1
|
Qin Q, Zhang X, Liu W, Lin L, Liu X, Han L. Preparation of capsicum leaf protein/lignocellulose nanocrystals/corn starch composite antibacterial packaging films by in-situ green-synthesized silver oxide nanoparticle. Food Chem 2025; 483:144049. [PMID: 40220435 DOI: 10.1016/j.foodchem.2025.144049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
The traditional chemical reduction method for preparing metal nanoparticles requires organic solvents, which seriously affects the ecological environment. Meanwhile, polysaccharide-based packaging films' brittleness limits their application scope. In contrast, protein-based packaging films (PBPFs) have excellent flexibility and ductility. Therefore, this study synthesized novel PBPFs loaded with silver oxide nanoparticles (Ag2O NPs) in situ and green by microwave technology. The results showed that the Ag2O NPs reduced up to 90.03 % in the reduction system of this study. With increased silver nitrate concentration, Ag2O NP reduction rates and the degree of intermolecular interaction of the film-forming fluids decreased, and PBPF crystallinity and thermal stability increased. PBPFs exhibit increased interfacial interaction when Ag2O NPs generated by reduction are uniformly distributed on their surfaces. The maximum tensile strength of PBPFs was 8.87 ± 0.71 MPa, and the maximum WCA was 97.58 ± 4.05°. All PBPFs have UV-blocking properties and antimicrobial activity, extending grape storage life.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
| | - Wenying Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Gungure AS, Jule LT, Nagaprasad N, Ramaswamy K. Studying the properties of green synthesized silver oxide nanoparticles in the application of organic dye degradation under visible light. Sci Rep 2024; 14:26967. [PMID: 39505895 PMCID: PMC11541536 DOI: 10.1038/s41598-024-75614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In present study the green synthesis of silver oxide nanoparticles has been effectively achieved using novel plant extract Phragmanthera Macrosolen. This method provides sustainable alternative for nanoparticle synthesis, demonstrating the potential of Phragmanthera Macrosolen as a reducing and stabilizing agent in the production of Ag2O NPs. The synthesized nanoparticles were characterized for their structural, morphological, and optical properties, confirming their successful formation and potential applications in various fields. The effects of different pH values and annealing temperature of the samples on the properties of Ag2O NPs formations, as well as photo-catalytic activities towards Toluidine Blue dye degradations, were studied. Powder XRD reveals that the crystallite natures of Ag2O NPs a long with crystalline size ranges from 25.85 to 35.90 nm. FIB-SEM and HR-TEM images displayed that the Ag2O NPs as spherical shapes. UV-vis spectroscopy displayed that Ag2O NPs belong to a direct-band gap of 2.1-2.6 eV. FTIR- study shown that the green synthesized Ag2O NPs may be steadied via the interfaces of -OH as well as C = O groups in the carbohydrate, flavonoid, tannin, as well as phenolic acid existing in P. macrosolen L. leaf. The chemical states, electron-hole recombinations and purity of Ag and O in the synthesized Ag2O NPs were confirmed through X-ray Photoelectron Spectroscopy (XPS) and PL analysis respectively. Fascinatingly, the synthesized Ag2O NPs at pH 12 displayed high photo-catalytic degradations for TB dyes. The photo-catalytic degradations of the TB dyes were monitored spectro-photo-metrically in wave-length ranges of 200-900 nm, as well as high efficiency (98.50%) with half-life of 9.5798 min and kinetic rate constant of 0.07234 min-1, was obtained after 45 min of reactions. From this study, it can be concluded that Ag2O NPs synthesized from Phragmanthera Macrosolen aqueous extract are promising in the remediation of environmental pollution and water treatment. In this light, the study reports that Phragmanthera Macrosolen green synthesis of Ag2O NPs can effectively address environmental pollution in cost-effective, eco-friendly, and sustainable ways.
Collapse
Affiliation(s)
- Abel Saka Gungure
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, India
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia
| | - Leta Tesfaye Jule
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia.
| | - N Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamil Nadu, 625 104, India
| | - Krishnaraj Ramaswamy
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia.
- Center for global health research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
3
|
Aguilar-Ávila DS, Reyes-Becerril M, Velázquez-Carriles CA, Hinojosa-Ventura G, Macías-Rodríguez ME, Angulo C, Silva-Jara JM. Biogenic Ag 2O nanoparticles with "Hoja Santa" (Piper auritum) extract: characterization and biological capabilities. Biometals 2024; 37:971-982. [PMID: 38409305 DOI: 10.1007/s10534-024-00589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
The 'sacred leaf' or "Hoja Santa" (Piper auritum Kunth) has a great value for Mexican culture and has gained popularity worldwide for its excellent properties from culinary to remedies. To contribute to its heritage, in this project we proposed the green synthesis of silver oxide nanoparticles (Ag2O NPs) using an extract of "Hoja Santa" (Piper auritum) as a reducing and stabilizing agent. The synthesized Ag2O NPs were characterized by UV-Visible spectroscopy (plasmon located at 405 nm), X-ray diffraction (XRD) (particle size diameter of 10 nm), scanning electron microscopy (SEM) (particle size diameter of 13.62 ± 4.61 nm), and Fourier-transform infrared spectroscopy (FTIR) (functional groups from "Hoja Santa" attached to nanoparticles). Antioxidant capacity was evaluated using DPPH, ABTS and FRAP methods. Furthermore, the antimicrobial activity of NPs against a panel of clinically relevant bacterial strains, including both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Salmonella Enteritidis and Escherichia coli O157:H7), was over 90% at concentrations of 200 µg/mL. Additionally, we assessed the antibiofilm activity of the NPs against Pseudomonas aeruginosa (reaching 98% of biofilm destruction at 800 µg/mL), as biofilm formation plays a crucial role in bacterial resistance and chronic infections. Moreover, we investigated the impact of Ag2O NPs on immune cell viability, respiratory burst, and phagocytic activity to understand their effects on the immune system.
Collapse
Affiliation(s)
- Dalia S Aguilar-Ávila
- Chemical Engineering Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - M Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Carlos A Velázquez-Carriles
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
- Biological, Synthetic and Materials Engineering Department, Universidad de Guadalajara, CUTlajomulco, Carretera Tlajomulco - Santa Fé km 3.5, 595, Lomas de Tejeda, 45641, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Gabriela Hinojosa-Ventura
- Chemical Engineering Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - María E Macías-Rodríguez
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), Av. Instituto Politecnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Jorge M Silva-Jara
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, 44430, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
4
|
Zhang Y, Tang Y, Liao Q, Qian Y, Zhu L, Yu DG, Xu Y, Lu X, Kim I, Song W. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J Mater Chem B 2024; 12:2054-2069. [PMID: 38305698 DOI: 10.1039/d3tb02619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Microporous organic polymers (MOPs) and metal oxide hybrid composites are considered valuable coating materials because of their versatility derived from the synergistic combination of MOPs' inherent dispersibility and the distinctive properties of metal oxides. In this study, we present the synthesis of sea-urchin-like MOPs hybridised with silver oxide nanoparticles (Ag2O NPs) to fabricate antibacterial composites suitable for potential antibacterial coating applications. Ag2O NP-decorated urchin-like MOPs (Ag2O@UMOPs) were synthesised by employing a combination of two methods: a one-pot Lewis acid-base interaction-mediated self-assembly and a straightforward impregnation process. The as-prepared Ag2O@UMOPs demonstrated high antibacterial efficacy against both E. coli (G-) and S. aureus (G+). The antibacterial mechanism of Ag2O@UMOPs mainly involved the synergistic effects of accumulation of Ag2O@UMOPs, the release of Ag+ ions, and the generation of reactive oxygen species. The exceptional processability and biosafety of Ag2O@UMOPs make them ideal organic coating materials for convenient application on various substrates. These remarkable features of Ag2O@UMOPs provide an effective platform for potential antibacterial applications in biological sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Qian Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Linglin Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, No. 139 Yan An Xi Road, Shanghai, 200040, P. R. China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yixin Xu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| |
Collapse
|
5
|
Tordi P, Gelli R, Ridi F, Bonini M. A bioinspired and sustainable route for the preparation of Ag-crosslinked alginate fibers decorated with silver nanoparticles. Carbohydr Polym 2024; 326:121586. [PMID: 38142067 DOI: 10.1016/j.carbpol.2023.121586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Functional materials obtained through green and sustainable routes are attracting particular attention due to the need to reduce the environmental impact of the chemical industry. In this work we propose a bioinspired approach for the preparation of alginate fibers containing silver nanoparticles (AgNPs), to be used for antimicrobial purposes. We demonstrate that filiform polymeric structures with length of a few meters can be easily obtained by extruding an alginate solution in an aqueous Ag+-containing bath (i.e. wet spinning) and that treating the fibers with freshly-squeezed lemon juice leads to the formation of AgNPs homogeneously distributed within the polymeric network. Using mixtures of ascorbic and citric acid to mimic lemon juice composition we highlight the influence of the aforementioned molecules on the nanoparticles formation process as well as on the properties of the fibers. Varying the amount of citric and ascorbic acid used for the treatment allows to finely tune the thermal, morphological and water absorption properties of the fibers. This evidence, along with the possibility to easily monitor the preparation through FT-IR spectroscopy, endows the fibers with a high application potential in several fields such as wound healing, water/air purification and agriculture.
Collapse
Affiliation(s)
- Pietro Tordi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Institut de Science et d'Ingeniérie Supramoléculaires (ISIS) - Université de Strasbourg and CNRS, 8 Alleé Gaspard Monge, F-67000 Strasbourg, France
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Massimo Bonini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Nath S, Shyanti RK, Singh RP, Mishra M, Pathak B. Thespesia lampas mediated green synthesis of silver and gold nanoparticles for enhanced biological applications. Front Microbiol 2024; 14:1324111. [PMID: 38304863 PMCID: PMC10832436 DOI: 10.3389/fmicb.2023.1324111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
The present study investigated the synthesis and biological applications of green, economical, and multifunctional silver and gold nanoparticles (TSAgNPs and TSAuNPs) using the ethnomedical important medicinal plant Thespesia lampas for biological activities. Relatively higher levels of antioxidant components were measured in T. lampas compared to the well-known Adhatoda vasica, and Diplocyclos palmatus suggested the potential of T. lampas for the study. Synthesized TSAgNPs and TSAuNPs were characterized through UV-Vis, XRD, SEM-EDS, HR-TEM, SAED, and FTIR techniques. SEM revealed that TSAgNPs and TSAuNPs were predominantly spherical in shape with 19 ± 7.3 and 43 ± 6.3 nm crystal sizes. The sizes of TSAgNPs and TSAuNPs were found to be12 ± 4.8 and 45 ± 2.9 nm, respectively, according to TEM measurements. The FTIR and phytochemical analyses revealed that the polyphenols and proteins present in T. lampas may act as bio-reducing and stabilizing agents for the synthesis. Synthesized NPs exhibited enhanced scavenging properties for ABTS and DPPH radicals. TSAgNPs and TSAuNPs were able to protect DNA nicking up to 13.48% and 15.38%, respectively, from oxidative stress. TSAgNPs possessed efficient antibacterial activities in a concentration-dependent manner against human pathogenic bacteria, such as E. coli, B. subtilis, P. vulgaris, and S. typhi. Furthermore, TSAgNPs and TSAuNPs showed significant cytotoxicity against FaDu HNSCC grown in 2D at 50 and 100 μg mL-1. Tumor inhibitory effects on FaDu-derived spheroid were significant for TSAgNPs > TSAuNPs at 100 μg mL-1 in 3D conditions. Dead cells were highest largely for TSAgNPs (76.65% ± 1.76%), while TSAuNPs were non-significant, and Saq was ineffectively compared with the control. However, the diameter of the spheroid drastically reduced for TSAgNPs (3.94 folds) followed by TSAuNPs (2.58 folds), Saq (1.94 folds), and cisplatin (1.83 folds) at 100 μg mL-1. The findings of the study suggested the bio-competence of TSAgNPs and TSAuNPs as multi-responsive agents for antioxidants, DNA protection, antibacterial, and anti-tumor activities to provide a better comprehension of the role of phytogenic nanoparticles in healthcare systems.
Collapse
Affiliation(s)
- Sunayana Nath
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Ritis Kumar Shyanti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rana Pratap Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Bhawana Pathak
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
González AS, García J, Vega V, Caballero Flores R, Prida VM. High-Performance 3D Nanostructured Silver Electrode for Micro-Supercapacitor Application. ACS OMEGA 2023; 8:40087-40098. [PMID: 37929086 PMCID: PMC10620899 DOI: 10.1021/acsomega.3c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
In the current energy crisis scenario, the development of renewable energy forms such as energy storage systems among the supercapacitors is an urgent need as a tool for environmental protection against increasing pollution. In this work, we have designed a novel 3D nanostructured silver electrode through an antireplica/replica template-assisted procedure. The chemical surface and electrochemical properties of this novel 3D electrode have been studied in a 5 M KOH electrolyte. Microstructural characterization and compositional analysis were studied by SEM, energy-dispersive X-ray spectroscopy, XRD technique, and Kripton adsorption at -198 °C, together with cyclic voltammetry and galvanostatic charge-discharge cycling measurements, Coulombic efficiency, cycle stability, and their leakage current drops, in addition to the self-discharge and electrochromoactive behavior, were performed to fully characterize the 3D nanostructured electrode. Large areal capacitance value of 0.5 F/cm2 and Coulombic efficiency of 97.5% are obtained at a current density of 6.4 mA/cm2 for a voltage window of 1.2 V (between -0.5 and 0.8 V). The 3D nanostructured silver electrode exhibits excellent capacitance retention (95%) during more than 2600 cycles, indicating a good cyclic stability. Additionally, the electrode delivers a high energy density of around 385.87 μWh/cm2 and a power density value of 3.82 μW/cm2 and also displays an electrochromoactive behavior. These experimental results strongly support that this versatile combined fabrication procedure is a suitable strategy for improving the electrochemical performances of 3D nanostructured silver electrodes for applications as micro-supercapacitors or in electrochemical devices.
Collapse
Affiliation(s)
- Ana Silvia González
- Depto.
de Física, Facultad de Ciencias, Universidad de Oviedo, Federico García Lorca n° 18, 33007 Oviedo, Spain
| | - Javier García
- Depto.
de Física, Facultad de Ciencias, Universidad de Oviedo, Federico García Lorca n° 18, 33007 Oviedo, Spain
| | - Victor Vega
- Laboratorio
de Membranas Nanoporosas, Servicios Científico-Técnicos, Universidad de Oviedo, Fernando Bonguera s/n, 33006 Oviedo, Spain
| | - Rafael Caballero Flores
- Depto.
Física de la Materia Condensada, Facultad de Física, Universidad de Sevilla, Apdo. 1065, 41080 Sevilla, Spain
| | - Victor M. Prida
- Depto.
de Física, Facultad de Ciencias, Universidad de Oviedo, Federico García Lorca n° 18, 33007 Oviedo, Spain
| |
Collapse
|
8
|
Abad WK, Abd AN, Habubi NF. Synthesis of Ag
2O Nanoparticles via Fresh Pomegranate Peel Extract for Bioapplications. NANO BIOMEDICINE AND ENGINEERING 2023. [DOI: 10.26599/nbe.2023.9290032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Jiang T, Huang J, Peng J, Wang Y, Du L. Characterization of Silver Nanoparticles Synthesized by the Aqueous Extract of Zanthoxylum nitidum and Its Herbicidal Activity against Bidens pilosa L. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101637. [PMID: 37242051 DOI: 10.3390/nano13101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Phytosynthesis of silver nanoparticles (Ag NPs) has been progressively acquiring attractiveness. In this study, the root of Zanthoxylum nitidum was used to synthesize Ag NPs, and its pre-emergence herbicidal activity was tested. The synthesized Ag NPs by the aqueous extract from Z. nitidum were characterized by visual inspection, ultraviolet-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The plant-mediated synthesis was completed within 180 min and the Ag NPs exhibited a characteristic peak at around 445 nm. The results of the DLS measurement showed that the average hydrodynamic diameter was 96 nm with a polydispersity index (PDI) of 0.232. XRD results indicated the crystalline nature of the phytogenic Ag NPs. A TEM analysis revealed that the nanoparticles were spherical with an average particle size of 17 nm. An EDX spectrum confirmed the presence of an elemental silver signal. Furthermore, the Ag NPs exhibited a herbicidal potential against the seed germination and seedling growth of Bidens Pilosa L. The present work indicates that Ag NPs synthesized by plant extract could have potential for the development of a new nanoherbicide for weed prevention and control.
Collapse
Affiliation(s)
- Tianying Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jinyan Huang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jieshi Peng
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Yanhui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liangwei Du
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
10
|
Conour CS, Droege DG, Ehlke B, Johnstone TC, Oliver SRJ. Selective Chromium(VI) Trapping by an Acetate-Releasing Coordination Polymer. Inorg Chem 2022; 61:20824-20833. [PMID: 36490385 DOI: 10.1021/acs.inorgchem.2c03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the high-capacity and selective uptake of Cr(VI) from water using the coordination polymer silver bipyridine acetate (SBA, [Ag(4,4'-bipy)][CH3CO2]·3H2O). Cr capture involves the release of acetate, and we have structurally characterized two of the product phases that form: silver bipyridine chromate (SBC, SLUG-56, [Ag(4,4'-bipy)][CrO4]0.5·3.5H2O) and silver bipyridine dichromate (SBDC, SLUG-57, [Ag(4,4'-bipy)][Cr2O7]0.5·H2O). SBA maintains a high Cr uptake capacity over a wide range of pH values (2-10), reaching a maximum of 143 mg Cr/g at pH 4. This Cr uptake capacity is one of the highest among coordination polymers. SBA offers the additional benefits of a one-step, room temperature, aqueous synthesis and its release of a non-toxic anion following Cr(VI) capture, acetate. Furthermore, SBA capture of Cr(VI) remains >97% in the presence of a 50-fold molar excess of sulfate, nitrate, or carbonate. We also investigated the Cr(VI) sequestration abilities of silver 1,2-bis(4-pyridyl)ethane nitrate (SEN, [Ag(4,4'-bpe)][NO3]) and structurally characterized the silver 1,2-bis(4-pyridyl)ethane chromate (SEC, SLUG-58, [Ag(4,4'-bpe)][CrO4]0.5) product. SEN was, however, a less effective Cr(VI) sequestering material than SBA.
Collapse
Affiliation(s)
- Cambell S Conour
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Daniel G Droege
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Beatriz Ehlke
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Scott R J Oliver
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
11
|
Rishi Pandey, Mehta N, Ghorui A, Fowsiya J, Kumar MR, Deshmukh P, Aditya MN, Madhumitha G. Bio-Assisted Preparation of Nano Zinc Oxide and Its Behavior Towards Textile Azo Pollutants. HIGH ENERGY CHEMISTRY 2022. [DOI: 10.1134/s0018143922020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|