1
|
Stefanini MI, Gottschalk MS, Calvo NS, Soto IM. Evolution of male genitalia in the Drosophila repleta species group (Diptera: Drosophilidae). J Evol Biol 2021; 34:1488-1502. [PMID: 34378262 DOI: 10.1111/jeb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The Drosophila repleta group comprises more than one hundred species that inhabit several environments in the Neotropics and use different hosts as rearing and feeding resources. Rather homogeneous in their external morphology, they are generally distinguished by the male genitalia, seemingly their fastest evolving morphological trait, constituting an excellent model to study patterns of genital evolution in the context of a continental adaptive radiation. Although much is known about the evolution of animal genitalia at population level, surveys on macroevolutionary scale of this phenomenon are scarce. This study used a suite of phylogenetic comparative methods to elucidate the macroevolutionary patterns of genital evolution through deep time and large continental scales. Our results indicate that male genital size and some aspects of shape have been evolving by speciational evolution, probably due to the microevolutionary processes involved in species mate recognition. In contrast, several features of the aedeagus shape seemed to have evolved in a gradual fashion, with heterogeneous evolutionary phenotypic rates among clades. In general, the tempo of the evolution of aedeagus morphology was constant from the origin of the group until the Pliocene, when it accelerated in some clades that diversified mainly in this period. The incidence of novel ecological conditions in the tempo of aedeagus evolution and the relationship between species mate recognition and speciation in the Drosophila repleta group are discussed.
Collapse
Affiliation(s)
- Manuel I Stefanini
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| | - Marco S Gottschalk
- Departamento de Ecología, Zoologia e Genética, Instituto de Biología, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Natalia S Calvo
- Instituto Nacional de Limnología (UNL-CONICET), Santa Fe, Argentina
| | - Ignacio M Soto
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Wang X, Verschut TA, Billeter JC, Maan ME. Seven Questions on the Chemical Ecology and Neurogenetics of Resource-Mediated Speciation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adaptation to different environments can result in reproductive isolation between populations and the formation of new species. Food resources are among the most important environmental factors shaping local adaptation. The chemosensory system, the most ubiquitous sensory channel in the animal kingdom, not only detects food resources and their chemical composition, but also mediates sexual communication and reproductive isolation in many taxa. Chemosensory divergence may thus play a crucial role in resource-mediated adaptation and speciation. Understanding how the chemosensory system can facilitate resource-mediated ecological speciation requires integrating mechanistic studies of the chemosensory system with ecological studies, to link the genetics and physiology of chemosensory properties to divergent adaptation. In this review, we use examples of insect research to present seven key questions that can be used to understand how the chemosensory system can facilitate resource-mediated ecological speciation in consumer populations.
Collapse
|
3
|
Belkina EG, Naimark EB, Gorshkova AA, Markov AV. Does adaptation to different diets result in assortative mating? Ambiguous results from experiments on Drosophila. J Evol Biol 2018; 31:1803-1814. [PMID: 30222229 DOI: 10.1111/jeb.13375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
The emergence of behavioural isolation between populations under divergent selection can be crucial for ecological speciation, but the mechanisms underlying such isolation are poorly understood. Several experimental evolution studies have shown that positive assortative mating (preference for similar mates) can arise rapidly in Drosophila laboratory populations reared in different stressful conditions, while other studies failed to confirm this effect. Here, we present the results of an evolution experiment in which outbred lines of Drosophila melanogaster were reared for 1-2 years on one of the three different diets (standard, starch based or high salt). We show that nonrandom mating arose in some, but not all lines, and that the manifestations and possible interpretations of this nonrandomness depend strongly on the type of tests used to assess mating preferences. More specifically, multiple-choice four-fly tests revealed positive assortative mating (prevalence of homogamic matings) in some starch-adapted and salt-adapted lines when paired with a control line reared on the standard diet, but competitive three-fly tests rather revealed competitive advantage of control males and females over the flies reared on stressful diets. The results imply that divergent adaptation can result in differences in mating propensity or competitive ability, which, in turn, may either facilitate or hamper speciation depending on the relative frequency of high- vs. low-competition settings in natural habitats of the diverging populations. The results also emphasize the importance of using diverse tests for assessing mating structure in natural and laboratory populations.
Collapse
Affiliation(s)
- Elena G Belkina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena B Naimark
- Borissiak Paleontological Institute of Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander V Markov
- Borissiak Paleontological Institute of Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Otte T, Hilker M, Geiselhardt S. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects. J Chem Ecol 2018; 44:235-247. [PMID: 29468480 DOI: 10.1007/s10886-018-0934-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022]
Abstract
The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.
Collapse
Affiliation(s)
- Tobias Otte
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
5
|
Otte T, Hilker M, Geiselhardt S. Phenotypic plasticity of mate recognition systems prevents sexual interference between two sympatric leaf beetle species. Evolution 2016; 70:1819-28. [PMID: 27272669 DOI: 10.1111/evo.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/10/2016] [Accepted: 05/21/2016] [Indexed: 11/30/2022]
Abstract
Maladaptive sexual interactions among heterospecific individuals (sexual interference) can prevent the coexistence of animal species. Thus, the avoidance of sexual interference by divergence of mate recognition systems is crucial for a stable coexistence in sympatry. Mate recognition systems are thought to be under tight genetic control. However, we demonstrate that mate recognition systems of two closely related sympatric leaf beetle species show a high level of host-induced phenotypic plasticity. Mate choice in the mustard leaf beetles, Phaedon cochleariae and P. armoraciae, is mediated by cuticular hydrocarbons (CHCs). Divergent host plant use causes a divergence of CHC phenotypes, whereas similar host use leads to their convergence. Consequently, both species exhibit significant behavioral isolation when they feed on alternative host species, but mate randomly when using a common host. Thus, sexual interference between these syntopic leaf beetles is prevented by host-induced phenotypic plasticity rather than by genotypic divergence of mate recognition systems.
Collapse
Affiliation(s)
- Tobias Otte
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Street 9, 12163, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Street 9, 12163, Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Street 9, 12163, Berlin, Germany.
| |
Collapse
|
6
|
Chiang YN, Tan KJ, Chung H, Lavrynenko O, Shevchenko A, Yew JY. Steroid Hormone Signaling Is Essential for Pheromone Production and Oenocyte Survival. PLoS Genet 2016; 12:e1006126. [PMID: 27333054 PMCID: PMC4917198 DOI: 10.1371/journal.pgen.1006126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/25/2016] [Indexed: 01/04/2023] Open
Abstract
Many of the lipids found on the cuticles of insects function as pheromones and communicate information about age, sex, and reproductive status. In Drosophila, the composition of the information-rich lipid profile is dynamic and changes over the lifetime of an individual. However, the molecular basis of this change is not well understood. To identify genes that control cuticular lipid production in Drosophila, we performed a RNA interference screen and used Direct Analysis in Real Time and gas chromatography mass spectrometry to quantify changes in the chemical profiles. Twelve putative genes were identified whereby transcriptional silencing led to significant differences in cuticular lipid production. Amongst them, we characterized a gene which we name spidey, and which encodes a putative steroid dehydrogenase that has sex- and age-dependent effects on viability, pheromone production, and oenocyte survival. Transcriptional silencing or overexpression of spidey during embryonic development results in pupal lethality and significant changes in levels of the ecdysone metabolite 20-hydroxyecdysonic acid and 20-hydroxyecdysone. In contrast, inhibiting gene expression only during adulthood resulted in a striking loss of oenocyte cells and a concomitant reduction of cuticular hydrocarbons, desiccation resistance, and lifespan. Oenocyte loss and cuticular lipid levels were partially rescued by 20-hydroxyecdysone supplementation. Taken together, these results identify a novel regulator of pheromone synthesis and reveal that ecdysteroid signaling is essential for the maintenance of cuticular lipids and oenocytes throughout adulthood. Pheromones are used by many animals to control social behaviors such as mate choice and kin recognition. The pheromone profile of insects is dynamic and can change depending on environmental, physiological, and social conditions. While many genes responsible for the biosynthesis of insect pheromones have been identified, much less is known about how pheromone production is systemically regulated over the lifetime of an animal. In this work, we identify 12 genes in Drosophila melanogaster that play a role in pheromone production. We characterized the function of one gene, which we name spidey, and which encodes a steroid dehydrogenase. Silencing spidey expression during the larval stage results in the rapid inactivation of an essential insect steroid, 20-hydroxyecdysone, and developmental arrest. In adults, spidey is needed for maintaining the viability of oenocytes, specialized cells that produce pheromones and also regulate energy homeostasis. Our work reveals a novel role for ecdysteroids in the adult animal and uncovers a regulatory mechanism for oenocyte activity. Potentially, ecdysteroid signaling serves as a mechanism by which environmental or social conditions shape pheromone production. Exploitation of this conserved pathway could be useful for interfering with the mating behavior and lifespan of disease-bearing insects or agricultural pests.
Collapse
Affiliation(s)
- Yin Ning Chiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Kah Junn Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abed-Vieillard D, Cortot J. When Choice Makes Sense: Menthol Influence on Mating, Oviposition and Fecundity in Drosophila melanogaster. Front Integr Neurosci 2016; 10:5. [PMID: 26941622 PMCID: PMC4761970 DOI: 10.3389/fnint.2016.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
The environment to which insects have been exposed as larvae and adults can affect subsequent behaviors, such as mating, oviposition, food preference or fitness. Experience can change female preference for oviposition, particularly in phytophagous insects. In Drosophila melanogaster, females avoid laying eggs on menthol rich-food when given the choice. Exposure to menthol during larval development reduces this aversion. However, this observation was not reproduced in the following generation. Recently, we have shown that oviposition-site preference (OSP) differs between wild-type D. melanogaster lines freely or forcibly exposed to menthol. After 12 generations, menthol "forced" lines still exhibit a persistent aversion to menthol whereas 'free-choice' lines show a decreased aversion for menthol rich-food. Here, we compare courtship behavior, mating and female fecundity in "forced" and "free-choice" lines, raised either on menthol rich-food (Menthol-lines) or on menthol-free food (Plain-lines). "Forced" males did not discriminate between decapitated virgin females of the two lines. They courted and mated with intact females of both "forced" lines in a comparable rate. However "forced" M-line males did mate significantly more rapidly with "forced" M-line females. In the "free-choice" procedure, P-line males show a similar pattern as "forced" males for discrimination ability and courtship. M-line males courted significantly more M-line females. Both 'free-choice' lines males mated significantly more with females of their own line. Female fecundity was assessed during 10 days in 'free-choice' lines. Menthol-line females laid more eggs during the first 4 days than female Plain-lines and parental control-line. The total number of eggs laid during the first 10 days of female adult life is comparable in M-line and parental control line. However, Menthol-line females laid eggs earlier than both parental control and Plain-lines. Our findings show that in D. melanogaster, as for OSP, mating and fecundity are more rapidly influenced when flies have a choice between alternative resources compared to flies permanently exposed to menthol.
Collapse
Affiliation(s)
- Dehbia Abed-Vieillard
- Centre National de la Recherche Scientifique, UMR6265 Centre des Sciences du Goût et de l’AlimentationDijon, France
- Institut National de la Recherche Agronomique, UMR1324 Centre des Sciences du Goût et de l’AlimentationDijon, France
- UMR Centre des Sciences du Goût et de l’Alimentation, Université de BourgogneDijon, France
| | - Jérôme Cortot
- Centre National de la Recherche Scientifique, UMR6265 Centre des Sciences du Goût et de l’AlimentationDijon, France
- Institut National de la Recherche Agronomique, UMR1324 Centre des Sciences du Goût et de l’AlimentationDijon, France
- UMR Centre des Sciences du Goût et de l’Alimentation, Université de BourgogneDijon, France
| |
Collapse
|
8
|
Pavković-Lučić S, Todosijević M, Savić T, Vajs V, Trajković J, Anđelković B, Lučić L, Krstić G, Makarov S, Tomić V, Miličić D, Vujisić L. 'Does my Diet Affect my Perfume?' Identification and Quantification of Cuticular Compounds in Five Drosophila melanogaster Strains Maintained over 300 Generations on Different Diets. Chem Biodivers 2016; 13:224-32. [PMID: 26880435 DOI: 10.1002/cbdv.201500064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2022]
Abstract
Cuticular hydrocarbons (CHCs) in Drosophila melanogaster represent the basis of chemical communication being involved in many important biological functions. The aim of this study was to characterize chemical composition and variation of cuticular profiles in five D. melanogaster strains. These strains were reared for approximately 300 generations on five diets: standard cornmeal medium and substrates prepared with apple, banana, tomato, and carrot. Differences in quantity and/or quality in CHCs were assumed as a result of activation of different metabolic pathways involved in food digestion and adaptations to the particular diet type. In total, independently of sex and strain, 66 chemical compounds were identified. In females of all strains, 60 compounds were identified, while, in males, 47 compounds were extracted. Certain new chemical compounds for D. melanogaster were found. MANOVA confirmed that CHC amounts significantly depend on sex and substrates, as well as on their interactions. Discriminant analysis revealed that flies belonging to 'apple' and 'carrot' strains exhibited the most noticeable differences in CHC repertoires. A non-hydrocarbon pheromone, cis-vaccenyl acetate (cVA) also contributed to the variation in the pheromone bouquet among the strains. Variability detected in CHCs and cVA may be used in the explanation of differences in mating behaviour previously determined in analyzed fly strains.
Collapse
Affiliation(s)
| | - Marina Todosijević
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, RS-11000 Belgrade
| | - Tatjana Savić
- University of Belgrade, Institute for Biological Research 'Siniša Stanković', Despota Stefana Blvd. 142, RS-11000 Belgrade
| | - Vlatka Vajs
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, RS-11000 Belgrade
| | - Jelena Trajković
- University of Belgrade, Institute for Biological Research 'Siniša Stanković', Despota Stefana Blvd. 142, RS-11000 Belgrade
| | - Boban Anđelković
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, RS-11000 Belgrade
| | - Luka Lučić
- University of Belgrade, Faculty of Biology, Studentski trg 16, RS-11000 Belgrade
| | - Gordana Krstić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, RS-11000 Belgrade
| | - Slobodan Makarov
- University of Belgrade, Faculty of Biology, Studentski trg 16, RS-11000 Belgrade
| | - Vladimir Tomić
- University of Belgrade, Faculty of Biology, Studentski trg 16, RS-11000 Belgrade
| | - Dragana Miličić
- University of Belgrade, Faculty of Biology, Studentski trg 16, RS-11000 Belgrade
| | - Ljubodrag Vujisić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, RS-11000 Belgrade
| |
Collapse
|
9
|
Xue HJ, Wei JN, Magalhães S, Zhang B, Song KQ, Liu J, Li WZ, Yang XK. Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav Ecol 2016. [DOI: 10.1093/beheco/arv238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N, Denis B, Rubin T, Parvy JP, Montagne J. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J Lipid Res 2015; 56:2094-101. [PMID: 26353752 DOI: 10.1194/jlr.m060368] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
In terrestrial insects, cuticular hydrocarbons (CHCs) provide protection from desiccation. Specific CHCs can also act as pheromones, which are important for successful mating. Oenocytes are abdominal cells thought to act as specialized units for CHC biogenesis that consists of long-chain fatty acid (LCFA) synthesis, optional desaturation(s), elongation to very long-chain fatty acids (VLCFAs), and removal of the carboxyl group. By investigating CHC biogenesis in Drosophila melanogaster, we showed that VLCFA synthesis takes place only within the oenocytes. Conversely, several pathways, which may compensate for one another, can feed the oenocyte pool of LCFAs, suggesting that this step is a critical node for regulating CHC synthesis. Importantly, flies deficient in LCFA synthesis sacrificed their triacylglycerol stores while maintaining some CHC production. Moreover, pheromone production was lower in adult flies that emerged from larvae that were fed excess dietary lipids, and their mating success was lower. Further, we showed that pheromone production in the oenocytes depends on lipid metabolism in the fat tissue and that fatty acid transport protein, a bipartite acyl-CoA synthase (ACS)/FA transporter, likely acts through its ACS domain in the oenocyte pathway of CHC biogenesis. Our study highlights the importance of environmental and physiological inputs in regulating LCFA synthesis to eventually control sexual communication in a polyphagous animal.
Collapse
Affiliation(s)
- Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Damien Garrido
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Laura Napal
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS Université Paris-Sud, UMR 9191, F-91190, Gif-sur-Yvette, France
| | - Thomas Rubin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Jean-Philippe Parvy
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France Sorbonne Universités, UPMC Univ Paris 06, UFR 927, F-75005, Paris, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| |
Collapse
|
11
|
|
12
|
Otte T, Hilker M, Geiselhardt S. The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition. J Chem Ecol 2014; 41:32-43. [PMID: 25516227 DOI: 10.1007/s10886-014-0535-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/05/2014] [Accepted: 12/04/2014] [Indexed: 11/25/2022]
Abstract
The cuticular hydrocarbon (CHC) profile of the mustard leaf beetle Phaedon cochleariae is known to mediate mate recognition and is dependent on food plant species; beetles previously were shown to prefer mates that fed on the same plant species and which have a similar CHC pattern. In order to elucidate whether the pattern of ingested fatty acids affects the CHC pattern of P. cochleariae adults, we fed beetles: (a) with two different host plant species differing in fatty acid profile; and (b) artificial diets differing mainly in their composition of mono-, di-, and triunsaturated fatty acids. Analyses of the beetles' CHCs revealed that ingestion of different fatty acid blends results in quantitative effects on the beetle's straight-chain and methyl-branched CHCs. Interestingly, CHC patterns of males and females were affected differently by ingestion of fatty acids. In contrast to the effect on mating caused by feeding on different host plant species, beetles that were fed with different artificial diets, leading to different beetle CHC profiles, did not exhibit mating preference. We suggest that the occurrence of CHC-dependent assortative mating in P. cochleariae does not depend on the dietary fatty acids offered to the beetles in this study, but on other food constituents that affect CHC biosynthesis.
Collapse
Affiliation(s)
- Tobias Otte
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | | | | |
Collapse
|
13
|
The chemistry of an unusual seed dispersal mutualism: bees use a complex set of olfactory cues to find their partner. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Chin JSR, Ellis SR, Pham HT, Blanksby SJ, Mori K, Koh QL, Etges WJ, Yew JY. Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior. eLife 2014; 3:e01751. [PMID: 24618898 PMCID: PMC3948109 DOI: 10.7554/elife.01751] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pheromones play an important role in the behavior, ecology, and evolution of many organisms. The structure of many insect pheromones typically consists of a hydrocarbon backbone, occasionally modified with various functional oxygen groups. Here we show that sex-specific triacylclyerides (TAGs) are broadly conserved across the subgenus Drosophila in 11 species and represent a novel class of pheromones that has been largely overlooked. In desert-adapted drosophilids, 13 different TAGs are secreted exclusively by males from the ejaculatory bulb, transferred to females during mating, and function synergistically to inhibit courtship from other males. Sex-specific TAGs are comprised of at least one short branched tiglic acid and a long linear fatty acyl component, an unusual structural motif that has not been reported before in other natural products. The diversification of chemical cues used by desert-adapted Drosophila as pheromones may be related to their specialized diet of fermenting cacti. DOI:http://dx.doi.org/10.7554/eLife.01751.001 For animals, the ultimate purpose of life is to have sex, as nothing is more important than passing down your genes to future generations. A wide range of strategies are therefore employed throughout nature to maximize the chances of sexual success, from ostentatious courtship rituals to the subtle subliminal signals sent out using chemicals called pheromones. Plants and animals release pheromones to influence the behavior of other plants and animals, often without the recipient being aware of it. Hundreds of different insect pheromones have been discovered. Fruit flies release a number of different pheromones, all with similar chemical structures. Now, Chin et al. have discovered that male flies belonging to several species of fruit fly that live in the desert release chemicals called triacylglycerides (TAGs), which are commonly used for energy storage by many organisms as pheromones. During sex, the male fly rubs the TAGs onto the body of the female, which makes her less attractive to other male flies for several hours, thus increasing his chances of parenthood and passing his genes to future generations. TAGs are also found in other insect species, but have been largely overlooked as pheromones. Moreover, the TAGs discovered by Chin et al. have an unusual structure, not previously seen in nature, which may result from the diet of fermenting cacti the desert-dwelling fruit flies enjoy. DOI:http://dx.doi.org/10.7554/eLife.01751.002
Collapse
Affiliation(s)
- Jacqueline S R Chin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Differences in tolerance to host cactus alkaloids in Drosophila koepferae and D. buzzatii. PLoS One 2014; 9:e88370. [PMID: 24520377 PMCID: PMC3919786 DOI: 10.1371/journal.pone.0088370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
The evolution of cactophily in the genus Drosophila was a major ecological transition involving over a hundred species in the Americas that acquired the capacity to cope with a variety of toxic metabolites evolved as feeding deterrents in Cactaceae. D. buzzatii and D. koepferae are sibling cactophilic species in the D. repleta group. The former is mainly associated with the relatively toxic-free habitat offered by prickly pears (Opuntia sulphurea) and the latter has evolved the ability to use columnar cacti of the genera Trichocereus and Cereus that contain an array of alkaloid secondary compounds. We assessed the effects of cactus alkaloids on fitness-related traits and evaluated the ability of D. buzzatii and D. koepferae to exploit an artificial novel toxic host. Larvae of both species were raised in laboratory culture media to which we added increasing doses of an alkaloid fraction extracted from the columnar cactus T. terschekii. In addition, we evaluated performance on an artificial novel host by rearing larvae in a seminatural medium that combined the nutritional quality of O. sulphurea plus amounts of alkaloids found in fresh T. terschekii. Performance scores in each rearing treatment were calculated using an index that took into account viability, developmental time, and adult body size. Only D. buzzatii suffered the effects of increasing doses of alkaloids and the artificial host impaired viability in D. koepferae, but did not affect performance in D. buzzatii. These results provide the first direct evidence that alkaloids are key determinants of host plant use in these species. However, the results regarding the artificial novel host suggest that the effects of alkaloids on performance are not straightforward as D. koepferae was heavily affected. We discuss these results in the light of patterns of host plan evolution in the Drosophila repleta group.
Collapse
|
16
|
Schwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi BJ. Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol Biol 2013; 13:151. [PMID: 23855797 PMCID: PMC3728149 DOI: 10.1186/1471-2148-13-151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/12/2013] [Indexed: 01/06/2023] Open
Abstract
Background Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. Results Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. Conclusion Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events. Similarities in hydrocarbon profiles between species are correlated with interspecific mating propensities, suggesting a role for cuticular hydrocarbon profiles in mate choice and speciation in the genus Timema.
Collapse
Affiliation(s)
- Tanja Schwander
- Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Leonhardt SD, Rasmussen C, Schmitt T. Genes versus environment: geography and phylogenetic relationships shape the chemical profiles of stingless bees on a global scale. Proc Biol Sci 2013; 280:20130680. [PMID: 23658202 PMCID: PMC3673053 DOI: 10.1098/rspb.2013.0680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/15/2013] [Indexed: 11/12/2022] Open
Abstract
Chemical compounds are highly important in the ecology of animals. In social insects, compounds on the body surface represent a particularly interesting trait, because they comprise different compound classes that are involved in different functions, such as communication, recognition and protection, all of which can be differentially affected by evolutionary processes. Here, we investigate the widely unknown and possibly antagonistic influence of phylogenetic and environmental factors on the composition of the cuticular chemistry of tropical stingless bees. We chose stingless bees because some species are unique in expressing not only self-produced compounds, but also compounds that are taken up from the environment. By relating the cuticular chemistry of 40 bee species from all over the world to their molecular phylogeny and geographical occurrence, we found that distribution patterns of different groups of compounds were differentially affected by genetic relatedness and biogeography. The ability to acquire environmental compounds was, for example, highly correlated with the bees' phylogeny and predominated in evolutionarily derived species. Owing to the presence of environmentally derived compounds, those species further expressed a higher chemical and thus functional diversity. In Old World species, chemical similarity of both environmentally derived and self-produced compounds was particularly high among sympatric species, even when they were less related to each other than to allopatric species, revealing a strong environmental effect even on largely genetically determined compounds. Thus, our findings do not only reveal an unexpectedly strong influence of the environment on the cuticular chemistry of stingless bees, but also demonstrate that even within one morphological trait (an insect's cuticular profile), different components (compound classes) can be differentially affected by different drivers (relatedness and biogeography), depending on the functional context.
Collapse
Affiliation(s)
- Sara D Leonhardt
- Department of Ecology, Leuphana University, 21335 Lüneburg, Germany.
| | | | | |
Collapse
|
18
|
Corio C, Soto IM, Carreira V, Padró J, Betti MIL, Hasson E. An alkaloid fraction extracted from the cactusTrichocereus terscheckiiaffects fitness in the cactophilic flyDrosophila buzzatii(Diptera: Drosophilidae). Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristian Corio
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA); Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, Ciudad Universitaria; Pabellón II (C1428 EHA) Buenos Aires Argentina
| | - Ignacio M. Soto
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA); Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, Ciudad Universitaria; Pabellón II (C1428 EHA) Buenos Aires Argentina
| | - Valeria Carreira
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA); Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, Ciudad Universitaria; Pabellón II (C1428 EHA) Buenos Aires Argentina
| | - Julián Padró
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA); Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, Ciudad Universitaria; Pabellón II (C1428 EHA) Buenos Aires Argentina
| | - María I. L. Betti
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA); Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, Ciudad Universitaria; Pabellón II (C1428 EHA) Buenos Aires Argentina
| | - Esteban Hasson
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA); Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, Ciudad Universitaria; Pabellón II (C1428 EHA) Buenos Aires Argentina
| |
Collapse
|
19
|
Fedina TY, Kuo TH, Dreisewerd K, Dierick HA, Yew JY, Pletcher SD. Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila. PLoS One 2012; 7:e49799. [PMID: 23227150 PMCID: PMC3515564 DOI: 10.1371/journal.pone.0049799] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
Dietary composition is known to have profound effects on many aspects of animal physiology, including lifespan, general health, and reproductive potential. We have previously shown that aging and insulin signaling significantly influence the composition and sexual attractiveness of Drosophila melanogaster female cuticular hydrocarbons (CHCs), some of which are known to be sex pheromones. Because diet is intimately linked to aging and to the activity of nutrient-sensing pathways, we asked how diet affects female CHCs and attractiveness. Here we report consistent and significant effects of diet composition on female CHC profiles across ages, with dietary yeast and sugar driving CHC changes in opposite directions. Surprisingly, however, we found no evidence that these changes affect female attractiveness. Multivariate comparisons among responses of CHC profiles to diet, aging, and insulin signaling suggest that diet may alter the levels of some CHCs in a way that results in profiles that are more attractive while simultaneously altering other CHCs in a way that makes them less attractive. For example, changes in short-chain CHCs induced by a high-yeast diet phenocopy changes caused by aging and by decreased insulin signaling, both of which result in less attractive females. On the other hand, changes in long-chain CHCs in response to the same diet result in levels that are comparable to those observed in attractive young females and females with increased insulin signaling. The effects of a high-sugar diet tend in the opposite direction, as levels of short-chain CHCs resemble those in attractive females with increased insulin signaling and changes in long-chain CHCs are similar to those caused by decreased insulin signaling. Together, these data suggest that diet-dependent changes in female CHCs may be sending conflicting messages to males.
Collapse
Affiliation(s)
- Tatyana Y. Fedina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tsung-Han Kuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Herman A. Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanne Y. Yew
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kühbandner S, Hacker K, Niedermayer S, Steidle JLM, Ruther J. Composition of cuticular lipids in the pteromalid wasp Lariophagus distinguendus is host dependent. BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:610-617. [PMID: 22717045 DOI: 10.1017/s000748531200017x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The insect cuticle is covered by a thin layer of hydrocarbons not only preventing desiccation but also playing an important role in the sexual communication of several species. In the pteromalid wasp Lariophagus distinguendus, a parasitoid of grain infesting beetles, female cuticular hydrocarbons (CHCs) elicit male courtship behaviour. We analyzed the CHC profiles of male and female L. distinguendus wasps reared on different beetle hosts by coupled gas chromatography- mass spectrometry (GC-MS). Statistical analysis of the data revealed significant differences between strains reared on different hosts, while spatially isolated strains reared on the same host produced similar profiles. CHC profiles of parasitoids reared on Stegobium paniceum were statistically distinguishable from those of wasps reared on all other hosts. A host shift from Sitophilus granarius to S. paniceum resulted in distinguishable CHC profiles of L. distinguendus females after only one generation. Considering the role of CHCs as contact sex pheromones, our data suggest that host shifts in parasitic wasps might lead to reproductive isolation of host races due to the modification of the cuticular semiochemistry.
Collapse
Affiliation(s)
- S Kühbandner
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - K Hacker
- Institute for Zoology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - S Niedermayer
- Institute for Zoology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - J L M Steidle
- Institute for Zoology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - J Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Vaníčková L, do Nascimento RR, Hoskovec M, Ježková Z, Břízová R, Tomčala A, Kalinová B. Are the wild and laboratory insect populations different in semiochemical emission? The case of the medfly sex pheromone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7168-7176. [PMID: 22741541 DOI: 10.1021/jf301474d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The medfly (Ceratitis capitata) is one of the major agricultural pests controlled through sterile insect technique (SIT) programs. We studied the chemical composition of the volatiles released by calling males from one laboratory and two wild C. capitata populations using two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC/TOFMS) and gas chromatography with electroantennographic detection (GC-EAD). Multivariate data analyses revealed significant differences in the quantitative and qualitative composition of male chemical emanations between the three populations. The GC-EAD analyses of the male emanation of three C. capitata populations revealed 14 antenally active compounds. The volatiles isomenthone, β-pinene, ethyl octanoate, indole, geraniol, bornyl acetate, geranyl acetone, and (E)-caryophyllene are newly reported EAD active constituents of the male pheromone. GC-EAD analyses of the laboratory population indicated that the males and females of C. capitata possess comparable sensitivity to male-produced volatiles. Our results are relevant to the development of a pheromone-based monitoring system and also to the SIT control program.
Collapse
Affiliation(s)
- Lucie Vaníčková
- Infochemicals Research Group, Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
22
|
Geiselhardt S, Otte T, Hilker M. Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett 2012; 15:971-7. [PMID: 22708843 DOI: 10.1111/j.1461-0248.2012.01816.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 12/21/2022]
Abstract
The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation.
Collapse
Affiliation(s)
- Sven Geiselhardt
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, Berlin, D-12163, Germany.
| | | | | |
Collapse
|
23
|
Kuo TH, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD. Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. ACTA ACUST UNITED AC 2012; 215:814-21. [PMID: 22323204 DOI: 10.1242/jeb.064980] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual's fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster. Evidence suggests that key pheromones in Drosophila are produced as cuticular hydrocarbons (CHC), whose functions in attracting mates and influencing behavior have been widely studied. We employed gas chromatography/mass spectrometry and laser desorption/ionization mass spectrometry to show that the composition of D. melanogaster CHC is significantly affected by aging in both sexes and that these changes are robust to different genetic backgrounds. Aging affected the relative levels of many individual CHC, and it shifted overall hydrocarbon profiles to favor compounds with longer chain lengths. We also show that the observed aging-related changes in CHC profiles are responsible for a significant reduction in sexual attractiveness. These studies illuminate causal links among pheromones, aging and attractiveness and suggest that CHC production may be an honest indicator of animal health and fertility.
Collapse
Affiliation(s)
- Tsung-Han Kuo
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
24
|
Underappreciated Consequences of Phenotypic Plasticity for Ecological Speciation. INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1155/2012/256017] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phenotypic plasticity was once seen primarily as a constraint on adaptive evolution or merely a nuisance by geneticists. However, some biologists promote plasticity as a source of novelty and a factor in evolution on par with mutation, drift, gene flow, and selection. These claims are controversial and largely untested, but progress has been made on more modest questions about effects of plasticity on local adaptation (the first component of ecological speciation). Adaptive phenotypic plasticity can be a buffer against divergent selection. It can also facilitate colonization of new niches and rapid divergent evolution. The influence of non-adaptive plasticity has been underappreciated. Non-adaptive plasticity, too can interact with selection to promote or inhibit genetic differentiation. Finally, phenotypic plasticity of reproductive characters might directly influence evolution of reproductive isolation (the second component of ecological speciation). Plasticity can cause assortative mating, but its influence on gene flow ultimately depends on maintenance of environmental similarity between parents and offspring. Examples of plasticity influencing mating and habitat choice suggest that this, too, might be an underappreciated factor in speciation. Plasticity is an important consideration for studies of speciation in nature, and this topic promises fertile ground for integrating developmental biology with ecology and evolution.
Collapse
|
25
|
Soto EM, Goenaga J, Hurtado JP, Hasson E. Oviposition and performance in natural hosts in cactophilic Drosophila. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9531-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Etges WJ, De Oliveira CC, Noor MAF, Ritchie MG. Genetics of incipient speciation in Drosophila mojavensis. III. Life-history divergence in allopatry and reproductive isolation. Evolution 2011; 64:3549-69. [PMID: 20681983 DOI: 10.1111/j.1558-5646.2010.01096.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We carried out a three-tiered genetic analysis of egg-to-adult development time and viability in ancestral and derived populations of cactophilic Drosophila mojavensis to test the hypothesis that evolution of these life-history characters has shaped premating reproductive isolation in this species. First, a common garden experiment with 11 populations from Baja California and mainland Mexico and Arizona reared on two host species revealed significant host plant X region and population interactions for viability and development time, evidence for host plant adaptation. Second, replicated line crosses with flies reared on both hosts revealed autosomal, X chromosome, cytoplasmic, and autosome X cactus influences on development time. Viability differences were influenced by host plants, autosomal dominance, and X chromosomal effects. Many of the F(1) , F(2) , and backcross generations showed evidence of heterosis for viability. Third, a QTL analysis of male courtship song and epicuticular hydrocarbon variation based on 1688 Baja × mainland F(2) males also revealed eight QTL influencing development time differences. Mainland alleles at six of these loci were associated with longer development times, consistent with population-level differences. Eight G × E interactions were also detected caused by longer development times of mainland alleles expressed on a mainland host with smaller differences among Baja genotypes reared on the Baja host plant. Four QTL influenced both development time and epicuticular hydrocarbon differences associated with courtship success, and there was a significant QTL-based correlation between development time and cuticular hydrocarbon variation. Thus, the regional shifts in life histories that evolved once D. mojavensis invaded mainland Mexico from Baja California by shifting host plants were genetically correlated with variation in cuticular hydrocarbon-based mate preferences.
Collapse
Affiliation(s)
- William J Etges
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, Arizona 72701, USA.
| | | | | | | |
Collapse
|
27
|
Yew JY, Dreisewerd K, de Oliveira CC, Etges WJ. Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair. PLoS One 2011; 6:e16898. [PMID: 21369358 PMCID: PMC3038915 DOI: 10.1371/journal.pone.0016898] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species.
Collapse
Affiliation(s)
- Joanne Y. Yew
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Klaus Dreisewerd
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Cássia Cardoso de Oliveira
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - William J. Etges
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Nuclear receptor DHR96 acts as a sentinel for low cholesterol concentrations in Drosophila melanogaster. Mol Cell Biol 2009; 30:793-805. [PMID: 19933845 DOI: 10.1128/mcb.01327-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All eukaryotic cells have to maintain cholesterol concentrations within defined margins in order to function normally. Perturbing cholesterol homeostasis can result in a wide range of cellular and systemic defects, including cardiovascular diseases, as well as Niemann-Pick and Tangier diseases. Here, we show that DHR96 is indispensable for mediating the transcriptional response to dietary cholesterol and that it acts as a key regulator of the Niemann-Pick type C gene family, as well as of other genes involved in cholesterol uptake, metabolism, and transport. DHR96 mutants are viable and phenotypically normal on a standard medium but fail to survive on diets that are low in cholesterol. DHR96 mutants have aberrant cholesterol levels, demonstrating a defect in maintaining cholesterol homeostasis. Remarkably, we found that a high-cholesterol diet phenocopied the genomic profile of the DHR96 mutation, indicating that DHR96 resides at the top of a genetic hierarchy controlling cholesterol homeostasis in insects. We propose a model whereby DHR96 is activated when cellular cholesterol concentrations drop below a critical threshold in order to protect cells from severe cholesterol deprivation.
Collapse
|
29
|
|
30
|
Chenoweth SF, Rundle HD, Blows MW. Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. Am Nat 2008; 171:22-34. [PMID: 18171148 DOI: 10.1086/523946] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolution of sexual dimorphism involves an interaction between sex-specific selection and a breakdown of genetic constraints that arise because the two sexes share a genome. We examined genetic constraints and the effect of sex-specific selection on a suite of sexually dimorphic display traits in Drosophila serrata. Sexual dimorphism varied among nine natural populations covering a substantial portion of the species range. Quantitative genetic analyses showed that intersexual genetic correlations were high because of autosomal genetic variance but that the inclusion of X-linked effects reduced genetic correlations substantially, indicating that sex linkage may be an important mechanism by which intersexual genetic constraints are reduced in this species. We then explored the potential for both natural and sexual selection to influence these traits, using a 12-generation laboratory experiment in which we altered the opportunities for each process as flies adapted to a novel environment. Sexual dimorphism evolved, with natural selection reducing sexual dimorphism, whereas sexual selection tended to increase it overall. To this extent, our results are consistent with the hypothesis that sexual selection favors evolutionary divergence of the sexes. However, sex-specific responses to natural and sexual selection contrasted with the classic model because sexual selection affected females rather than males.
Collapse
Affiliation(s)
- Stephen F Chenoweth
- School of Integrative Biology, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | | | |
Collapse
|
31
|
Soto IM, Carreira VP, Soto EM, Hasson E. Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila. J Evol Biol 2007; 21:598-609. [PMID: 18081744 DOI: 10.1111/j.1420-9101.2007.01474.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As in most insect groups, host plant shifts in cactophilic Drosophila represent environmental challenges as flies must adjust their developmental programme to the presence of different chemical compounds and/or to a microflora that may differ in the diversity and abundance of yeasts and bacteria. In this context, wing morphology provides an excellent opportunity to investigate the factors that may induce changes during development. In this work, we investigated phenotypic plasticity and developmental instability of wing morphology in flies on the cactophilic Drosophila buzzatii and Drosophila koepferae raised on alternative breeding substrates. We detected significant differences in wing size between and within species, and between flies reared on different cactus hosts. However, differences in wing shape between flies emerged from different cactus hosts were not significant either in D. buzzatii or in D. koepferae. Our results also showed that morphological responses involved the entire organ, as variation in size and shape correlated between different portions of the wing. Finally, we studied the effect of the rearing cactus host on developmental instability as measured by the degree of fluctuating asymmetry (FA). Levels of FA in wing size were significantly greater in flies of both species reared in non-preferred when compared with those reared in preferred host cacti. Our results are discussed in the framework of an integrative view aimed at investigating the relevance of host plant shifts in the evolution of the guild of cactophilic Drosophila species that diversified in South America.
Collapse
Affiliation(s)
- I M Soto
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|