1
|
Latour S. Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies. Annu Rev Immunol 2025; 43:723-749. [PMID: 40279309 DOI: 10.1146/annurev-immunol-082323-035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France;
- Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Tomomasa D, Nishimura M, Ohya A, Tanita K, Wakatsuki R, Watanabe R, Miyamoto S, Hoshino A, Kamiya T, Isoda T, Kaneko S, Shimizu M, Hijikata A, Eguchi K, Ishimura M, Maeda Y, Izawa K, Meguro T, Fujimoto K, Ishikita-Murayama E, Suzuki K, Okura E, Uehara T, Takayama T, Okada S, Takagi M, Morio T, Marsh RA, Kanegane H. Comprehensive flow cytometry-based diagnosis of XIAP deficiency. Clin Exp Immunol 2025; 219:uxaf020. [PMID: 40128104 PMCID: PMC12062573 DOI: 10.1093/cei/uxaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025] Open
Abstract
Deficiency of X-linked inhibitor of apoptosis protein (XIAP) is an X-linked recessive inborn error of immunity characterized by abnormal immune responses leading to inflammatory bowel disease and hemophagocytic lymphohistiocytosis. Although XIAP protein expression analysis by flow cytometry (XIAP flow) is commonly used to diagnose XIAP deficiency, certain variants may not affect the protein expression, thereby complicating the diagnostic process. XIAP is crucial for the nucleotide-binding and oligomerization domain 2 (NOD2) signaling pathway. In this study, we aimed to perform a comprehensive analysis of nine patients diagnosed with XIAP deficiency through genetic testing. In addition to XIAP flow, we employed a previously reported method utilizing muramyl dipeptide (MDP) stimulation, a specific agonist of NOD2, to quantitatively evaluate the downstream tumor necrosis factor-alpha (TNFα) production by flow cytometry in patient monocytes (MDP flow). The median mean fluorescence intensity in healthy controls with XIAP flow was 711 (95% confidence interval [CI], 653-815) compared to 195 (95% CI, 161-386) in patients with XIAP deficiency (P < 0.0001). The median percentage of TNFα-producing monocytes in controls with MDP flow was 29.1% (95% CI, 19.6-53.7), while in patients it was 0.34% (95% CI, 0.18-0.82) (P = 0.0008). The receiver operating characteristic curves demonstrated that both XIAP flow and MDP flow exhibited 100% sensitivity and specificity. Taken together, combining XIAP flow and MDP flow analyses allows for a highly accurate diagnosis.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Madoka Nishimura
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medical Sciences Kumamoto University, Kumamoto, Japan
| | - Ayami Ohya
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Ryosuke Wakatsuki
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Ryohei Watanabe
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Clinical Research Center, Institute of Science Tokyo Hospital, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Shuya Kaneko
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukako Maeda
- Department of Pediatrics, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Meguro
- Department of Allergy and Clinical Immunology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | | | - Etsuko Ishikita-Murayama
- Department of Hematology/Oncology, Gunma Children’s Medical Center, Gunma, Japan
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kyogo Suzuki
- Department of Hematology and Oncology, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| | - Eri Okura
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Tomoko Uehara
- Department of Pediatrics, Naha City Hospital, Okinawa, Japan
| | - Tomotada Takayama
- General Pediatrics, Okinawa Prefectural Nanbu Medical Center & Children’s Medical Center, Okinawa, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Immunology and Molecular Medicine, Institute of Science Tokyo, Tokyo, Japan
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Rizzo AD, Sanz M, Roffe G, Sajaroff EO, Prado DA, Prieto E, Goris V, Rossi JG, Bernasconi AR. CD62-L down-regulation after L18-MDP stimulation as a complementary flow cytometry functional assay for the diagnosis of XIAP deficiency. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:383-391. [PMID: 38770762 DOI: 10.1002/cyto.b.22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency is an infrequent inborn error of immunity caused by mutations in XIAP gene. Most cases present with absence of XIAP protein which can be detected by flow cytometry (FC), representing a rapid diagnostic method. However, since some genetic defects may not preclude protein expression, it is important to include a complementary functional test in the laboratory workup of these patients. L-selectin (CD62-L) is a molecule that is cleaved from the surface membrane of leukocytes upon stimulation of different receptors such as toll like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), including NOD2. Considering that XIAP deficiency impairs NOD2 signaling, we decided to assess CD62-L down-regulation by FC post-stimulation of neutrophils and monocytes with L18-muramyl Di-Peptide (L18-MDP), a NOD2 specific agonist, in order to develop a novel assay for the functional evaluation of patients with suspicion of XIAP defects. Whole blood samples from 20 healthy controls (HC) and four patients with confirmed molecular diagnosis of XIAP deficiency were stimulated with 200 ng/mL of L18-MDP for 2 h. Stimulation with 100 ng/mL of lipopolysaccharide (LPS) was carried out in parallel as a positive control of CD62-L shedding. CD62-L expression was evaluated by FC using an anti CD62-L- antibody and down-regulation was assessed by calculating the difference in CD62-L expression before and after stimulation, both in terms of percentage of CD62-L expressing cells (Δ%CD62-L) and median fluorescence intensity (ΔMFI%). Neutrophils and monocytes from XIAP deficient patients displayed a significantly diminished response to L18-MDP stimulation compared with HC (p < 0.0001), indicating a severely altered mechanism of CD62-L down-regulation following activation of NOD2-XIAP axis. On the other hand, the response to LPS stimulation was comparable between patients and heathy controls, suggesting preserved CD62-L shedding with a different stimulus. FC detection of CD62-L down-regulation in monocytes and neutrophils after whole blood stimulation with L18-MDP results in an effective and rapid functional test for the identification of XIAP deficient patients.
Collapse
Affiliation(s)
- Agustín D Rizzo
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Marianela Sanz
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Georgina Roffe
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Elisa O Sajaroff
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Damian A Prado
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Emma Prieto
- Immunology and Rheumatology Division, Molecular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Verónica Goris
- Immunology and Rheumatology Division, Molecular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Jorge G Rossi
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea R Bernasconi
- Laboratory Division, Cellular Immunology Laboratory, Hospital de Pediatría S.A.M.I.C. Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
4
|
Fusaro M, Coustal C, Barnabei L, Riller Q, Heller M, Ho Nhat D, Fourrage C, Rivière S, Rieux-Laucat F, Maria ATJ, Picard C. A large deletion in a non-coding regulatory region leads to NFKB1 haploinsufficiency in two adult siblings. Clin Immunol 2024; 261:110165. [PMID: 38423196 DOI: 10.1016/j.clim.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost ¼ of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.
Collapse
Affiliation(s)
- Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Cyrille Coustal
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Laura Barnabei
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Quentin Riller
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Marion Heller
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Duong Ho Nhat
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Cécile Fourrage
- INSERM-UMR 1163, Imagine Institute, Paris, France; Bioinformatics Core Facility, INSERM-UMR 1163, Imagine Institute, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3633, INSERM, University Paris Cité, Paris, France
| | - Sophie Rivière
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Frédéric Rieux-Laucat
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Alexandre Thibault Jacques Maria
- Internal Medicine & Onco-Immunology (MedI2O), Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier University Hospital, Montpellier, France; IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Capucine Picard
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Hospital for Sick Children - AP-HP, Paris, France; French National Reference Center for Primary Immune Deficiencies CEREDIH, Necker University, Hospital for Sick Children - AP-HP, Paris, France
| |
Collapse
|
5
|
Oshima M, Matsukawa Y, Ikeda Y, Sakamoto K, Taga T, Maruo Y. Allogeneic Hematopoietic Cell Transplantation Ameliorated Asymptomatic Granulomatous and Lymphocytic Interstitial Lung Disease in a Patient With XIAP Deficiency. J Pediatr Hematol Oncol 2024; 46:e191-e194. [PMID: 38277621 DOI: 10.1097/mph.0000000000002819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) deficiency is an inborn error of immunity (IEI). Allogeneic hematopoietic cell transplantation (HCT) is currently the only curative therapy available for XIAP deficiency. Granulomatous and lymphocytic interstitial lung disease (GLILD) is a common immune-related lung complication of IEIs. We present a 6-year-old boy with XIAP deficiency and GLILD. Computed tomography showed lung nodes but no symptoms. Before HCT, GLILD was not managed with immunosuppressive therapy, because he was asymptomatic. The HCT procedure was subsequently performed. The post-HCT course was uneventful; follow-up computed tomography on day 46 showed nodules had disappeared. HCT could potentially ameliorate GLILD like other inflammatory processes associated with the underlying IEIs.
Collapse
Affiliation(s)
- Mai Oshima
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Chinnici A, Beneforti L, Pegoraro F, Trambusti I, Tondo A, Favre C, Coniglio ML, Sieni E. Approaching hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1210041. [PMID: 37426667 PMCID: PMC10324660 DOI: 10.3389/fimmu.2023.1210041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Hemophagocytic Lymphohistiocytosis (HLH) is a rare clinical condition characterized by sustained but ineffective immune system activation, leading to severe and systemic hyperinflammation. It may occur as a genetic or sporadic condition, often triggered by an infection. The multifaceted pathogenesis results in a wide range of non-specific signs and symptoms, hampering early recognition. Despite a great improvement in terms of survival in the last decades, a considerable proportion of patients with HLH still die from progressive disease. Thus, prompt diagnosis and treatment are crucial for survival. Faced with the complexity and the heterogeneity of syndrome, expert consultation is recommended to correctly interpret clinical, functional and genetic findings and address therapeutic decisions. Cytofluorimetric and genetic analysis should be performed in reference laboratories. Genetic analysis is mandatory to confirm familial hemophagocytic lymphohistiocytosis (FHL) and Next Generation Sequencing is increasingly adopted to extend the spectrum of genetic predisposition to HLH, though its results should be critically discussed with specialists. In this review, we critically revise the reported laboratory tools for the diagnosis of HLH, in order to outline a comprehensive and widely available workup that allows to reduce the time between the clinical suspicion of HLH and its final diagnosis.
Collapse
Affiliation(s)
- Aurora Chinnici
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Linda Beneforti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesco Pegoraro
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Trambusti
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
7
|
Sakura F, Noma K, Asano T, Tanita K, Toyofuku E, Kato K, Tsumura M, Nihira H, Izawa K, Mitsui-Sekinaka K, Konno R, Kawashima Y, Mizoguchi Y, Karakawa S, Hayakawa S, Kawaguchi H, Imai K, Nonoyama S, Yasumi T, Ohnishi H, Kanegane H, Ohara O, Okada S. A complementary approach for genetic diagnosis of inborn errors of immunity using proteogenomic analysis. PNAS NEXUS 2023; 2:pgad104. [PMID: 37077884 PMCID: PMC10109033 DOI: 10.1093/pnasnexus/pgad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Advances in next-generation sequencing technology have identified many genes responsible for inborn errors of immunity (IEI). However, there is still room for improvement in the efficiency of genetic diagnosis. Recently, RNA sequencing and proteomics using peripheral blood mononuclear cells (PBMCs) have gained attention, but only some studies have integrated these analyses in IEI. Moreover, previous proteomic studies for PBMCs have achieved limited coverage (approximately 3000 proteins). More comprehensive data are needed to gain valuable insights into the molecular mechanisms underlying IEI. Here, we propose a state-of-the-art method for diagnosing IEI using PBMCs proteomics integrated with targeted RNA sequencing (T-RNA-seq), providing unique insights into the pathogenesis of IEI. This study analyzed 70 IEI patients whose genetic etiology had not been identified by genetic analysis. In-depth proteomics identified 6498 proteins, which covered 63% of 527 genes identified in T-RNA-seq, allowing us to examine the molecular cause of IEI and immune cell defects. This integrated analysis identified the disease-causing genes in four cases undiagnosed in previous genetic studies. Three of them could be diagnosed by T-RNA-seq, while the other could only be diagnosed by proteomics. Moreover, this integrated analysis showed high protein-mRNA correlations in B- and T-cell-specific genes, and their expression profiles identified patients with immune cell dysfunction. These results indicate that integrated analysis improves the efficiency of genetic diagnosis and provides a deep understanding of the immune cell dysfunction underlying the etiology of IEI. Our novel approach demonstrates the complementary role of proteogenomic analysis in the genetic diagnosis and characterization of IEI.
Collapse
Affiliation(s)
- Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Etsushi Toyofuku
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Kentaro Kato
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Kanako Mitsui-Sekinaka
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Ryo Konno
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Yusuke Kawashima
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Hiroshi Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu City 501-1112, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Osamu Ohara
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| |
Collapse
|
8
|
Engelmann C, Schuhmachers P, Zdimerova H, Virdi S, Hauri-Hohl M, Pachlopnik Schmid J, Grundhoff A, Marsh RA, Wong WWL, Münz C. Epstein Barr virus-mediated transformation of B cells from XIAP-deficient patients leads to increased expression of the tumor suppressor CADM1. Cell Death Dis 2022; 13:892. [PMID: 36270981 PMCID: PMC9587222 DOI: 10.1038/s41419-022-05337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.
Collapse
Affiliation(s)
- Christine Engelmann
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Hana Zdimerova
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sanamjeet Virdi
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Mathias Hauri-Hohl
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Adam Grundhoff
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Rebecca A. Marsh
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati, Cincinnati, OH USA
| | - Wendy Wei-Lynn Wong
- grid.7400.30000 0004 1937 0650Cell Death and Regulation of Inflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|