1
|
Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J Funct Biomater 2022; 13:jfb13040274. [PMID: 36547533 PMCID: PMC9780975 DOI: 10.3390/jfb13040274] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Collapse
Affiliation(s)
- Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Manuela S. Killian
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Swathi N. V. Raghu
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, 772 07 Olomouc, Czech Republic
- Chemistry Department, King Abdulaziz University, Jeddah 80203, Saudi Arabia
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
- Correspondence:
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
2
|
Green synthesized CeO2 nanowires immobilized with alginate-ascorbic acid biopolymer for advance oxidative degradation of crystal violet. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Sisubalan N, Karthikeyan C, Senthil Kumar V, Varaprasad K, Haja Hameed ASA, Vanajothi R, Sadiku R. Biocidal activity of Ba 2+-doped CeO 2 NPs against Streptococcus mutans and Staphylococcus aureus bacterial strains. RSC Adv 2021; 11:30623-30634. [PMID: 35479864 PMCID: PMC9041105 DOI: 10.1039/d1ra05948c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022] Open
Abstract
Mishandling of antibiotics often leads to the development of multiple drug resistance (MDR) among microbes, resulting in the failure of infection treatments and putting human health at great risk. As a response, unique nanomaterials with superior bioactivity must be developed to combat bacterial infections. Herein, CeO2-based nanomaterials (NMs) were synthesized by employing cerium(iii) nitrate and selective alkaline ions. Moreover, the influence of alkaline ions on CeO2 was investigated, and their characteristics, viz.: biochemical, structural, and optical properties, were altered. The size of nano Ba-doped CeO2 (BCO) was ∼2.3 nm, relatively smaller than other NMs and the antibacterial potential of CeO2, Mg-doped CeO2 (MCO), Ca-doped CeO2 (CCO), Sr-doped CeO2 (SCO), and Ba-doped CeO2 (BCO) NMs against Streptococcus mutans (S. mutans) and Staphylococcus aureus (S. aureus) strains was assessed. BCO outperformed all NMs in terms of antibacterial efficacy. In addition, achieving the enhanced bioactivity of BCO due to reduced particle size facilitated the easy penetration into the bacterial membrane and the presence of a sizeable interfacial surface. In this study, the minimum quantity of BCO required to achieve the complete inhibition of bacteria was determined to be 1000 μg mL-1 and 1500 μg mL-1 for S. mutans and S. aureus, respectively. The cytotoxicity test with L929 fibroblast cells demonstrated that BCO was less toxic to healthy cells. Furthermore, BCO did not show any toxicity and cell morphological changes in the L929 fibroblast cells, which is similar to the control cell morphology. Overall, the results suggest that nano BCO can be used in biomedical applications, which can potentially help improve human health conditions.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Department of Botany, Bishop Heber College, Affiliated to Bharathidasan University Trichy 620017 Tamil Nadu India
| | - Chandrasekaran Karthikeyan
- Centro de Investigaciòn de Polimeros Avanzados (CIPA) Avendia Collao 1202, Edificio de Laboratorios de CIPA Concepciòn Chile
- KIRND Institute of Research and Development PVT LTD Tiruchirappalli 620020 Tamil Nadu India
| | | | - Kokkarachedu Varaprasad
- Centro de Investigaciòn de Polimeros Avanzados (CIPA) Avendia Collao 1202, Edificio de Laboratorios de CIPA Concepciòn Chile
| | - Abdulrahman Syed Ahamed Haja Hameed
- PG and Research Department of Physics, Jamal Mohamed College (Affiliated to Bharathidasan University) Tiruchirappalli Tamil Nadu 620 020 India
| | - Ramar Vanajothi
- Department of Zoology, Fatima College Madurai 625001 Tamil Nadu India
| | - Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus Staatsarillerie Rd Pretoria 1083 South Africa
| |
Collapse
|
4
|
Nazaripour E, Mousazadeh F, Doosti Moghadam M, Najafi K, Borhani F, Sarani M, Ghasemi M, Rahdar A, Iravani S, Khatami M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Wu Y, Ta HT. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J Mater Chem B 2021; 9:7291-7301. [PMID: 34355717 DOI: 10.1039/d1tb01091c] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The biological applications of cerium oxide nanoparticles (nanoceria) have received extensive attention in recent decades. The coexistence of trivalent cerium and tetravalent cerium on the surface of nanoceria allows the scavenging of reactive oxygen species (ROS). The regeneratable changes between Ce3+ and Ce4+ make nanoceria a suitable therapeutic agent for treating ROS-related diseases and inflammatory diseases. The size, morphology and Ce3+/Ce4+ state of cerium oxide nanoparticles are affected by the synthesis method. This review focuses on various synthesis methods of cerium oxide nanoparticles and discusses their corresponding physical characteristics, and anti-ROS and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang T Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. and School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Ho WK, Leung KSY. The crucial role of heavy metals on the interaction of engineered nanoparticles with polystyrene microplastics. WATER RESEARCH 2021; 201:117317. [PMID: 34130085 DOI: 10.1016/j.watres.2021.117317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Despite continuous research on microplastics (MPs), studies exploring the complexity of interaction between MPs and other aqueous constituents in multi-solute systems are scarce. In this study, the uptake and release of nanoceria (CeNPs) by various polystyrene MPs (PSMPs) were investigated. Results showed that PSMPs in the presence of heavy metals (HMs) exhibited a substantially higher sorption affinity for isotropic charged CeNPs than PSMPs alone; this enhanced affinity was attributed to the formation of PSMP-HM-CeNP complexes. FE-SEM imaging reaffirmed that CeNP clusters adhered to PSMP surfaces in the presence of HMs. Such attachment varied dependent on valence state, atomic size of coexisting metal cations, surface texture, and functionalities of MPs. The HM-mediated complex formation on PSMP particles was suppressed at higher ionic strength because of competitive sorption and double-layer compression. Subsequent release of MP-adhered CeNPs and HMs varied significantly between aquatic media and various simulated digestive fluids, verifying the crucial role of MPs for transfer of engineered nanoparticles (ENPs) from natural environments into biota via ingestion of MPs and trophic transfer. Our results highlight the enhanced potential for MPs to accumulate and to transport ENPs when metallic contaminants are present, which adds to the current understanding of the environmental fate and adverse effects of MPs along with various waterborne contaminants in actual environments.
Collapse
Affiliation(s)
- Wai-Kit Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P.R.China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P.R.China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, P.R.China.
| |
Collapse
|
7
|
Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, Kong W, Chang Y, Wang K, Wu D, Yang X. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int J Nanomedicine 2020; 15:7199-7214. [PMID: 33061376 PMCID: PMC7535115 DOI: 10.2147/ijn.s270229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The ongoing biomedical nanotechnology has intrigued increasingly intense interests in cerium oxide nanoparticles, ceria nanoparticles or nano-ceria (CeO2-NPs). Their remarkable vacancy-oxygen defect (VO) facilitates the redox process and catalytic activity. The verification has illustrated that CeO2-NPs, a nanozyme based on inorganic nanoparticles, can achieve the anti-inflammatory effect, cancer resistance, and angiogenesis. Also, they can well complement other materials in tissue engineering (TE). Pertinent to the properties of CeO2-NPs and the pragmatic biosynthesis methods, this review will emphasize the recent application of CeO2-NPs to orthopedic biomedicine, in particular, the bone tissue engineering (BTE). The presentation, assessment, and outlook of the orthopedic potential and shortcomings of CeO2-NPs in this review expect to provide reference values for the future research and development of therapeutic agents based on CeO2-NPs.
Collapse
Affiliation(s)
- Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Dankai Wu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|