fact, a significant improvement in 5-year OS was demonstrated (92.5% >2006 vs. 65% ≤2006, p = 0.049). Frequency of severe aGvHD was significantly reduced in recent years (≤2006 61.5%, vs. >2006 20%, p = 0.027). A significant progress has been the introduction of the TCR αβ/CD19-depleted haploidentical platform, which was associated with the absence of severe aGvHD. However, it was associated with 23.5% incidence of GF. All but one patient experiencing GF in the this specific cohort were successfully retransplanted. In summary, allo-HSCT is confirmed to be an effective treatment for children with IEI, even in the absence of an HLA-matched donor.
Collapse
Affiliation(s)
- Gianluca Dell’Orso
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Bagnasco
- Scientific Directorate, Epidemiology and Biostatistics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Giardino
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Filomena Pierri
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giulia Ferrando
- Infectious Diseases Unit and COVID-Hospital, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Daniela Guardo
- Hematology Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federica Sabatini
- Stem Cells and Cell Therapies Laboratory, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Carlo Dufour
- Hematology Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
38
|
Bakhtiari Koohsorkhi M, Wu J, Ziaee V. Editorial: Case Reports in Pediatric Rheumatology 2022. Front Pediatr 2023; 11:1137843. [PMID: 36814592 PMCID: PMC9939888 DOI: 10.3389/fped.2023.1137843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Affiliation(s)
| | - Junfeng Wu
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Vahid Ziaee
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran
- Pediatric Rheumatology Society of Iran, Tehran, Iran
| |
Collapse
|
39
|
Baloh CH, Chong H. Inborn Errors of Immunity. Prim Care 2023; 50:253-268. [PMID: 37105605 DOI: 10.1016/j.pop.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Inborn errors of immunity occur in 1 in 1000 to 1 in 5000 individuals and are characterized by immune deficiency and immune dysregulation. The primary care provider (PCP) should be familiar with key features of these diagnoses including recurrent and/or severe infections, hyperinflammation, malignancy, and autoimmunity and have a low threshold to refer for evaluation. The PCP can begin a laboratory evaluation before referral by sending a complete blood count (CBC) with differential, antibody levels, vaccine titers, and possibly other tests. Management approaches vary from antibiotic prophylaxis to hematopoietic stem cell transplantation depending on the specific diagnosis.
Collapse
|
40
|
Dvorak CC, Haddad E, Heimall J, Dunn E, Buckley RH, Kohn DB, Cowan MJ, Pai SY, Griffith LM, Cuvelier GDE, Eissa H, Shah AJ, O'Reilly RJ, Pulsipher MA, Wright NAM, Abraham RS, Satter LF, Notarangelo LD, Puck JM. The diagnosis of severe combined immunodeficiency (SCID): The Primary Immune Deficiency Treatment Consortium (PIDTC) 2022 Definitions. J Allergy Clin Immunol 2023; 151:539-546. [PMID: 36456361 PMCID: PMC9905311 DOI: 10.1016/j.jaci.2022.10.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
Severe combined immunodeficiency (SCID) results from defects in the differentiation of hematopoietic stem cells into mature T lymphocytes, with additional lymphoid lineages affected in particular genotypes. In 2014, the Primary Immune Deficiency Treatment Consortium published criteria for diagnosing SCID, which are now revised to incorporate contemporary approaches. Patients with typical SCID must have less than 0.05 × 109 autologous T cells/L on repetitive testing, with either pathogenic variant(s) in a SCID-associated gene, very low/undetectable T-cell receptor excision circles or less than 20% of CD4 T cells expressing naive markers, and/or transplacental maternally engrafted T cells. Patients with less profoundly impaired autologous T-cell differentiation are designated as having leaky/atypical SCID, with 2 or more of these: low T-cell numbers, oligoclonal T cells, low T-cell receptor excision circles, and less than 20% of CD4 T cells expressing naive markers. These patients must also have either pathogenic variant(s) in a SCID-associated gene or reduced T-cell proliferation to certain mitogens. Omenn syndrome requires a generalized erythematous rash, absent transplacentally acquired maternal engraftment, and 2 or more of these: eosinophilia, elevated IgE, lymphadenopathy, hepatosplenomegaly. Thymic stromal defects and other causes of secondary T-cell deficiency are excluded from the definition of SCID. Application of these revised Primary Immune Deficiency Treatment Consortium 2022 Definitions permits precise categorization of patients with T-cell defects but does not imply a preferred treatment strategy.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif.
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jennifer Heimall
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, and Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Elizabeth Dunn
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Rebecca H Buckley
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif; Department of Pediatrics, University of California, Los Angeles, Los Angeles, Calif
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Colo
| | - Ami J Shah
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, Calif
| | - Richard J O'Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering, New York, NY
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Nicola A M Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Lisa Forbes Satter
- Pediatric Immunology Allergy and Retrovirology, Baylor College of Medicine, Houston, Tex
| | - Luigi D Notarangelo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
41
|
Moundir A, Ouair H, Benhsaien I, Jeddane L, Rada N, Amenzoui N, Jouhadi Z, Adnane F, Hafidi NE, Kili A, Bourhanbour Drissi A, Babakhouya A, Benmiloud S, Hbibi M, Benajiba N, Hida M, Bouskraoui M, Mahraoui C, Admou B, Bakkouri JE, Ailal F, Bousfiha AA. Genetic Diagnosis of Inborn Errors of Immunity in an Emerging Country: a Retrospective Study of 216 Moroccan Patients. J Clin Immunol 2023; 43:485-494. [PMID: 36367635 DOI: 10.1007/s10875-022-01398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Genetic testing provides great support to validate the clinical diagnosis of inborn errors of immunity (IEI). However, the high cost and advanced technology make these tests inaccessible to a large proportion of patients in low-income countries. In the present study, we aim to evaluate the Moroccan experience in genetic testing and to report the main molecular features and difficulties encountered in genetic diagnosis. METHODS We performed a multi-center retrospective analysis of all patients with a molecular diagnosis and registered in the national registry between 2010 and 2022. To estimate the impact of the newly identified mutations, we calculated the Combined Annotation Dependent Depletion (CADD) score and the mutation significance cutoff (MSC) for each variant. RESULTS A total of 216 (29%) patients received a genetic diagnosis out of 742 patients with IEI included in the registry. All genetic tests were performed in the context of thesis projects (40%) or international collaborations (60%). A set of 55 genetic defects were identified, including 7 newly reported: SNORA31, TBX21, SPPL2A, TYK2, RLTPR, ZNF341, and STAT2 GOF. Genetic diagnoses were more frequent in the defects of innate and intrinsic immunity with a percentage of 78%, while antibody deficiencies had a lower frequency with a percentage of 17.5%. Only one genetic diagnosis has been made in the complement deficiency group. The most commonly used molecular techniques were Sanger sequencing (37%) followed by targeted gene sequencing (31%). CONCLUSION The thesis projects and collaborations were beneficial as they allowed us to provide a definitive genetic diagnosis to 29% of the patients and to contribute to the identification of new genetic defects and mutations. These results offer insight into the progress made in genetic diagnoses of IEI in Morocco, which would provide a baseline for improving the clinical management of patients with IEI.
Collapse
Affiliation(s)
- Abderrahmane Moundir
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hind Ouair
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, A. Harouchi Children Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Leila Jeddane
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratoire National de Référence, Mohamed VI University of Health Sciences, Casablanca, Morocco
| | - Nouredine Rada
- Department of Pediatric Infectious Diseases, Mohammed VI University Hospital, Marrakech, Morocco
| | - Naïma Amenzoui
- Department of Pediatric Infectious Diseases and Clinical Immunology, A. Harouchi Children Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases and Clinical Immunology, A. Harouchi Children Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Adnane
- Department of Pediatric Infectious Diseases and Clinical Immunology, A. Harouchi Children Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Naïma El Hafidi
- Department of Pediatric Infectious Diseases, Ibn Sina University Hospital, Rabat, Morocco
| | - Amina Kili
- Department of Pediatric Hemato-Oncology, Ibn Sina University Hospital, Rabat, Morocco
| | - Asmaa Bourhanbour Drissi
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Abdeladim Babakhouya
- Department of Pediatric Infectious Diseases, Hassan II University Hospital, Fes, Morocco
| | - Sarra Benmiloud
- Department of Pediatric Infectious Diseases, Hassan II University Hospital, Fes, Morocco
| | - Mohamed Hbibi
- Department of Pediatric Infectious Diseases, Hassan II University Hospital, Fes, Morocco
| | - Noufissa Benajiba
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
| | - Mustapha Hida
- Department of Pediatric Infectious Diseases, Hassan II University Hospital, Fes, Morocco
| | - Mohamed Bouskraoui
- Department of Pediatric Infectious Diseases, Mohammed VI University Hospital, Marrakech, Morocco
| | - Chafiq Mahraoui
- Pneumo-Allergology Unit, Rabat Children Hospital, Faculty of Medicine, Mohammed V University, Rabat, Morocco
| | - Brahim Admou
- Immunology Laboratory, Mohammed VI University Hospital, Marrakech, Morocco
| | - Jalila El Bakkouri
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Ailal
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, A. Harouchi Children Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco.
- Department of Pediatric Infectious Diseases and Clinical Immunology, A. Harouchi Children Hospital, Ibn Rochd University Hospital, Casablanca, Morocco.
| |
Collapse
|
42
|
Shahrbabaki ZS, Chavoshzadeh Z, Abdollahimajd F, sharafian S, Jamee M, Bondarenko A, Mahdavi T. Skin manifestations in children with inborn errors of immunity in a tertiary care hospital in Iran. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2023. [DOI: 10.1002/cia2.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Zahra Salehi Shahrbabaki
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fahimeh Abdollahimajd
- Skin Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
- Clinical Research Development Unit of Shohada‐e Tajrish Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Samin sharafian
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Anastasia Bondarenko
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medic School International European Kyiv Kyiv Ukraine
| | - Tolue Mahdavi
- Department of Allergy and Clinical Immunology, Hazrat Rasoul Hospital Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
43
|
Poker Y, von Hardenberg S, Hofmann W, Tang M, Baumann U, Schwerk N, Wetzke M, Lindenthal V, Auber B, Schlegelberger B, Ott H, von Bismarck P, Viemann D, Dressler F, Klemann C, Bergmann AK. Systematic genetic analysis of pediatric patients with autoinflammatory diseases. Front Genet 2023; 14:1065907. [PMID: 36777733 PMCID: PMC9911692 DOI: 10.3389/fgene.2023.1065907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Monogenic autoinflammatory diseases (AID) encompass a growing group of inborn errors of the innate immune system causing unprovoked or exaggerated systemic inflammation. Diagnosis of monogenic AID requires an accurate description of the patients' phenotype, and the identification of highly penetrant genetic variants in single genes is pivotal. We performed whole exome sequencing (WES) of 125 pediatric patients with suspected monogenic AID in a routine genetic diagnostic setting. Datasets were analyzed in a step-wise approach to identify the most feasible diagnostic strategy. First, we analyzed a virtual gene panel including 13 genes associated with known AID and, if no genetic diagnosis was established, we then analyzed a virtual panel including 542 genes published by the International Union of Immunological Societies associated including all known inborn error of immunity (IEI). Subsequently, WES data was analyzed without pre-filtering for known AID/IEI genes. Analyzing 13 genes yielded a definite diagnosis in 16.0% (n = 20). The diagnostic yield was increased by analyzing 542 genes to 20.8% (n = 26). Importantly, expanding the analysis to WES data did not increase the diagnostic yield in our cohort, neither in single WES analysis, nor in trio-WES analysis. The study highlights that the cost- and time-saving analysis of virtual gene panels is sufficient to rapidly confirm the differential diagnosis in pediatric patients with AID. WES data or trio-WES data analysis as a first-tier diagnostic analysis in patients with suspected monogenic AID is of limited benefit.
Collapse
Affiliation(s)
- Yvonne Poker
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Sandra von Hardenberg
- Department of Human Genetics, Hannover Medical School, Hannover, Germany,*Correspondence: Sandra von Hardenberg,
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ming Tang
- Department of Human Genetics, Hannover Medical School, Hannover, Germany,L3S Research Center, Leibniz University Hannover, Hannover, Germany
| | - Ulrich Baumann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Viola Lindenthal
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children’s Hospital, Oldenburg, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Hagen Ott
- Division of Pediatric Dermatology, Children’s Hospital Auf der Bult, Hannover, Germany
| | - Philipp von Bismarck
- Department of Pediatrics, University Medical Center Schleswig‐Holstein, Campus Kiel, Kiel, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Frank Dressler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
44
|
Errami A, El Baghdadi J, Ailal F, Benhsaien I, Ouazahrou K, Abel L, Casanova JL, Boisson-Dupuis S, Bustamante J, Bousfiha AA. Mendelian susceptibility to mycobacterial disease: an overview. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background
Mycobacteria include ubiquitous species of varying virulence. However, environmental and individual-specific factors, particularly host genetics, play a crucial role in the outcome of exposure to mycobacteria. The first molecular evidence of a monogenic predisposition to mycobacteria came from the study of Mendelian susceptibility to mycobacterial disease (MSMD), a rare inborn error of IFN-γ immunity conferring a selective susceptibility to infections even with low virulent mycobacteria, in patients, mostly children, without recognizable immune defects in routine tests. This article provides a global and updated description of the most important molecular, cellular, and clinical features of all known monogenic defects of MSMD.
Results
Over the last 20 years, 19 genes were found to be mutated in MSMD patients (IFNGR1, IFNGR2, IFNG, IL12RB1, IL12RB2, IL23R, IL12B, ISG15, USP18, ZNFX1, TBX21, STAT1, TYK2, IRF8, CYBB, JAK1, RORC, NEMO, and SPPL2A), and the allelic heterogeneity at these loci has led to the definition of 35 different genetic defects. Despite the clinical and genetic heterogeneity, almost all genetic etiologies of MSMD alter the interferon gamma (IFN-γ)-mediated immunity, by impairing or abolishing IFN-γ production or the response to this cytokine or both. It was proven that the human IFN-γ level is a quantitative trait that defines the outcome of mycobacterial infection.
Conclusion
The study of these monogenic defects contributes to understanding the molecular mechanism of mycobacterial infections in humans and to the development of new diagnostic and therapeutic approaches to improve care and prognosis. These discoveries also bridge the gap between the simple Mendelian inheritance and complex human genetics.
Collapse
|
45
|
A validated artificial intelligence-based pipeline for population-wide primary immunodeficiency screening. J Allergy Clin Immunol 2023; 151:272-279. [PMID: 36243223 DOI: 10.1016/j.jaci.2022.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Identification of patients with underlying inborn errors of immunity and inherent susceptibility to infection remains challenging. The ensuing protracted diagnostic odyssey for such patients often results in greater morbidity and suboptimal outcomes, underscoring a need to develop systematic methods for improving diagnostic rates. OBJECTIVE The principal aim of this study is to build and validate a generalizable analytical pipeline for population-wide detection of infection susceptibility and risk of primary immunodeficiency. METHODS This prospective, longitudinal cohort study coupled weighted rules with a machine learning classifier for risk stratification. Claims data were analyzed from a diverse population (n = 427,110) iteratively over 30 months. Cohort outcomes were enumerated for new diagnoses, hospitalizations, and acute care visits. This study followed TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) standards. RESULTS Cohort members initially identified as high risk were proportionally more likely to receive a diagnosis of primary immunodeficiency compared to those at low-medium risk or those without claims of interest respectively (9% vs 1.5% vs 0.2%; P < .001, chi-square test). Subsequent machine learning stratification enabled an annualized individual snapshot of complexity for triaging referrals. This study's top-performing machine learning model for visit-level prediction used a single dense layer neural network architecture (area under the receiver-operator characteristic curve = 0.98; F1 score = 0.98). CONCLUSIONS A 2-step analytical pipeline can facilitate identification of individuals with primary immunodeficiency and accurately quantify clinical risk.
Collapse
|
46
|
Gupta S, Kobayashi RH, Litzman J, Cherwin L, Hoeller S, Kreuwel H. Subcutaneous immunoglobulin 16.5% for the treatment of pediatric patients with primary antibody immunodeficiency. Expert Rev Clin Immunol 2023; 19:7-17. [PMID: 36346032 DOI: 10.1080/1744666x.2023.2144836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Human immunoglobulin (IG) administered intravenously (IVIG) or subcutaneously (SCIG) is used to prevent infections in patients with primary immunodeficiency diseases (PIDDs) such as primary antibody immunodeficiencies. AREAS COVERED This review provides an overview of PIDD with a focus on SCIG treatment, including the properties and clinical trial results of a new SCIG 16.5% (Cutaquig, Octapharma) in pediatric patients. We also discuss the various benefits of SCIG including stable serum immunoglobulin G levels, high tolerability with fewer systemic side effects, and the flexibility of self-administration. EXPERT OPINION Individualized treatment for PIDD in children is necessary given the different factors that affect administration of SCIG. Variables such as the dose, dosing interval, administration sites, and ancillary equipment can be adjusted to impact the long-term satisfaction with SCIG administration in pediatric patients. The successful work that has been conducted by both professional and patient organizations to increase awareness of PIDD, especially in pediatric patients, is substantial and ongoing. The importance of early diagnosis and treatment in the pediatric patient population cannot be overstated. The safety, efficacy, and tolerability of SCIG 16.5% have been demonstrated in pediatric patients with PIDDs providing an additional therapeutic option in this vulnerable population.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, Irvine, CA, USA
| | - Roger H Kobayashi
- School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, St. Anne's University in Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Laurel Cherwin
- Scientific and Medical Affairs, Octapharma AG, Paramus, NJ, USA
| | - Sonja Hoeller
- Scientific and Medical Affairs, Octapharma AG, Paramus, NJ, USA
| | - Huub Kreuwel
- Scientific and Medical Affairs, Octapharma AG, Paramus, NJ, USA
| |
Collapse
|
47
|
Baris S, Abolhassani H, Massaad MJ, Al-Nesf M, Chavoshzadeh Z, Keles S, Reisli I, Tahiat A, Shendi HM, Elaziz DA, Belaid B, Al Dhaheri F, Haskologlu S, Dogu F, Ben-Mustapha I, Sobh A, Galal N, Meshaal S, Elhawary R, El-Marsafy A, Alroqi FJ, Al-Saud B, Al-Ahmad M, Al Farsi T, Al Sukaiti N, Al-Tamemi S, Mehawej C, Dbaibo G, ElGhazali G, Kilic SS, Genel F, Kiykim A, Musabak U, Artac H, Guner SN, Boukari R, Djidjik R, Kechout N, Cagdas D, El-Sayed ZA, Karakoc-Aydiner E, Alzyoud R, Barbouche MR, Adeli M, Wakim RH, Reda SM, Ikinciogullari A, Ozen A, Bousfiha A, Al-Mousa H, Rezaei N, Al-Herz W, Geha RS. The Middle East and North Africa Diagnosis and Management Guidelines for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:158-180.e11. [PMID: 36265766 DOI: 10.1016/j.jaip.2022.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Human inborn errors of immunity (IEI) are a group of 485 distinct genetic disorders affecting children and adults. Signs and symptoms of IEI are heterogeneous, and accurate diagnosis can be challenging and depends on the available human expertise and laboratory resources. The Middle East and North Africa (MENA) region has an increased prevalence of IEI because of the high rate of consanguinity with a predominance of autosomal recessive disorders. This area also exhibits more severe disease phenotypes compared with other regions, probably due to the delay in diagnosis. The MENA-IEI registry network has designed protocols and guidelines for the diagnosis and treatment of IEI, taking into consideration the variable regional expertise and resources. These guidelines are primarily meant to improve the care of patients within the region, but can also be followed in other regions with similar patient populations.
Collapse
Affiliation(s)
- Safa Baris
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Maryam Al-Nesf
- Allergy and Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Zahra Chavoshzadeh
- Allergy and Clinical Immunology Department, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Azzeddine Tahiat
- Laboratory of Immunology, Department of Medical Biology, University of Algiers, Rouiba Hospital, Algiers, Algeria
| | - Hiba Mohammad Shendi
- Division of Pediatric Allergy and Immunology, Tawam Hospital, Abu Dhabi, United Arab Emirates
| | - Dalia Abd Elaziz
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Brahim Belaid
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Fatima Al Dhaheri
- Department of Pediatrics, Pediatric Infectious Diseases, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Imen Ben-Mustapha
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Meshaal
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab Elhawary
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aisha El-Marsafy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fayhan J Alroqi
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mona Al-Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait
| | - Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Gehad ElGhazali
- Department of Immunology, Sheikh Khalifa Medical City-Union 71-Purehealth, Abu Dhabi, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ferah Genel
- Department of Pediatric Immunology and Allergy, University of Health Sciences Dr. Behcet Uz Children's Hospital, İzmir, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ugur Musabak
- Department of Internal Medicine, Division of Immunology and Allergy, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Hasibe Artac
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Rachida Boukari
- Department of Pediatrics, Mustapha Pacha Faculty of Medicine, Algiers University, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Nadia Kechout
- Department of Immunology, Pasteur Institute of Algeria, Faculty of Medicine, Algiers, Algeria
| | - Deniz Cagdas
- Department of Pediatrics, Section of Pediatric Immunology, Ihsan Dogramaci Children's Hospital, Institute of Child Health, Hacettepe University Medical School, Ankara, Turkey
| | - Zeinab Awad El-Sayed
- Pediatric Allergy, Immunology and Rheumatology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Raed Alzyoud
- Section of Immunology, Allergy and Rheumatology, Queen Rania Children Hospital, Amman, Jordan
| | - Mohamed Ridha Barbouche
- Department of Immunology, Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Mehdi Adeli
- Department of Immunology, Sidra Medicine, Ar-Rayyan, Qatar
| | - Rima Hanna Wakim
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Shereen M Reda
- Pediatric Allergy, Immunology and Rheumatology Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Ahmet Ozen
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, Department of pediatric infectious and immunological diseases, Ibn Rushd Children Hospital, King Hassan II University, Casablanca, Morocco
| | - Hamoud Al-Mousa
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait City, Kuwait; Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
48
|
Freund T, Baxter SK, Walsh T, Golan H, Kapelushnik J, Abramsohn-Goldenberg M, Benor S, Sarid N, Ram R, Alcalay Y, Segel R, Renbaum P, Stepensky P, King MC, Torgerson TR, Hagin D. Clinically Complex LRBA Deficiency Due to a Founder Allele in the Georgian Jewish Population. J Clin Immunol 2023; 43:151-164. [PMID: 36063261 DOI: 10.1007/s10875-022-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
Pathogenic variants in LRBA, encoding the LPS Responsive Beige-Like Anchor (LRBA) protein, are responsible for recessive, early-onset hypogammaglobulinemia, severe multi-organ autoimmunity, and lymphoproliferation, with increased risk for malignancy. LRBA deficiency has a wide clinical spectrum with variable age of onset and disease severity. Three apparently unrelated patients with LRBA deficiency, of Georgian Jewish descent, were homozygous for LRBA c.6640C > T, p.R2214*, leading to a stop upstream of the LRBA BEACH domain. Despite carrying the same LRBA genotype, the three patients differed in clinical course: the first patient was asymptomatic until age 25 years; the second presented with failure to thrive at age 3 months; and the third presented at age 7 years with immune cytopenias and severe infections. Two of the patients developed malignancies: the first patient was diagnosed with recurrent Hodgkin's disease at age 36 years, and the second patient developed aggressive gastric cancer at age 15 years. Among Georgian Jews, the carrier frequency of the LRBA p.R2214* allele was 1.6% (4 of 236 Georgian Jewish controls). The allele was absent from other populations. Haplotype analysis showed a shared origin of the mutation. These three patients revealed a pathogenic LRBA founder allele in the Georgian Jewish population, support the diverse and complex clinical spectrum of LRBA deficiency, and support the possibility that LRBA deficiency predisposes to malignancy.
Collapse
Affiliation(s)
- Tal Freund
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah K Baxter
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hana Golan
- Pediatric Hematology Oncology Department, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Kapelushnik
- Department of Pediatric Oncology and Department of Hematology, Faculty of Health Sciences, Soroka Medical Center and The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Shira Benor
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Sarid
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Ram
- Department of Hematology and Stem Cell Transplantation Service, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Alcalay
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reeval Segel
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Renbaum
- Shaare Zedek Medical Center and Faculty of Medicine, Medical Genetics Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.,Allen Institute for Immunology, Seattle, WA, USA
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Israni M, Nicholson B, Mahlaoui N, Obici L, Rossi-Semerano L, Lachmann H, Hayward G, Avramovič MZ, Guffroy A, Dalm V, Rimmer R, Solis L, Villar C, Gennery AR, Skeffington S, Nordin J, Warnatz K, Korganow AS, Antón J, Cattalini M, Amin T, Berg S, Soler-Palacin P, Burns SO, Campbell M. Current Transition Practice for Primary Immunodeficiencies and Autoinflammatory Diseases in Europe: a RITA-ERN Survey. J Clin Immunol 2023; 43:206-216. [PMID: 36222999 PMCID: PMC9840587 DOI: 10.1007/s10875-022-01345-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/07/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Due to the absence of curative treatments for inborn errors of immunity (IEI), children born with IEI require long-term follow-up for disease manifestations and related complications that occur over the lifespan. Effective transition from pediatric to adult services is known to significantly improve adherence to treatment and long-term outcomes. It is currently not known what transition services are available for young people with IEI in Europe. OBJECTIVE To understand the prevalence and practice of transition services in Europe for young people with IEI, encompassing both primary immunodeficiencies (PID) and systemic autoinflammatory disorders (AID). METHODS A survey was generated by the European Reference Network on immunodeficiency, autoinflammatory, and autoimmune diseases Transition Working Group and electronically circulated, through professional networks, to pediatric centers across Europe looking after children with IEI. RESULTS Seventy-six responses were received from 52 centers, in 45 cities across 17 different countries. All services transitioned patients to adult services, mainly to specialist PID or AID centers, typically transferring up to ten patients to adult care each year. The transition process started at a median age of 16-18 years with transfer to the adult center occurring at a median age of 18-20 years. 75% of PID and 68% of AID centers held at least one joint appointment with pediatric and adult services prior to the transfer of care. Approximately 75% of PID and AID services reported having a defined transition process, but few centers reported national disease-specific transition guidelines to refer to. CONCLUSIONS Transition services for children with IEI in Europe are available in many countries but lack standardized guidelines to promote best practice.
Collapse
Affiliation(s)
- Muskan Israni
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Bethany Nicholson
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Nizar Mahlaoui
- Pediatric Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France ,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laura Obici
- Fondazione IRCCS Policlinico San Matteo, Centro Per Lo Studio E La Cura Delle Amiloidosi Sistemiche, Pavia, Italy
| | - Linda Rossi-Semerano
- Department of Pediatric Rheumatology, National Reference Centre for Auto-Inflammatory Diseases and Amyloidosis of Inflammatory Origin (CEREMAIA), Bicêtre hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre, France
| | - Helen Lachmann
- Division of Medicine, National Amyloidosis Centre, University College London, London, UK
| | - Georgia Hayward
- Paediatric and Adult Rheumatology, Leeds General Infirmary and Chapel Allerton Hospital, Leeds, UK
| | - Mojca Zajc Avramovič
- Department for Allergology, Rheumatology and Clinical Immunology, University Children’s Hospital Ljubljana, Ljubljana, Slovenia
| | - Aurelien Guffroy
- Department of Clinical Immunology and Internal Medicine, Tertiary Center for Primary Immunodeficiency, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France ,Université de Strasbourg, INSERM UMR - S1109, 67000 Strasbourg, France
| | - Virgil Dalm
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands ,Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rachel Rimmer
- Rare Autoinflammatory Conditions Community – UK (RACC – UK), Oxford, UK ,http://www.raccuk.com
| | - Leire Solis
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | | | - Andrew R. Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children’s Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK ,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | | | - Julia Nordin
- International Patient Organisation for Primary Immunodeficiencies (IPOPI), Brussels, Belgium
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany ,Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, Tertiary Center for Primary Immunodeficiency, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France ,Université de Strasbourg, INSERM UMR - S1109, 67000 Strasbourg, France
| | - Jordi Antón
- Department of Pediatric Rheumatology, Pediatric Immune Dysfunction Disease Study Group (GEMDIP), Institut de Recerca Sant Joan de Déu, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Marco Cattalini
- Pediatrics Clinic, University of Brescia, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Tania Amin
- Department of Paediatric Rheumatology, Leeds Children’s Hospital, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Stephan Berg
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,Department of Pediatrics, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Universitat Autonoma de Barcelona, Bellaterra, Spain ,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia Spain
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK ,University College London Institute of Immunity and Transplantation, London, UK
| | - Mari Campbell
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK ,University College London Institute of Immunity and Transplantation, London, UK
| | | |
Collapse
|
50
|
Gao X, Michel K, Griese M. Interstitial Lung Disease in Immunocompromised Children. Diagnostics (Basel) 2022; 13:diagnostics13010064. [PMID: 36611354 PMCID: PMC9818431 DOI: 10.3390/diagnostics13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The range of pulmonary complications beyond infections in pediatric immunocompromised patients is broad but not well characterized. Our goal was to assess the spectrum of disorders with a focus on interstitial lung diseases (ILD) in immunodeficient patients. METHODS We reviewed 217 immunocompromised children attending a specialized pneumology service during a period of 23 years. We assigned molecular diagnoses where possible and categorized the underlying immunological conditions into inborn errors of immunity or secondary immunodeficiencies according to the IUIS and the pulmonary conditions according to the chILD-EU classification system. RESULTS Among a wide array of conditions, opportunistic and chronic infections were the most frequent. ILD had a 40% prevalence. Of these children, 89% had a CT available, and 66% had a lung biopsy, which supported the diagnosis of ILD in 95% of cases. Histology was often lymphocyte predominant with the histo-pattern of granulomatous and lymphocytic interstitial lung disease (GLILD), follicular bronchiolitis or lymphocytic interstitial pneumonitis. Of interest, DIP, PAP and NSIP were also diagnosed. ILD was detected in several immunological disorders not yet associated with ILD. CONCLUSIONS Specialized pneumological expertise is necessary to manage the full spectrum of respiratory complications in pediatric immunocompromised patients.
Collapse
Affiliation(s)
| | | | - Matthias Griese
- Correspondence: ; Tel.: +49-89-4400-57870; Fax: +49-89-4400-57872
| |
Collapse
|