1
|
Al-Karmalawy AA, Tawfik HO, El-Sayyad GS, Elmaaty AA, Abdel-Fatah SS, Atiya A, Alzahrani AYA, Khatib AOA, El-Hamamsy MH, Elsebaie HA. Design and synthesis of novel substituted s-triazines tethered benzenesulfonamides as potential antimicrobial candidates: Antibiofilm and bacterial protein permeability assessments. Arch Pharm (Weinheim) 2025; 358:e2400931. [PMID: 40059652 DOI: 10.1002/ardp.202400931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025]
Abstract
New s-triazine hydrazone hybrids (4a-4r) were designed and synthesized as promising microbial DNA gyrase inhibitors. This was done by taking the lead DNA gyrase inhibitor (AstraZeneca arylaminotriazine) as a reference. The novel samples were subsequently tested as antimicrobial agents against certain pathogenic bacteria and unicellular fungi. The antibiofilm potential and the membrane leakage test were used to determine the mechanism of the antimicrobial response. The minimum inhibitory concentration (MIC) values of 4g, 4i, and 4r samples were between 62.5 and 250.0 µg/mL. The MIC values for the 4g candidate against Staphylococcus aureus, Candida albicans, Enterobacter agglomerans, and Klebsiella pneumonia are 62.5, 125.0, and 250.0 µg/mL, respectively. Conversely, the MIC of compound 4i was 62.5 µg/mL for C. albicans and E. agglomerans and 125.0 µg/mL for S. aureus and K. pneumonia. Besides, a molecular docking study was performed to validate both the binding affinity and binding mode of the newly designed analogs of s-triazine candidates toward bacterial DNA gyrase receptors. The synthesized nanocomposites had promising antimicrobial potentials, which are encouraging their use in biomedical applications. Consequently, the afforded compounds can be employed as promising antimicrobial lead compounds for future optimization.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, East Port Said National University, Port Said, Egypt
| | - Sobhy S Abdel-Fatah
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Akhtar Atiya
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Mohail Assir, Saudi Arabia
| | | | - Arwa Omar Al Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Ahmed NA, Elshahawy MF, Raafat AI, Abdou FY, Tahar HA. Rat model evaluation for healing-promoting effectiveness and antimicrobial activity of electron beam synthesized (polyvinyl alcohol-pectin)- silver doped zinc oxide hydrogel dressings enriched with lavender oil. Int J Biol Macromol 2025; 288:138618. [PMID: 39672426 DOI: 10.1016/j.ijbiomac.2024.138618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Ag/ZnO NPs and lavender oil (LVO) were incorporated into (polyvinyl alcohol/pectin) (PVA/Pet) dressings using electron beam irradiation technology. The Ag/ZnO NPs were prepared using the precipitation method and characterized using XRD, FTIR, and EDX techniques. TEM micrograph shows their spherical appearance with an average size of around 27.4 nm. The increase in the (PVA: Pet) feed solution concentration up to 30% enhances the gel content to 92%. The swelling degree reaches 1674% using 80 wt% pectin content. Meanwhile, increasing the irradiation dose up to 45 kGy increases the gel fraction and negatively affects the swelling capabilities. Incorporating Ag/ZnO NPs and LVO slightly decreased the gel fraction, the swelling degree, and the dressing's porosity reached 87%. In pseudo extracellular fluids, dressings with 10% LVO demonstrate 419% swelling capacities, and their WVTR reaches 271.1 g/m2h. Dressings show biocompatibility, antimicrobial potential, and excellent wound healing capacity towards the excisional wound model in rats, as confirmed by the histological and biochemical results. LVO-(PVA/Pet)-Ag/ZnO dressings may accelerate tissue granulation and remodeling by replacing lost collagen and cause the wound to constrict by upregulating markers associated with wound healing so that it can be recommended as a wound healing candidate.
Collapse
Affiliation(s)
- Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Fatma Y Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hadeer A Tahar
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
3
|
Kathirvel A, Srinivasan R, Harini S, Ranjith N, Kumar GS, Lalithambigai K, Atchudan R, Habila MA, Aljuwayid AM, Yun HK. Eco-Friendly Synthesis of Zirconium Dioxide Nanoparticles from Toddalia asiatica: Applications in Dye Degradation, Antioxidant and Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:84. [PMID: 39852699 PMCID: PMC11767834 DOI: 10.3390/nano15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
Zirconium dioxide nanoparticles (ZrO2 NPs) have gained significant attention due to their excellent bioavailability, low toxicity, and diverse applications in the medical and industrial fields. In this study, ZrO2 NPs were synthesized using zirconyl oxychloride and the aqueous leaf extract of Toddalia asiatica as a stabilizing agent. Analytical techniques, including various spectroscopy methods and electron microscopy, confirmed the formation of aggregated spherical ZrO2 NPs, ranging from 15 to 30 nm in size, with mixed-phase structure composed of tetragonal and monoclinic structures. UV-visible spectroscopy showed a characteristic band at 281 nm with a bandgap energy of 3.7 eV, indicating effective stabilization by the phytochemicals in T. asiatica. EDX analysis revealed that the NPs contained 37.18 mol.% zirconium (Zr) and 62.82 mol.% oxygen. The ZrO2 NPs demonstrated remarkable photocatalytic activity, degrading over 95% of methylene blue dye after 3 h of sunlight exposure. Additionally, the ZrO2 NPs exhibited strong antibacterial effects, particularly against Gram-negative bacteria such as E. coli, and significant antioxidant activity, with low IC50 values for hydroxyl radical scavenging. In conclusion, the green synthesis of ZrO2 NPs using T. asiatica leaf extract is an effective, eco-friendly method that produces nanoparticles with remarkable antioxidant, antimicrobial, and photocatalytic properties, highlighting their potential for applications in water treatment, environmental remediation, and biomedicine.
Collapse
Affiliation(s)
- Arumugam Kathirvel
- Department of Chemistry, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India; (S.H.); (N.R.)
| | - Ramalingam Srinivasan
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea;
| | - Sathasivam Harini
- Department of Chemistry, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India; (S.H.); (N.R.)
| | - Natarajan Ranjith
- Department of Chemistry, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India; (S.H.); (N.R.)
| | - Govindan Suresh Kumar
- Department of Physics, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India;
| | - Kesavan Lalithambigai
- Department of Physics, K. S. R. College of Engineering, Tiruchengode 637215, Tamil Nadu, India;
| | - Raji Atchudan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.H.); (A.M.A.)
| | - Ahmed M. Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.H.); (A.M.A.)
| | - Hae Keun Yun
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea;
| |
Collapse
|
4
|
El Fadl FIA, Hegazy DE, Maziad NA, Ghobashy MM. Effect of nano-metal oxides (TiO 2, MgO, CaO, and ZnO) on antibacterial property of (PEO/PEC-co-AAm) hydrogel synthesized by gamma irradiation. Int J Biol Macromol 2023; 250:126248. [PMID: 37562465 DOI: 10.1016/j.ijbiomac.2023.126248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The global threat of infectious diseases and antibiotic resistance calls for the development of potent antimicrobial agents integrated with hydrogel for effective control and treatment. Hydrogel is advanced biomaterials compounds. Hydrogel is an advanced biomaterial compound that offers tunable physical and chemical properties, which can be tailored to specific biomedical applications. This study investigates the antibacterial properties of pectin/polyethylene oxide (PEC/PEO)-based poly acrylamide hydrogels containing 5 wt% nano-metal oxides (TiO2, CaO, MgO, and ZnO) synthesized through gamma irradiation at a dose of 30 kGy. This technique allows for sterilization and effectively incorporating the metal oxide nanoparticles within the hydrogel matrix. Characterization of the nanocomposites is performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Incorporating metal oxide nanoparticles induces noticeable changes in the FTIR spectra, confirming interactions between the nanoparticles and the hydrogel matrix. The antibacterial activity of the nanocomposites is evaluated against different bacteria, and the results demonstrate significant inhibitory effects, especially for MgO- and ZnO-hydrogel nanocomposites against P. mirabilis, S. aureus, P. aeruginosa, and C. albicans, highlighting their potential as antimicrobial agents. The 5 wt% of MgO, ZnO, TiO2 and CaO inside PEO/PEC-co-AAm hydrogel nanocomposites exhibited significant inhibitory effects, with a respective optical density at λ = 600 nm (OD600) values of 0.896 nm, 0.986 nm, 1.250 nm, and 1.980 nm compared to the control and hydrogel alone (OD600 values of 2.88 nm and 2.72 nm, respectively). The antibacterial activity of the (MgO-, ZnO-, TiO2-, and CaO-hydrogel) was enhanced, resulting in the inhibition of S. aureus growth by approximately 68.89 %, 65.86 %, 56.25 %, and 31.94 %, respectively. Incorporating nanoparticles into a hydrogel matrix introduces novelty by preventing their aggregation and synergistically enhancing the antibacterial activity. The hydrogel's porous structure and water content facilitate the physical entrapment of bacteria and promote proximity to the metal oxide nanoparticles, resulting in improved interaction and antimicrobial effectiveness. Moreover, the hydrogel ability to absorb and entrap resistance compounds released by bacteria, coupled with its ability to supply water for the generation of reactive oxygen species, further contributes to its antimicrobial properties.
Collapse
Affiliation(s)
- Faten Ismail Abou El Fadl
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt.
| | - Dalia E Hegazy
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Nabila A Maziad
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt.
| |
Collapse
|
5
|
Mostafa HY, El-Sayyad GS, Nada HG, Ellethy RA, Zaki EG. Promising antimicrobial and antibiofilm activities of Orobanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: Effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study. Arch Biochem Biophys 2023; 736:109539. [PMID: 36746259 DOI: 10.1016/j.abb.2023.109539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
In this research, Orobanche aegyptiaca extract was utilized as an eco-friendly, and cost-effective green route for the construction of bimetallic silver-selenium nanoparticles (Ag-Se NPs). Bimetallic Ag-Se NPs were characterized by XRD, EDX, FTIR, HR-TEM, DLS, SEM/mapping and EDX studies. Antimicrobial, and antibiofilm potentials were tested against some selected pathogenic bacteria and unicellular fungi by ZOI, MIC, effect of UV exposure, and inhibition %. Reaction mechanism was assessed through membrane leakage assay and SEM imaging. HRTEM analysis confirmed the spherical nature and was ranged from 18.1 nm to 72.0 nm, and the avarage particle size is determined to be 30.58 nm. SEM imaging prove that bimetallic Ag-Se NPs presents as a bright particles, and both Ag and Se were distributed equally across O. aegyptiaca extract and Guar gum stabilizers. ZOI results showed that, bimetallic Ag-Se NPs have antimicrobial activity against S. aureus (20.0 nm), E. coli (18.5 nm), P. aeruginosa (12.6 nm), and C. albicans (18.2 nm). In addition, bimetallic Ag-Se NPs were able to inhibit the biofilm formation for S. aureus by 79.48%, for E. coli by 78.79%, for P. aeruginosa by 77.50%, and for C. albicans by 73.73%. Bimetallic Ag-Se NPs are an excellent disinfectant once it had excited by UV light. It was observed that the quantity of cellular protein discharged from S. aureus is directly proportional to the concentration of bimetallic Ag-Se NPs and found to be 244.21 μg/mL after the treatment with 1 mg/mL, which proves the antibacterial characteristics, and explains the creation of holes in the cell membrane of S. aureus producing in the oozing out of the proteins from the S. aureus cytoplasm. Based on the promising properties, they showed superior antimicrobial potential at low concentration (to avoid toxicity) and continued-phase durability, they may use in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Hamida Y Mostafa
- Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Chemical Engineering Department, Military Technical Collage (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Hanady G Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rania A Ellethy
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - E G Zaki
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| |
Collapse
|
6
|
Photocatalytic Organic Contaminant Degradation of Green Synthesized ZrO2 NPs and Their Antibacterial Activities. SEPARATIONS 2023. [DOI: 10.3390/separations10030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The green synthesis of metal oxide nanoparticles is an efficient, simple, and chemical-free method of producing nanoparticles. The present work reports the synthesis of Murraya koenigii-mediated ZrO2 nanoparticles (ZrO2 NPs) and their applications as a photocatalyst and antibacterial agent. Capping and stabilization of metal oxide nanoparticles were achieved by using Murraya koenigii leaf extract. The optical, structural, and morphological valance of the ZrO2 NPs were characterized using UV-DRS, FTIR, XRD, and FESEM with EDX, TEM, and XPS. An XRD analysis determined that ZrO2 NPs have a monoclinic structure and a crystallite size of 24 nm. TEM and FESEM morphological images confirm the spherical nature of ZrO2 NPs, and their distributions on surfaces show lower agglomerations. ZrO2 NPs showed high optical absorbance in the UV region and a wide bandgap indicating surface oxygen vacancies and charge carriers. The presence of Zr and O elements and their O=Zr=O bonds was categorized using EDX and FTIR spectroscopy. The plant molecules’ interface, bonding, binding energy, and their existence on the surface of ZrO2 NPs were established from XPS analysis. The photocatalytic degradation of methylene blue using ZrO2 NPs was examined under visible light irradiation. The 94% degradation of toxic MB dye was achieved within 20 min. The antibacterial inhibition of ZrO2 NPs was tested against S. aureus and E. coli pathogens. Applications of bio-synthesized ZrO2 NPs including organic substance removal, pathogenic inhibitor development, catalysis, optical, and biomedical development were explored.
Collapse
|
7
|
Aldeen EMS, Jalil AA, Mim RS, Alhebshi A, Hassan NS, Saravanan R. Altered zirconium dioxide based photocatalyst for enhancement of organic pollutants degradation: A review. CHEMOSPHERE 2022; 304:135349. [PMID: 35714961 DOI: 10.1016/j.chemosphere.2022.135349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Heterogeneous advanced oxidation processes are a promising approach for cost-efficient removal of pollutants using semiconductors. Zirconium dioxide (ZrO2) is an auspicious material for photocatalytic activity owning to its suitable bandgap, stability, and low cost. However, ZrO2 suffers from fast recombination rate, and poor light harvesting ability. Nonetheless, extra modification has also shown improvements and therefore is worth investigating. The endeavour of this paper initially discusses the fundamentals with respect to reactive species, classification, and synthesis methods for ZrO2. Furthermore, with particular consideration to stability and reusability, several additional modification approaches for ZrO2-based photocatalysts such as doping and noble metals loading. Furthermore, the formation of heterojunctions has also been shown to boost photocatalytic activity while inhibiting charge carrier recombination. Finally, photocatalyst separation via magnetic-based photocatalysts are elucidated. As a result, ZrO2-based photocatalysts are regarded as a promising emerging technology that warrants further development and research.
Collapse
Affiliation(s)
- E M Sharaf Aldeen
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310, Johor, Malaysia.
| | - R S Mim
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - A Alhebshi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310, Johor, Malaysia
| | - R Saravanan
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
8
|
Gamma Radiation Induced Synthesis of Novel Chitosan/Gold/Bioactive Glass Nanocomposite for Promising Antimicrobial, and Antibiofilm Activities. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractIn the present study we reported, for the first time, the gamma irradiation induced synthesis of chitosan/Au/bioactive glass (CS/Au/BG) nanocomposite. The bioactive glass (BG), with the composition 45% SiO2, 32.5% CaO, 15% Na2O, and 7.5% P2O5 wt% was synthesized through the sol–gel technique. XRD, SEM, EDX, and elemental mapping images were utilized to evaluate the structure of pure BG and CS/Au/BG nanocomposite. The antimicrobial efficacy was evaluated by zone of inhibition (ZOI), minimum inhibitory concentration (MIC), growth curve assay, and Ultraviolet irradiation effect. Investigation was carried on the antibiofilm effectiveness. Membrane leakage as well as SEM imaging were used to evaluate the antibacterial reaction mechanism. The crystallite size of CS/Au/BG nanocomposite was determined via Scherer equation as 22.83 nm. CS/Au/BG possessed the most ZOI activity against the tested microbes. The highest inhibition % of BG, and CS/Au/BG nanocomposite was investigated for S. aureus (15.65%, and 77.24%), followed by C. albicans (13.32%, and 64.75%). The quantity of protein leakage was directly-proportional after increasing the concentration of BG, and CS/Au/BG and counted to be 70.58, and 198.25 µg/mL, respectively (after applied 10 mg/mL). The promising results suggested the use of novel CS/Au/BG nanocomposite as an encourage candidate for wastewater treatment application against pathogenic microbes.
Collapse
|
9
|
Radiation synthesis and in vitro evaluation of the antimicrobial property of functionalized nanopolymer-based poly (propargyl alcohol) against multidrug-resistance microbes. Microb Pathog 2022; 172:105777. [PMID: 36152795 DOI: 10.1016/j.micpath.2022.105777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022]
Abstract
Pathogenic microorganisms are responsible for many diseases in biological organisms, including humans. Many of these infections thrive in hospitals, where people are treated with medicines and certain bacteria resist those treatments. Consequently, this research article aims to develop efficient antimicrobial material-based conjugated and functionalized polypropargyl alcohol nanoparticles (nano-PGA) synthesized by gamma irradiation. The monomer of PGA was polymerized in various mediums (water (W), chloroform (Ch), and dimethylformamide (DMF)) without catalysts under the action of γ-rays, producing π-conjugated and colored functional nano-PGA polymers. Nano-PGA is a versatile polymer demonstrated here as suitable for creating next-generation of antimicrobial systems capable of effectively preventing and killing various pathogenic microorganisms. The novelty here is the development of polymeric nanostructures by changing the solvent and irradiation doses. The antimicrobial property of nano-PGA (nanostare-like antibody structure) was examined against different pathogenic bacteria and unicellular fungi. Nano-PGA-DMF exhibits significant antimicrobial potential against Staphylococcus aureus (S. aureus) (20.20 mm; zone of inhibition (ZOI), and 0.47 μg/mL; minimum inhibitory concentration (MIC), followed by Escherichia coli (E. coli) (14.50 mm; ZOI, and 1.87 μg/mL; MIC, and Candida albicans (C.albicans) (12.50 mm; ZOI, and 1.87 μg/mL; MIC). In antibiofilm results, the highest inhibition percentage of the synthesized nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF was documented for S. aureus (17.01%, 37.57%, and 80.27%), followed by E. coli (25.68%, 55.16% and 78.11%), and C.albicans (40.10%, 62.65%, and 76.19%), respectively. The amount of bacterial protein removed is directly proportional after increasing the concentration of nano-PGA-W, nano-PGA-Ch, and nano-PGA-DMF samples (at different concentrations) and counted to be 70.58, 102.89, and 200.87 μg/mL, respectively following the treatment with 1.0 mg/mL of each sample. It was found that the nano-PGA polymer prepared in DMF has better antimicrobial activity than one prepared in chloroform than in water.
Collapse
|
10
|
Siddique F, Gonzalez-Cortes S, Mirzaei A, Xiao T, Rafiq MA, Zhang X. Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts. NANOSCALE 2022; 14:11806-11868. [PMID: 35920714 DOI: 10.1039/d2nr02714c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current developments and progress in energy and environment-related areas pay special attention to the fabrication of advanced nanomaterials via green and sustainable paths to accomplish chemical circularity. The design and preparation methods of photocatalysts play a prime role in determining the structural, surface characteristics and optoelectronic properties of the final products. The solution combustion synthesis (SCS) technique is a relatively novel, cost-effective, and efficient method for the bulk production of nanostructured materials. SCS-fabricated metal oxides are of great technological importance in photocatalytic, environmental and energy applications. To date, the SCS route has been employed to produce a large variety of solid materials such as metals, sulfides, carbides, nitrides and single or complex metal oxides. This review intends to provide a holistic perspective of the different steps involved in the chemistry of SCS of advanced photocatalysts, and pursues several SCS metrics that influence their photocatalytic performances to establish a feasible approach to design advanced photocatalysts. The study highlights the fundamentals of SCS and the importance of various combustion parameters in the characteristics of the fabricated photocatalysts. Consequently, this work deals with the design of a concise framework to link the fine adjustment of SCS parameters for the development of efficient metal oxide photocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Fizza Siddique
- School of Science, Minzu University of China, Beijing, 100081, People's Republic of China.
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Sergio Gonzalez-Cortes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Amir Mirzaei
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - M A Rafiq
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Xiaoming Zhang
- School of Science, Minzu University of China, Beijing, 100081, People's Republic of China.
- Optoelectronics Research Center, Minzu University of China, Beijing, 100081, People's Republic of China
| |
Collapse
|
11
|
Effect of titanium dioxide nanoparticles and β-cyclodextrin polymer on physicochemical, antimicrobial, and antibiofilm properties of a novel chitosan-camphor polymer. Int J Biol Macromol 2022; 219:1062-1079. [DOI: 10.1016/j.ijbiomac.2022.07.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022]
|
12
|
Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. N. Kokila
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - C. Mallikarjunaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | | |
Collapse
|
13
|
Gamma-Rays Induced Synthesis of Ag-Decorated ZnCo2O4–MoS2 Heterostructure as Novel Photocatalyst and Effective Antimicrobial Agent for Wastewater Treatment Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe development of novel semiconductors-based-photocatalysts is a promising strategy for addressing environmental pollution. In the present study, gamma irradiation was utilized to induce the synthesis of the exceptionally efficient Ag-decorated ZnCo2O4–MoS2 heterostructure. XRD and EDX analyses were verified the successful synthesis of Ag-decorated ZnCo2O4–MoS2 heterostructure. Also, SEM and HR-TEM images were illustrated the heterostructure nature of the synthesized photocatalyst in the nanoscale regime. The obtained optical bandgap values verified that photocatalyst possesses a narrow semiconductor bandgap. Further, the Ag-decorated ZnCo2O4–MoS2 heterostructure exhibited superior photodegradation potential towards MB (95.4% removal of the MB). The antimicrobial potency of the synthesized samples had been investigated through ZOI, MIC, growth curve assay, and the effect of UV illumination. Also, the antibiofilm behaviour has been studied. The antibacterial reaction mechanism had been estimated by membrane leakage assay and SEM imaging. The tested samples displayed a positive potency to a broad spectrum of bacteria like Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. In particular, Ag–MoS2–ZnCo2O4 nanocomposite possessed the highest impact, followed by the spinal ZnCo2O4 NPs towards all the tested pathogenic microbes. In this assessment, the Ag-decorated ZnCo2O4–MoS2 heterostructure has been shown to be a promising candidate for wastewater treatment application.
Collapse
|
14
|
Mosaddegh Anis S, Habibullah Hashemi S, Nasri A, Sajjadi M, Eslamipanah M, Jaleh B. Decorated ZrO2 by Au nanoparticles as a potential nanocatalyst for the reduction of organic dyes in water. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Warsi AZ, Aziz F, Zulfiqar S, Haider S, Shakir I, Agboola PO. Synthesis, Characterization, Photocatalysis, and Antibacterial Study of WO 3, MXene and WO 3/MXene Nanocomposite. NANOMATERIALS 2022; 12:nano12040713. [PMID: 35215041 PMCID: PMC8877483 DOI: 10.3390/nano12040713] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
Abstract
Tungsten oxide (WO3), MXene, and an WO3/MXene nanocomposite were synthesized to study their photocatalytic and biological applications. Tungsten oxide was synthesized by an easy and cost-effective hydrothermal method, and its composite with MXene was prepared through the sonication method. The synthesized tungsten oxide, MXene, and its composite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), energy-dispersive X-ray analysis (EDX), and Brunauer–Emmett–Teller (BET) for their structural, morphological, spectral, elemental and surface area analysis, respectively. The crystallite size of WO3 calculated from XRD was ~10 nm, the particle size of WO3 was 130 nm, and the average thickness of MXene layers was 175 nm, which was calculated from FESEM. The photocatalytic activity of as-synthesized samples was carried out for the degradation of methylene blue under solar radiation, MXene, the WO3/MXene composite, and WO3 exhibited 54%, 89%, and 99% photocatalytic degradation, respectively. WO3 showed maximal degradation ability; by adding WO3 to MXene, the degradation ability of MXene was enhanced. Studies on antibacterial activity demonstrated that these samples are good antibacterial agents against positive strains, and their antibacterial activity against negative strains depends upon their concentration. Against positive strains, the WO3/MXene composite’s inhibition zone was at 7 mm, while it became 9 mm upon increasing the concentration. This study proves that WO3, MXene, and the WO3/MXene nanocomposite could be used in biological and environmental applications.
Collapse
Affiliation(s)
- Al-Zoha Warsi
- Baghdad-ul-Jadeed Campus, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.-Z.W.); (F.A.)
| | - Fatima Aziz
- Baghdad-ul-Jadeed Campus, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.-Z.W.); (F.A.)
| | - Sonia Zulfiqar
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Imran Shakir
- Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Philips O. Agboola
- College of Engineering, Al-Muzahmia Branch, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
- Correspondence:
| |
Collapse
|
16
|
Antimicrobial synergism and antibiofilm activities of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism. Microb Pathog 2022; 164:105440. [DOI: 10.1016/j.micpath.2022.105440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
|
17
|
G. V, Naik HSB, Viswanath R, Kirthan BR, Nayak PHA, Bajiri MA. Combustion-assisted green-synthesized magnesium-doped cadmium ferrite nanoparticles for multifunctional applications. NEW J CHEM 2022. [DOI: 10.1039/d1nj05156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnesium-doped cadmium ferrite nanoparticles, MgXCd1−XFe2O4 (where, X = 0, 0.2, 0.4, 0.6, 0.8, 1) were synthesized by a combustion method using curd as fuel.
Collapse
Affiliation(s)
- Vishnu G.
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451, India
| | - H. S. Bhojya Naik
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451, India
| | - R. Viswanath
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451, India
| | - B. R. Kirthan
- Department of P.G. Studies and Research in Industrial Chemistry, Sir M.V. Government, Science College, Bommanakatte, Bhadravathi, 577302, Karnataka, India
| | - P. H. Amith Nayak
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451, India
| | - Mohammed Abdullah Bajiri
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451, India
| |
Collapse
|
18
|
Haghighat M, Naroie A, Rezvani A, Hakimi M, Saravani H, Darroudi M, Amini A, Sabaghan M, Khatami M. Anticancer Property of Lanthanide Sulfate Nanostructure Against Neuroblastoma-Neuro2a Cell Line. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00887-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Vinay SP. Synthesis of Fullerene (C60)-Silver Nanoparticles Using Neem Gum Extract Under Microwave Irradiation. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00799-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci 2020; 281:102178. [PMID: 32470668 DOI: 10.1016/j.cis.2020.102178] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 01/31/2023]
Abstract
Metal oxide nanoparticles and its hybrids are deemed to be one of the most attractive materials in an extensive range of applications due to their impressive optical, electronic, photocatalytic, and biological properties. Metal oxide based nanomaterials with extraordinary characteristics have been proposed, prepared, and used as main materials in the recent area of photocatalysis and biomedicine, due to their non-toxic nature, large specific surface area, useful optical bandgap, and high biological activity. Herein, this review reveals the recent advance development in the area like photocatalytic, anticancer and antibacterial performance of metal oxide nanomaterials for multidimensional applications. Consequently, we also focused on the encountered difficulties and prospects for the future application of metal oxide-based composites as promising candidates for the development of highly efficient photocatalytic and biomedical systems. This review article also delivers advanced knowledge to the scientific community who intends to design efficient photocatalytic and biomedical systems.
Collapse
|
21
|
Liu C, Xu J, Niu J, Chen M, Zhou Y. Direct Z-scheme Ag3PO4/Bi4Ti3O12 heterojunction with enhanced photocatalytic performance for sulfamethoxazole degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116622] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Alijani HQ, Pourseyedi S, Torkzadeh-Mahani M, Seifalian A, Khatami M. Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:242-251. [PMID: 31851843 DOI: 10.1080/21691401.2019.1699830] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nickel-ferrite (NiFe2O4) nanorods particles (NRP) was biosynthesised for the first time by the Rosemary Extract. The NRP was fully characterised, including the type, nanostructure and physicochemical properties of using XRD, HRTEM, FeSEM, XPS, FTIR and VSM. TEM confirmed rod-shaped nano-sized particles with average sizes ranging from 10 nm to 28 nm. The EDAX Analysis showed the presence of iron, nickel, oxygen, and carbon. XRD analysis confirmed the synthesis of NiFe2O4 crystals. XPS curves showed photoelectron for iron, oxygen and nickel. EDS showed the atomic, weight percentages ratios of Ni(12%): Fe(24%) and: O(48) are close to the theoretical value (Ni: Fe:O = 1:2:4), of bimetallic magnetic NiFe2O4 NRP. NiFe2O4 NRP had cytotoxicity effect on MCF-7 cells survival which suggests that NiFe2O4 NRP can be used as a new class of anticancer agent in design novel cancer therapy research.
Collapse
Affiliation(s)
- Hajar Q Alijani
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Shahram Pourseyedi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London, United Kingdom
| | - Mehrdad Khatami
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Miri A, Akbarpour Birjandi S, Sarani M. Survey of cytotoxic and UV protection effects of biosynthesized cerium oxide nanoparticles. J Biochem Mol Toxicol 2020; 34:e22475. [PMID: 32053270 DOI: 10.1002/jbt.22475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/24/2019] [Accepted: 02/06/2020] [Indexed: 11/07/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are among the important nanoparticles that are extensively utilized in cosmetics, automotive industries, ultraviolet (UV) filtration, gas sensors, and pharmaceutical products. In this study, CeO2 NPs were synthesized using an aqueous extract of Ziziphus jujube fruit. The synthesized nanoparticles were characterized using UV-visible spectroscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive spectroscopy, field energy scanning electron microscopy, and Raman methods. The results indicated that the size of synthesized nanoparticles is between 18 and 25 nm, and they have a spherical shape. UV absorbance of the synthesized nanoparticles was measured through spectrophotometric method in the range of 290 to 320 nm. The cytotoxic activity of synthesized CeO2 NPs against colon (HT-29) cancer cell line was surveyed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that synthesized nanoparticles are nontoxic on HT-29 cells under 400 μg/mL concentrations after 24 hours of treatment time periods. The increase in treatment time cases increases cytotoxic activity of synthesized nanoparticles. Sun protection factor of CeO2 NPs, as a criterion for amount of sunlight radiation protection, was determined by applying Mansur equation. The results demonstrated that synthesized CeO2 NPs have excellent UV protection and sunscreen physical absorption properties.
Collapse
Affiliation(s)
- Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Shiva Akbarpour Birjandi
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mina Sarani
- Zabol Medicinal Plants, Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
24
|
One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation. Anal Bioanal Chem 2020; 412:871-880. [PMID: 31901958 DOI: 10.1007/s00216-019-02293-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Novel carbon dots (CDs) were synthesized by a one-pot hydrothermal approach using ampicillin as a precursor, and the as-prepared CDs exhibited a high quantum yield (23%). The CDs were found to possess abundant surface functional groups, thus providing good permeability to the cell, and the antibacterial activity of CDs was evaluated. S. aureus and L. monocytogenes were selected as model bacteria, and our results showed that the CDs exhibited antibacterial activity against S. aureus and L. monocytogenes under visible light illumination, even at low concentrations. The antibacterial mechanism is believed to be the production of reactive oxygen species (ROS) from CDs under visible light irradiation, which attacked the bacterial cell membranes, resulting in the death of the bacteria. In addition, because of the multicolor fluorescence properties of CDs, staining of S. aureus and L. monocytogenes obtained multicolor fluorescence images at different excitation wavelengths. Based on these results, CDs are a promising candidate material for biological applications. Graphical abstract.
Collapse
|
25
|
Biogenic Silver Nanoparticles/Hydrogen Peroxide/Ozone: Efficient Degradation of Reactive Blue 19. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00695-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Revathi V, Karthik K, Mahdizadeh H. Antibacterial activity and physico-chemical properties of metal-organic single crystal: Zinc (Tris) thiourea chloride. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Surendran P, Lakshmanan A, Vinitha G, Ramalingam G, Rameshkumar P. Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. LUMINESCENCE 2019; 35:196-202. [PMID: 31591819 DOI: 10.1002/bio.3713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 12/20/2022]
Abstract
A facile and eco-friendly hydrothermal method was used to prepare carbon quantum dots (CQDs) using orange waste peels. The synthesized CQDs were well dispersed and the average diameter was 2.9 ± 0.5 nm. Functional group identification of the CQDs was confirmed by Fourier transform infrared spectrum analysis. Fluorescence properties of the synthesized CQDs exhibited blue emission. The fluorescence quantum yield of the CQDs was around 11.37% at an excitation wavelength of 330 nm. The higher order nonlinear optical properties were examined using a Z-scan technique and a continuous wave laser that was operated at a wavelength of 532 nm. Results demonstrated that the synthesis of CQDs can be considered as promising for optical switching devices, bio-scanning, and bio-imaging for optoelectronic applications.
Collapse
Affiliation(s)
- Pandiyan Surendran
- PG and Research Department of Physics, Periyar E.V.R College (Autonomous), Tiruchirappalli-620 023, Tamilnadu, India
| | - Arumugam Lakshmanan
- PG and Research Department of Physics, Periyar E.V.R College (Autonomous), Tiruchirappalli-620 023, Tamilnadu, India
| | - Gandhirajan Vinitha
- Division of Physics, School of Advanced Science, VIT Chennai, Chennai, Tamilnadu, India
| | - Gopal Ramalingam
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamilnadu, India
| | - Pitchan Rameshkumar
- PG and Research Department of Physics, Periyar E.V.R College (Autonomous), Tiruchirappalli-620 023, Tamilnadu, India
| |
Collapse
|
28
|
Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01651-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100322] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Karthik K, Nikolova MP, Phuruangrat A, Pushpa S, Revathi V, Subbulakshmi M. Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/14328917.2019.1634404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- K. Karthik
- Department of Physics, Bharathidasan University, Tiruchirappalli, India
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse Angel Kanchev, Ruse, Bulgaria
| | - Anukorn Phuruangrat
- Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - S. Pushpa
- Department of Physics, Tagore Engineering College, Chennai, India
| | - V. Revathi
- Department of Physics, Dhanalakshmi Srinivasan Arts and Science College, Chennai, India
| | - M. Subbulakshmi
- Department of Microbiology, K. R. College of Arts and Science, Kovilpatti, India
| |
Collapse
|
31
|
Physico-chemical properties and antibacterial activity of Hexakis (Thiocarbamide) Nickel(II) nitrate single crystal. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Karthik K, Pradeeswari K, Mohan Kumar R, Murugesan R. Microwave-assisted V2O5 nanoflowers for efficient lithium-ion battery. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/14328917.2019.1618044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- K. Karthik
- Department of Physics, Bharathidasan University, Tiruchirappalli, India
| | - K. Pradeeswari
- Department of Physics, Presidency College, Chennai, India
| | - R. Mohan Kumar
- Department of Physics, Presidency College, Chennai, India
| | - R. Murugesan
- Department of Physics, Thiru Kolanjiappar Government Arts College, Vriddhachalam, India
| |
Collapse
|
33
|
Karthik K, Vijayalakshmi S, Phuruangrat A, Revathi V, Verma U. Multifunctional Applications of Microwave-Assisted Biogenic TiO2 Nanoparticles. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01556-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Karthik K, Pushpa S, Madhukara Naik M, Vinuth M. Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysed CdS thin films. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/14328917.2019.1597436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- K. Karthik
- Department of Physics, Bharathidasan University, Tiruchirappalli, India
| | - S. Pushpa
- Department of Physics, Tagore Engineering College, Chennai, India
| | - M. Madhukara Naik
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaragatta, India
| | - M. Vinuth
- Department of Chemistry, NIE Institute of Technology, Mysuru, Karnataka, India
| |
Collapse
|