1
|
Liu Y, Liao A, Chen S, Xu Y, Zhou JJ, Wu J. Fluorescent Probes Visualize Phytohormone: Research Status and Opportunities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27619-27638. [PMID: 39588791 DOI: 10.1021/acs.jafc.4c06407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Phytohormones, as crucial regulatory factors in plant growth and development, have garnered increased interest in improving crop stress resistance. It is essential to comprehend the distribution of phytohormones in plants to assess their health status and investigate their functions. This knowledge also serves as a guide for developing and using plant growth regulators. The advancement of fluorescent probe technology, along with the wide range of fluorophores and improvements in imaging methods, has made it a successful approach for monitoring phytohormones in plants. This technique has been confirmed to be effective in plants, particularly in detecting the response of fluorescent probes to phytohormones. In this Perspective, we highlight the utility of fluorescent probes in measuring and visualizing the distribution of phytohormones in plants under external stress. However, the visualization of phytohormones with high spatial resolution and the achievement of high biocompatibility in living plants have posed significant challenges for researchers. Nonetheless, there are also many untapped opportunities in this field. This paper seeks to delve into the potential for further discussion on the subject.
Collapse
Affiliation(s)
- Yaming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shunhong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ying Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jing-Jiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
2
|
Rathor P, Upadhyay P, Ullah A, Gorim LY, Thilakarathna MS. Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AOB PLANTS 2024; 16:plae018. [PMID: 38601216 PMCID: PMC11005776 DOI: 10.1093/aobpla/plae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways were up-regulated in humic acid-treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5:GUS lines we demonstrate the biostimulants activity of humic acid.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Punita Upadhyay
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
3
|
Elshamly AMS, Nassar SMA. Stimulating growth, root quality, and yield of carrots cultivated under full and limited irrigation levels by humic and potassium applications. Sci Rep 2023; 13:14260. [PMID: 37653028 PMCID: PMC10471757 DOI: 10.1038/s41598-023-41488-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Water stress poses a significant challenge for carrot cultivation, leading to decreased yield and inefficient water use efficiency. Therefore, it is crucial to provide plants with suitable supplements that enhance their stress resistance. In this study, we investigated the effectiveness of humic and potassium applications on carrot growth, yield characteristics, root quality, and water use efficiency under varying irrigation levels. A split-split plot experiment was conducted, with two levels of gross water requirements (GWR) (100% and 80%) assigned to the main plots. The subplots were treated with humic acid through foliar application (Hsp) or soil drenching (Hgd). The sub-subplots were further divided to assess the impact of foliar potassium sources (potassium humate, Kh) and mineral applications (potassium sulfate, K2SO4). The results revealed a substantial reduction in carrot yield under limited irrigation, reaching about 32.2% lower than under GWR100%. Therefore, under limited irrigation conditions, the combined application of Hgd and K2SO4 resulted in a significant yield increase of 78.9% compared to the control under GWR80%. Conversely, under GWR100%, the highest average yield was achieved by applying either Hsp and Kh or Hsp and K2SO4, resulting in yields of 35,833 kg ha-1 and 40,183 kg ha-1, respectively. However, the combination of Hgd and Kh negatively affected the yield under both GWR100% and GWR80%. Nonetheless, applying Kh in combination with Hgd under GWR80% led to improved nitrogen, phosphorus, potassium, potassium/sodium ratio, and total sugar concentrations, while reducing sodium content in carrot roots. Based on this study, it is recommended to adopt GWR80% and treat plants with a combination of Hgd and foliar K2SO4. This approach can help plants overcome the negative effects of water stress, improve yield and root quality, and achieve optimal water use efficiency.
Collapse
Affiliation(s)
- Ayman M S Elshamly
- Water Studies and Research Complex, National Water Research Center, Cairo, Egypt.
| | - Saad M A Nassar
- Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt
| |
Collapse
|
4
|
Tahoun AMMA, El-Enin MMA, Mancy AG, Sheta MH, Shaaban A. Integrative Soil Application of Humic Acid and Foliar Plant Growth Stimulants Improves Soil Properties and Wheat Yield and Quality in Nutrient-Poor Sandy Soil of a Semiarid Region. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 22:2857-2871. [PMID: 35528198 PMCID: PMC9059912 DOI: 10.1007/s42729-022-00851-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Sandy soils (containing > 50% sand) are widely distributed worldwide and are characterized by their poor structure, low organic matter, weak hydraulic and nutritional properties, and low crop productivity. Using a 2-year pot experiment, in this study, we investigated the effects of humic acid (HA) as a soil amendment and study two plant growth stimulants (PGSs), zinc oxide nanoparticles (ZnONPs), and L-tryptophan (L-TRP), as a foliar application on wheat grown in nutrient-poor sandy soil. Three HA rates (0 (HA0), 0.2 (HA0.2), and 0.4 (HA0.4) g kg-1 soil) and five PGS levels [control, 50 mg l-1 (ZnONPs50), 100 mg l-1 (ZnONPs100), 0.25 mmol l-1 (L-TRP0.25), and 0.5 mmol l-1 (L-TRP0.5)] were used. The soil hydro-physico-chemical properties, morpho-physiological responses, yield, and quality were measured. HA addition amended the soil structure by allowing rapid macroaggregate formation, decreasing bulk density and pH, and increasing porosity and electrical conductivity, thereby improving soil hydraulic properties. HA0.2 and HA0.4 additions improved growth, yield components, and grain minerals, resulting in higher grain yield by 28.3-54.4%, grain protein by 10.2-13.4%, wet gluten by 18.2-23.3%, and dry gluten by 23.5-29.5%, respectively, than HA0. Foliar application of ZnONPs or L-TRP, especially at higher concentrations compared to the control, noticeably recorded the same positive results as HA treatments. The best results were achieved through the integration of HA0.4 + ZnONPs100 or L-TRP0.5 to the tested nutrient-poor sandy soil. The interactive application of HA0.4 + ZnONPs100 or L-TRP0.5 and the use of mineral fertilizer, which is considered a surplus point in permaculture, can be recommended for sustainable wheat production in nutrient-poor sandy soil.
Collapse
Affiliation(s)
| | | | - Ahmed G. Mancy
- Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11884 Egypt
| | - Mohamed H. Sheta
- Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11884 Egypt
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514 Egypt
| |
Collapse
|
5
|
Zhang P, Zhang H, Wu G, Chen X, Gruda N, Li X, Dong J, Duan Z. Dose-Dependent Application of Straw-Derived Fulvic Acid on Yield and Quality of Tomato Plants Grown in a Greenhouse. FRONTIERS IN PLANT SCIENCE 2021; 12:736613. [PMID: 34707627 PMCID: PMC8542715 DOI: 10.3389/fpls.2021.736613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Fulvic acids are organic compounds widely distributed in soils, and the application of fulvic acids is thought to increase crop yield and quality. However, the effects vary among various sources and doses of fulvic acids and environmental and growth conditions of crops. Here, we investigated the effects of bioresource-derived (corn straw) fulvic acids on plant production and quality of tomato plants and soil chemical properties in soil cultures while experiments on seed germination and hydroponics were conducted to explore the underlying mechanism. Base dressing with 2.7 g kg-1 increased the yield of tomato by 35.0% at most as increased fruit number. Fulvic acids increased the concentrations of minerals, such as Ca, Fe, and Zn and the concentrations of citric, malic, and some amino acids in berries of tomato but did not affect the concentrations of soluble sugars and aromatic substances in tomato fruits. Similarly, fulvic acids at 80-160 mg L-1 increased germination rate, growth vigor, and radicle elongation of tomato seeds while it increased plant biomass, concentrations of nutrients, and root length of tomato plants in hydroponics to the greatest extent in general. The increases in yield and quality can be attributed to the improvement in root growth and, thus, increased nutrient uptake. In addition, the base application of fulvic acids improved soil cation exchange capacity and soil organic matter to an extent. In conclusion, base dressing and the addition into solution of fulvic acids at moderate doses facilitate root growth and nutrient uptake and, thus, vegetable production and quality; therefore, fulvic acids can be an effective component for designing new biofertilizers for sustainable agricultural production.
Collapse
Affiliation(s)
- Peijia Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongjia Zhang
- Nutrition and Health Research Institute, COFCO, Beijing, China
| | - Guoqing Wu
- Nutrition and Health Research Institute, COFCO, Beijing, China
| | - Xiaoyuan Chen
- Nutrition and Health Research Institute, COFCO, Beijing, China
| | - Nazim Gruda
- Institute of Crop Science and Resource Conservation, Division of Horticultural Sciences, University of Bonn, Bonn, Germany
| | - Xun Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinlong Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zengqiang Duan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Bowley HE, Wright P, Stewart AG. Science and agriculture: promoting beneficial symbiosis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2571-2582. [PMID: 32488797 DOI: 10.1007/s10653-020-00608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
While fundamental research into key mechanisms and interactions is important, the practical investigations that scientists also undertake have additional considerations, since the results are applicable in the real world but need disseminating in a way that reaches the intended audience. Worldwide, rapid population growth produces multiple pressures on land, meaning agriculture must become more efficient and productive. Other pressures on farmers are also increasing: to meet environmental quality standards, to follow legislation about application of chemical products, to remain financially viable against uncertain markets, and more. Applied research addresses specific aspects, but often reports do not describe local contexts or are too restricted, lacking details that enable an understanding of their wider application. We illustrate from our experience within UK agriculture, with a particular focus on soil, the identification of current shortcomings in many research publications; provide examples of good practice; and make suggestions for how scientists can help agriculturalists use their work to address the global issues currently faced. Specifically, we recommend that communication between science and agricultural communities is nurtured, to improve mutual understanding and facilitate two-way flow of ideas. In scientific publications, provision of as much contextual information as possible, and consideration for climatic/temporal/location influences, will enable investigations and results to be used for maximum practical effect and should increase citations.
Collapse
Affiliation(s)
| | - Philip Wright
- Independent Advisor on Soils and Cultivations at Wright Resolutions Ltd, Boston, Lincolnshire, UK
| | | |
Collapse
|
7
|
van Tol de Castro TA, Berbara RLL, Tavares OCH, Mello DFDG, Pereira EG, Souza CDCBD, Espinosa LM, García AC. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:171-184. [PMID: 33684776 DOI: 10.1016/j.plaphy.2021.02.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Chemical eustressors induce a eustress state "positive stress" increasing the resistance and improve the plant growth. The potentiality of humic acids (HA) to act as a eustressor has been scarcely explored. The present study aims to evaluate how HA with different structural characteristics induce differently, a eustress state in rice plants through the regulation of photosynthesis. The photosynthetic performance index showed an initial eustress state in plant by HA application characterized by reduction in photosynthesis followed by an increase in photosynthetic efficiency. The HA as a chemical eustressor triggering changes in plant metabolism indicate that the interaction of HA with root system induces a roots growth stimulus preceded by an initial positive stress. The eustress caused by HA is differentiated and is related to its chemical-physics characteristics. The HAVC, with a predominance of CAlkyl-(O,N), CAlkyl-di-O, CAromatic-O structures and greater polarity, stimulated the accumulation of N-NO3- and of soluble sugars in the sheath, increase carbohydrates content in the root and the root emission, resulting in higher total biomass production. The HASOIL, with a predominance of CCOOH-(H,R), CAlkyl-O, CAromatic-H,R structures and greater hydrophobicity caused a decrease in N-NH4+ and N-amine. The HARN, with a predominance of CAlkyl-O, CAlkyl-H,R, and CO, characterized by average polarity, caused an increase in photosynthetic pigment and N-NH4+ content. These results are keys to understand that quality of soil organic matter is related to plant development and that HA are efficient proxies for elucidate its function in natural environments.
Collapse
Affiliation(s)
- Tadeu Augusto van Tol de Castro
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Orlando Carlos Huertas Tavares
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Débora Fernandes da Graça Mello
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Erinaldo Gomes Pereira
- Laboratory of Plant Mineral Nutrition, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Luis Maqueira Espinosa
- Laboratory of Physical-Chemistry of Surfactants (LASURF), Pontifical Catholic University of Rio de Janeiro, Brazil
| | - Andrés Calderín García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
8
|
Nardi S, Schiavon M, Francioso O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 2021; 26:molecules26082256. [PMID: 33924700 PMCID: PMC8070081 DOI: 10.3390/molecules26082256] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Humic substances (HS) are dominant components of soil organic matter and are recognized as natural, effective growth promoters to be used in sustainable agriculture. In recent years, many efforts have been made to get insights on the relationship between HS chemical structure and their biological activity in plants using combinatory approaches. Relevant results highlight the existence of key functional groups in HS that might trigger positive local and systemic physiological responses via a complex network of hormone-like signaling pathways. The biological activity of HS finely relies on their dosage, origin, molecular size, degree of hydrophobicity and aromaticity, and spatial distribution of hydrophilic and hydrophobic domains. The molecular size of HS also impacts their mode of action in plants, as low molecular size HS can enter the root cells and directly elicit intracellular signals, while high molecular size HS bind to external cell receptors to induce molecular responses. Main targets of HS in plants are nutrient transporters, plasma membrane H+-ATPases, hormone routes, genes/enzymes involved in nitrogen assimilation, cell division, and development. This review aims to give a detailed survey of the mechanisms associated to the growth regulatory functions of HS in view of their use in sustainable technologies.
Collapse
Affiliation(s)
- Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, V.le dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Michela Schiavon
- Department of di of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2 (già Via Leonardo da Vinci, 44), 10095 Grugliasco, Italy
- Correspondence:
| | - Ornella Francioso
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy;
| |
Collapse
|
9
|
Pařízková B, Žukauskaitė A, Vain T, Grones P, Raggi S, Kubeš MF, Kieffer M, Doyle SM, Strnad M, Kepinski S, Napier R, Doležal K, Robert S, Novák O. New fluorescent auxin probes visualise tissue-specific and subcellular distributions of auxin in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:535-549. [PMID: 33438224 DOI: 10.1111/nph.17183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
In a world that will rely increasingly on efficient plant growth for sufficient food, it is important to learn about natural mechanisms of phytohormone action. In this work, the introduction of a fluorophore to an auxin molecule represents a sensitive and non-invasive method to directly visualise auxin localisation with high spatiotemporal resolution. The state-of-the-art multidisciplinary approaches of genetic and chemical biology analysis together with live cell imaging, liquid chromatography-mass spectrometry (LC-MS) and surface plasmon resonance (SPR) methods were employed for the characterisation of auxin-related biological activity, distribution and stability of the presented compounds in Arabidopsis thaliana. Despite partial metabolisation in vivo, these fluorescent auxins display an uneven and dynamic distribution leading to the formation of fluorescence maxima in tissues known to concentrate natural auxin, such as the concave side of the apical hook. Importantly, their distribution is altered in response to different exogenous stimuli in both roots and shoots. Moreover, we characterised the subcellular localisation of the fluorescent auxin analogues as being present in the endoplasmic reticulum and endosomes. Our work provides powerful tools to visualise auxin distribution within different plant tissues at cellular or subcellular levels and in response to internal and environmental stimuli during plant development.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Thomas Vain
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Peter Grones
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Sara Raggi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Martin F Kubeš
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Martin Kieffer
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Siamsa M Doyle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Napier
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| |
Collapse
|
10
|
Sumalan RL, Halip L, Maffei ME, Croitor L, Siminel AV, Radulov I, Sumalan RM, Crisan ME. Bioprospecting Fluorescent Plant Growth Regulators from Arabidopsis to Vegetable Crops. Int J Mol Sci 2021; 22:ijms22062797. [PMID: 33802041 PMCID: PMC7999160 DOI: 10.3390/ijms22062797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 01/09/2023] Open
Abstract
The phytohormone auxin is involved in almost every process of a plant’s life, from germination to plant development. Nowadays, auxin research connects synthetic chemistry, plant biology and computational chemistry in order to develop innovative and safe compounds to be used in sustainable agricultural practice. In this framework, we developed new fluorescent compounds, ethanolammonium p-aminobenzoate (HEA-pABA) and p-nitrobenzoate (HEA-pNBA), and investigated their auxin-like behavior on two main commercial vegetables cultivated in Europe, cucumber (Cucumis sativus) and tomato (Solanumlycopersicum), in comparison to the model plant Arabidopsis (Arabidopsis thaliana). Moreover, the binding modes and affinities of two organic salts in relation to the natural auxin indole-3-acetic acid (IAA) into TIR1 auxin receptor were investigated by computational approaches (homology modeling and molecular docking). Both experimental and theoretical results highlight HEA-pABA as a fluorescent compound with auxin-like activity both in Arabidopsis and the commercial cucumber and tomato. Therefore, alkanolammonium benzoates have a great potential as promising sustainable plant growth stimulators to be efficiently used in vegetable crops.
Collapse
Affiliation(s)
- Radu L. Sumalan
- Faculty of Horticulture and Forestry, Banat’ s University of Agriculture Science and Veterinary Medicine “King Michael Ist of Romania” from Timisoara, Calea Aradului nr 119, 300645 Timisoara, Romania; (R.L.S.); (R.M.S.)
| | - Liliana Halip
- “Coriolan Drăgulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania
- Correspondence: (L.H.); (M.E.C.)
| | - Massimo E. Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy;
| | - Lilia Croitor
- Institute of Applied Physics, Academiei Street 5, MD2028 Chisinau, Moldova; (L.C.); (A.V.S.)
| | - Anatolii V. Siminel
- Institute of Applied Physics, Academiei Street 5, MD2028 Chisinau, Moldova; (L.C.); (A.V.S.)
| | - Izidora Radulov
- Faculty of Agriculture, Banat’s University of Agriculture Science and Veterinary Medicine “King Michael Ist of Romania” from Timisoara, Calea Aradului nr 119, 300645 Timisoara, Romania;
| | - Renata M. Sumalan
- Faculty of Horticulture and Forestry, Banat’ s University of Agriculture Science and Veterinary Medicine “King Michael Ist of Romania” from Timisoara, Calea Aradului nr 119, 300645 Timisoara, Romania; (R.L.S.); (R.M.S.)
| | - Manuela E. Crisan
- “Coriolan Drăgulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania
- Correspondence: (L.H.); (M.E.C.)
| |
Collapse
|
11
|
Lieke T, Steinberg CEW, Pan B, Perminova IV, Meinelt T, Knopf K, Kloas W. Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture. Sci Rep 2021; 11:174. [PMID: 33420170 PMCID: PMC7794407 DOI: 10.1038/s41598-020-80449-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Aquaculture has become imperative to cover the demands for dietary animal protein. Simultaneously, it has to overcome prejudices from excessive use of antibiotics and environmental impacts. Natural supplements are traditionally applied orally. In this study, we demonstrated another pathway: the gills. Humic substances are immunostimulants and a natural part of every aquatic ecosystem, making them ideal to be used as bath stimulants. Five and 50 mg C/L of a fulvic acid-rich humic substance was added for 28 days to the water of juvenile rainbow trout (Oncorhynchus mykiss). This fulvic acid is characterized by a high content of phenolic moieties with persistent free radicals and a high electron exchange capacity. The high concentration of the fulvic acid significantly increased growth and reduced the food conversion ratio and the response to a handling-stressor. Phagocytosis and potential killing activity of head kidney leukocytes were increased, as well as the total oxyradical scavenging capacity (TOSC) and lysozyme activity in the gills. In conclusion, immunostimulation via gills is possible with our fulvic acid, and the high phenolic content improved overall health and stress resistance of fish.
Collapse
Affiliation(s)
- Thora Lieke
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, 12587, Germany. .,Faculty of Life Sciences, Humboldt University of Berlin, Berlin, 10115, Germany.
| | - Christian E W Steinberg
- Faculty of Life Sciences, Humboldt University of Berlin, Berlin, 10115, Germany.,Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Irina V Perminova
- Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russia
| | - Thomas Meinelt
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, 12587, Germany
| | - Klaus Knopf
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, 12587, Germany.,Faculty of Life Sciences, Humboldt University of Berlin, Berlin, 10115, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, 12587, Germany.,Faculty of Life Sciences, Humboldt University of Berlin, Berlin, 10115, Germany
| |
Collapse
|
12
|
Pizzeghello D, Schiavon M, Francioso O, Dalla Vecchia F, Ertani A, Nardi S. Bioactivity of Size-Fractionated and Unfractionated Humic Substances From Two Forest Soils and Comparative Effects on N and S Metabolism, Nutrition, and Root Anatomy of Allium sativum L. FRONTIERS IN PLANT SCIENCE 2020; 11:1203. [PMID: 32922415 PMCID: PMC7457123 DOI: 10.3389/fpls.2020.01203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 05/03/2023]
Abstract
Humic substances (HS) are powerful natural plant biostimulants. However, there is still a lack of knowledge about the relationship between their structure and bioactivity in plants. We extracted HS (THE1-2) from two forest soils covered with Pinus mugo (1) or Pinus sylvestris (2). The extracts were subjected to weak acid treatment to produce size-fractionated HS (high molecular size, HMS1-2; low molecular size, LMS1-2). HS were characterized for total acidity, functional groups, element and auxin (IAA) contents, and hormone-like activity. HS concentrations ranging from 0 to 5 mg C L-1 were applied to garlic (Allium sativum L.) plantlets in hydroponics to ascertain differences between unfractionated and size-fractionated HS in the capacity to promote mineral nutrition, root growth and cell differentiation, activity of enzymes related to plant development (invertase, peroxidase, and esterase), and N (nitrate reductase, glutamine synthetase) and S (O-acetylserine sulphydrylase) assimilation into amino acids. A positive linear dose-response relationship was determined for all HS in the range 0-1 mg C L-1, while higher HS doses were less effective or ineffective in promoting physiological-biochemical attributes of garlic. Bioactivity was higher for size-fractionated HS according to the trend LMS1-2>HMS1-2>THE1-2, with LMS2 and HMS2 being overall more bioactive than LMS1 and HMS1, respectively. LMS1-2 contained more N, oxygenated functional groups and IAA compared to THE1-2 and HMS1-2. Also, they exhibited higher hormone-like activities. Such chemical properties likely accounted for the greater biostimulant action of LMS1-2. Beside plant growth, nutrition and N metabolism, HS stimulated S assimilation by promoting the enrichment of garlic plantlets with the S amino acid alliin, which has recognized beneficial properties in human health. Concluding, this study endorses that i) treating THE with a weak acid produced sized-fractionated HS with higher bioactivity and differing in properties, perhaps because of novel molecular arrangements of HS components that better interacted with garlic roots; ii) LMS from forest soils covered with P. mugo or P. sylvestris were the most bioactive; iii) the cover vegetation affected HS bioactivity iv); HS stimulated N and S metabolism with relevant benefits to crop nutritional quality.
Collapse
Affiliation(s)
- Diego Pizzeghello
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| | - Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Torino, Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| |
Collapse
|
13
|
Olaetxea M, Mora V, Bacaicoa E, Baigorri R, Garnica M, Fuentes M, Zamarreño AM, Spíchal L, García‐Mina JM. Root ABA and H +-ATPase are key players in the root and shoot growth-promoting action of humic acids. PLANT DIRECT 2019; 3:e00175. [PMID: 31624800 PMCID: PMC6785783 DOI: 10.1002/pld3.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 09/07/2019] [Indexed: 05/02/2023]
Abstract
Although the ability of humic (HA) and fulvic acids (FA) to improve plant growth has been demonstrated, knowledge about the mechanisms responsible for the direct effects of HA and FA on the promotion of plant growth is scarce and fragmentary. Our study investigated the causal role of both root PM H+-ATPase activity and ABA in the SHA-promoting action on both root and shoot growth. The involvement of these processes in the regulation of shoot cytokinin concentration and activity was also studied. Our aim was to integrate such plant responses for providing new insights to the current model on the mode of action of HA for promoting root and shoot growth. Experiments employing specific inhibitors and using Cucumis sativus L. plants show that both the root PM H+-ATPase activity and root ABA play a crucial role in the root growth-promoting action of SHA. With regard to the HA-promoting effects on shoot growth, two pathways of events triggered by the interaction of SHA with plant roots are essential for the increase in root PM H+-ATPase activity-which also mediates an increase in cytokinin concentration and action in the shoot-and the ABA-mediated increase in hydraulic conductivity (Lpr).
Collapse
Affiliation(s)
- Maite Olaetxea
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Verónica Mora
- Plant Physiology and Plant‐Microorganism Interaction LaboratoryInstituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET) y Universidad Nacional de Río Cuarto (UNRC)CórdobaArgentina
| | - Eva Bacaicoa
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Roberto Baigorri
- Technical and Development DepartmentTimac Agro EspañaLodosaSpain
| | - Maria Garnica
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Marta Fuentes
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Angel Maria Zamarreño
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics Palacký University, Centre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacky´ UniversityOlomoucCzech Republic
| | - José María García‐Mina
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| |
Collapse
|
14
|
New fluorescently labeled auxins exhibit promising anti-auxin activity. N Biotechnol 2019; 48:44-52. [DOI: 10.1016/j.nbt.2018.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/18/2018] [Accepted: 06/24/2018] [Indexed: 11/21/2022]
|
15
|
Wang X, Fan W, Dong Z, Liang D, Zhou T. Interactions of natural organic matter on the surface of PVP-capped silver nanoparticle under different aqueous environment. WATER RESEARCH 2018; 138:224-233. [PMID: 29602088 DOI: 10.1016/j.watres.2018.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
It is now widely accepted that coating on the nano-surface would critically dictate the uptake and cytotoxicity of engineering nanomaterials. However, the influence of natural organic matter (NOM) on the surface is quite limited to humic substances, while the diversity of NOM is neglected. In the present study, we tried to investigate the change of surface in the coexistence of bovine serum albumin (BSA) and humic acid (HA). The isothermal titration calorimetric measurements show that HA can combine with BSA in both freshwater or seawater, however, the patterns are different. In freshwater, HA lowered the adsorption of BSA on PVP-capped AgNPs through complexation with BSA, which prevented the contact of sulfur in BSA with PVP-AgNPs. Then in seawater, BSA retained its sulfur availability to bind with PVP-AgNPs. Furthermore, the toxicity of PVP-AgNPs incubated in the BSA/HA solution was evaluated by measuring the level of reactive oxygen species generated by Escherichia coli. The results indicated that, in seawater, the adsorbed BSA promoted the toxicity of PVP-AgNPs in the presence of Ca2+ and Mg2+, but the presence of HA limited this effect.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, PR China.
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Dingyuan Liang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Tingting Zhou
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
16
|
Shah ZH, Rehman HM, Akhtar T, Alsamadany H, Hamooh BT, Mujtaba T, Daur I, Al Zahrani Y, Alzahrani HAS, Ali S, Yang SH, Chung G. Humic Substances: Determining Potential Molecular Regulatory Processes in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:263. [PMID: 29593751 PMCID: PMC5861677 DOI: 10.3389/fpls.2018.00263] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Humic substances (HSs) have considerable effects on soil fertility and crop productivity owing to their unique physiochemical and biochemical properties, and play a vital role in establishing biotic and abiotic interactions within the plant rhizosphere. A comprehensive understanding of the mode of action and tissue distribution of HS is, however, required, as this knowledge could be useful for devising advanced rhizospheric management practices. These substances trigger various molecular processes in plant cells, and can strengthen the plant's tolerance to various kinds of abiotic stresses. HS manifest their effects in cells through genetic, post-transcriptional, and post-translational modifications of signaling entities that trigger different molecular, biochemical, and physiological processes. Understanding of such fundamental mechanisms will provide a better perspective for defining the cues and signaling crosstalk of HS that mediate various metabolic and hormonal networks operating in plant systems. Various regulatory activities and distribution strategies of HS have been discussed in this review.
Collapse
Affiliation(s)
- Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hafiz M. Rehman
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
| | - Tasneem Akhtar
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bahget T. Hamooh
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tahir Mujtaba
- Plant and Forest Biotechnology Umeå, Plant Science Centre, Swedish University of Agriculture Sciences, Umeå, Sweden
| | - Ihsanullah Daur
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yahya Al Zahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Shawkat Ali
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Seung H. Yang
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
| | - Gyuhwa Chung
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
- *Correspondence: Gyuhwa Chung,
| |
Collapse
|
17
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
18
|
Bettoni MM, Mogor ÁF, Pauletti V, Goicoechea N, Aranjuelo I, Garmendia I. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Lace B, Prandi C. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. MOLECULAR PLANT 2016; 9:1099-1118. [PMID: 27378726 DOI: 10.1016/j.molp.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 05/14/2023]
Abstract
Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications.
Collapse
Affiliation(s)
- Beatrice Lace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Cristina Prandi
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
20
|
Tahiri A, Delporte F, Muhovski Y, Ongena M, Thonart P, Druart P. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:25-38. [PMID: 26595095 DOI: 10.1016/j.plaphy.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.
Collapse
Affiliation(s)
- Abdelghani Tahiri
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium; University of Liège, Gembloux Agro-Bio Tech, Walloon Center for Industrial Biology (CWBI), Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | - Fabienne Delporte
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium
| | - Yordan Muhovski
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium
| | - Marc Ongena
- University of Liège, Gembloux Agro-Bio Tech, Walloon Center for Industrial Biology (CWBI), Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Philippe Thonart
- University of Liège, Gembloux Agro-Bio Tech, Walloon Center for Industrial Biology (CWBI), Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Philippe Druart
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium
| |
Collapse
|
21
|
Fornes F, Jaramillo CX, García-de-la-Fuente R, Belda RM, Lidón A. Composted organic wastes from the pharmaceutical and agro-food industries induce soil bioactivity and nodulation in alfalfa. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3030-3037. [PMID: 24623548 DOI: 10.1002/jsfa.6651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Environmentally friendly agriculture needs to reduce the use of synthetic fertilizers and to reclaim nutrients from organic wastes. In this study the effect of five doses (0, 12, 24, 48 and 96 t ha(-1) ) of two two-phase olive mill waste (TPOMW)-based composts on the bioactivity and chemical characteristics of an agricultural soil and their potential to fertilize alfalfa (Medicago sativa) and stimulate nodulation were assessed during a two-year incubation experiment. The two composts were prepared either with the olive mill waste alone (compost A), which served as control, or mixed with a liquid fatty-proteinaceous hydrolyzate waste (FPH) from the pharmaceutical industry (compost AH). RESULTS Compost AH resulted in greater N immobilization than compost A because the former supplied the soil with easily degradable C and N, which increased microbial biomass and activity. Both compost mineralizations during the first year of incubation supplied the soil with more nutrients (mainly N), more so with A than with AH. Nevertheless, plant growth was similar in soils amended with either A or AH. Both composts induced nodulation similarly and the highest dose (96 t ha(-1) ) increased the formation of nodules by a factor of 11 compared with the four lower doses. CONCLUSION TPOMW serves as an effective ground material for co-composting with liquid wastes such as FPH. TPOMW supplies key nutrients and stimulates nodulation in alfalfa.
Collapse
Affiliation(s)
- Fernando Fornes
- Grupo RESIAGRI, Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, E-46020, Valencia, Spain
| | | | | | | | | |
Collapse
|
22
|
Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. PLANT AND SOIL 2014. [PMID: 0 DOI: 10.1007/s11104-014-2131-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
23
|
Sokołowska K, Kizińska J, Szewczuk Z, Banasiak A. Auxin conjugated to fluorescent dyes--a tool for the analysis of auxin transport pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:866-77. [PMID: 24397706 DOI: 10.1111/plb.12144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/14/2013] [Indexed: 05/08/2023]
Abstract
Auxin is a small molecule involved in most processes related to plant growth and development. Its effect usually depends on the distribution in tissues and the formation of concentration gradients. Until now there has been no tool for the direct tracking of auxin transport at the cellular and tissue level; therefore the majority of studies have been based on various indirect methods. However, due to their various restrictions, relatively little is known about the relationship between various pathways of auxin transport and specific developmental processes. We present a new research tool: fluorescently labelled auxin in the form of a conjugate with two different fluorescent tracers, FITC and RITC, which allows direct observation of auxin transport in plant tissues. Chemical analysis and biological tests have shown that our conjugates have auxin-like biological activity and transport; therefore they can be used in all experimental systems as an alternative to IAA. In addition, the conjugates are a universal tool that can be applied in studies of all plant groups and species. The conjugation procedure presented in this paper can be adapted to other fluorescent dyes, which are constantly being improved. In our opinion, the conjugates greatly expand the possibilities of research concerning the role of auxin and its transport in different developmental processes in plants.
Collapse
Affiliation(s)
- K Sokołowska
- Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | | | | | | |
Collapse
|
24
|
Rigal A, Ma Q, Robert S. Unraveling plant hormone signaling through the use of small molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:373. [PMID: 25126092 PMCID: PMC4115670 DOI: 10.3389/fpls.2014.00373] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
Plants have acquired the capacity to grow continuously and adjust their morphology in response to endogenous and external signals, leading to a high architectural plasticity. The dynamic and differential distribution of phytohormones is an essential factor in these developmental changes. Phytohormone perception is a fast but complex process modulating specific developmental reprogramming. In recent years, chemical genomics or the use of small molecules to modulate target protein function has emerged as a powerful strategy to study complex biological processes in plants such as hormone signaling. Small molecules can be applied in a conditional, dose-dependent and reversible manner, with the advantage of circumventing the limitations of lethality and functional redundancy inherent to traditional mutant screens. High-throughput screening of diverse chemical libraries has led to the identification of bioactive molecules able to induce plant hormone-related phenotypes. Characterization of the cognate targets and pathways of those molecules has allowed the identification of novel regulatory components, providing new insights into the molecular mechanisms of plant hormone signaling. An extensive structure-activity relationship (SAR) analysis of the natural phytohormones, their designed synthetic analogs and newly identified bioactive molecules has led to the determination of the structural requirements essential for their bioactivity. In this review, we will summarize the so far identified small molecules and their structural variants targeting specific phytohormone signaling pathways. We will highlight how the SAR analyses have enabled better interrogation of the molecular mechanisms of phytohormone responses. Finally, we will discuss how labeled/tagged hormone analogs can be exploited, as compelling tools to better understand hormone signaling and transport mechanisms.
Collapse
Affiliation(s)
| | | | - Stéphanie Robert
- *Correspondence: Stéphanie Robert, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden e-mail:
| |
Collapse
|
25
|
Marino G, Righi V, Simoni A, Schenetti L, Mucci A, Tugnoli V, Muzzi E, Francioso O. Effect of a peat humic acid on morphogenesis in leaf explants of Pyrus communis and Cydonia oblonga . Metabolomic analysis at an early stage of regeneration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4979-4987. [PMID: 23627499 DOI: 10.1021/jf4004785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plant regeneration is a critical step in most in vitro breeding techniques. This paper studies the effects of a low-molecular-weight humic acid (HA) on morphogenesis from pear and quince leaf explants. Variable HA amounts [0 (control), 1, 5, 10, and 20 mg C L(-1)] were added to the regeneration media. A dose-response effect was observed in pear for root and shoot production; it was improved at HA 1 mg C L(-1) and considerably reduced at the highest amounts. HA was, instead, ineffective in quince. The (1)H HR-MAS NMR analyses of calli in the induction phase showed more evident metabolite (asparagine, alanine, and γ-aminobutyric acid) signals in quince than in pear. The assignment of overlapped signals in both genotypes was supported by the 2D NMR analyses. Spectroscopic characterization suggested also an enhancement of asparagine contents in morphogenic calli of pear with respect to the control and higher HA amount treatments.
Collapse
Affiliation(s)
- Grazia Marino
- Dipartimento di Scienze Agrarie, Università di Bologna , V.le Fanin 44, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pörs Y, Steinberg CEW. Humic Substances Delay Aging of the Photosynthetic Apparatus of Chara hispida. JOURNAL OF PHYCOLOGY 2012; 48:1522-1529. [PMID: 27010001 DOI: 10.1111/jpy.12012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/12/2012] [Indexed: 06/05/2023]
Abstract
In freshwaters, dissolved humic substances (HSs) distinguish apparently HS-avoiding Charophytes from apparently HS-tolerant ones, but the underlying mechanisms so far remain obscure. In this contribution, we tested direct and indirect effects of HSs on Chara hispida (L.) Hartm. Using Rhodamine B, we showed that C. hispida is able to adsorb or even uptake and, subsequently, desorb and depurate organic compounds in the molecular mass range of the applied fulvic acids. To classify direct and indirect HS-mediated effects due to reduced light quantities, or to effects more strongly elicited by red relative to blue light, plants were exposed to HSs directly as well as through a neutral foil, or shaded by means of an external HS-containing reservoir (low-light variant). We showed that the apparently HS-tolerant C. hispida exhibited reduced lipid peroxidation and non photochemical quenching of chlorphyll fluorescence when exposed to HSs. Plants directly exposed to HSs were significantly different from control as well as to foil-shaded plants in terms of chl a+b, VAZ/chl, and β-Car/chl; yet, in low-light plants these variables did not differ from control and HS-exposed plants, suggesting that the shift in favor of red lights in the low-light variant led to a reduction in its cells' internal antioxidant content. However, the Fv/Fm ratio in HS-exposed plants decreased more slowly than in all other exposure variants, indicating that the photosynthetic apparatus aged more slowly, by a mechanism yet to be discovered. Our study indicates that both direct and indirect effects contribute to the HS tolerance of C. hispida.
Collapse
Affiliation(s)
- Yvonne Pörs
- Department of Biology, Humboldt-Universität zu Berlin, Arboretum, Späthstraße 80/81, 12437, Berlin, Germany
| | - Christian E W Steinberg
- Department of Biology, Humboldt-Universität zu Berlin, Arboretum, Späthstraße 80/81, 12437, Berlin, Germany
| |
Collapse
|
27
|
Ertani A, Francioso O, Tugnoli V, Righi V, Nardi S. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11940-8. [PMID: 21999168 DOI: 10.1021/jf202473e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lignosulfonate-humate a and lignosulfonate-humate b, derived by an industrial process from lignin, were studied chemically and biologically, and their effects on maize metabolism compared with the responses induced by humic substances obtained from leonardite. Lignosulfonate-humate a and lignosulfonate-humate b elicited hormonelike activity and leonardite displayed giberellin properties. To improve our understanding of their biological action, lignosulfonate-humate a, lignosulfonate-humate b and leonardite were supplied to maize plants and their effect was studied on growth, nitrogen metabolism and photosynthesis. All products increased root and leaf growth. Glutamine-synthetase, glutamate-synthase enzyme activities and protein content were all increased. The treatments also increased chlorophyll content, glucose, fructose and rubisco enzyme activity, suggesting a positive role of lignosulfonate-humate a, lignosulfonate-humate b and leonardite in the photosynthetic process. In addition, an increase in phenol content was observed. In light of these results, being environmentally friendly products, lignosulfonate-humate a and lignosulfonate-humate b could be used to increase crop yield.
Collapse
Affiliation(s)
- Andrea Ertani
- Department of Agricultural Biotechnology, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Italy
| | | | | | | | | |
Collapse
|
28
|
Zancani M, Bertolini A, Petrussa E, Krajňáková J, Piccolo A, Spaccini R, Vianello A. Fulvic acid affects proliferation and maturation phases in Abies cephalonica embryogenic cells. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1226-1233. [PMID: 21458883 DOI: 10.1016/j.jplph.2011.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
Embryogenic cell masses (ECM) of Abies cephalonica were grown on proliferation media in the presence and absence of fulvic acid (FA), whose molecular composition and conformational rigidity were evaluated by CPMAS-¹³C NMR spectroscopy. To assess the physiological effects of this humic material during proliferation and maturation stages of somatic embryogenesis (SE), proliferation rate, proportion of consecutive developmental stages of pro-embryogenic masses (PEM), cellular ATP and glucose-6-phosphate were evaluated at regular intervals. FA increased the proliferation rate, especially during the early sampling days, and the percentage of PEM in their advanced developmental stage. Cellular ATP and glucose-6-phospahte were increased by FA pre-treatment during the maturation phase. Furthermore, the effects of the anti-auxin p-chlorophenoxyisobutyric acid (PCIB), such as a decrease of growth and the enhancement of PEM III induction, were inverted by FA. Proton pumping ATPase and PPase activities were decreased in microsomes from PCIB-treated ECM, while they increased in the presence of FA. This fulvic matter also induced a delay in somatic embryo formation during the maturation phase. Both the improvement of the PEM proliferation and the reduction of the subsequent maturation process of A. cephalonica are explained by a release from the complex humic structure of low molecular-weight molecules, which may interact with the plant hormonal signaling pathway. These effects appear to be related to the hydrophilic and conformationally labile nature of FA. The structure-activity relationship observed here suggests that the influence of FA on ECM may be attributed to specific bioactive molecules that are preferentially released from the FA loose superstructure.
Collapse
Affiliation(s)
- Marco Zancani
- Sezione di Biologia Vegetale, Dipartimento Biologia e Protezione delle Piante, Università di Udine, Via delle Scienze 91, I-33100 Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Gramss G, Mascher R. Mutual influence of soil basidiomycetes and white mustard plants on their enzymatic and catabolic activities. J Basic Microbiol 2010; 51:40-51. [PMID: 20806256 DOI: 10.1002/jobm.201000104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/07/2010] [Indexed: 11/06/2022]
Abstract
Liquid and volatile emanations in interactions of soil basidiomycetes with herbs affect fungal oxidoreductases and stress-related plant peroxidases (PO). In this study, gnotobiotic co-cultures between 6 non-pathogenic saprobes and 2 ectomycorrhizal basidiomycetes with the non-host plant white mustard were established on glucose-salt medium with the respective controls. Determined were oxidoreductase activities for culture fluids and plant tissues at initial fungal idiophase and degradation rates of Remazol-BBR and 5 PAHs. In culture fluids of Agaricus arvensis, A. porphyrizon, Lepista nebularis, Stropharia rugoso-annulata, and Hypholoma fasciculare (group-5), the laccase-deficient plant enabled activity increases in fungal laccase (by 2300-fold), in extracellular (fungal and?) plant-derived peroxidases (by 21-fold), and in the dissipation of phenanthrene and anthracene. Oxidative activities in roots rose by 46000-fold during adsorption of fungal laccases. Increases in the stress-related shoot-PO (by 4.1-fold) were exclusively elicited by group-5 saprobes and correlated with plant-phenolic-mediated formations of Mn(III) and increases in Remazol BBR bleaching. Agaricus bisporus and the ectomycorrhizal Hebeloma crustuliniforme and Suillus granulatus did not respond to plant emanations with elevated laccase activities but solubilized apparently root-surface PO. They failed to elicit stress-related activity increases of PO in white mustard shoot and prevented Mn(III) formation in several tissues. It is concluded that white mustard emanations promoted the catabolic performance of the plant-stress eliciting group-5 saprobes but not of A. bisporus and the ectomycorrhizal fungi with their low stress-inducing potential. The nature of the plant-released stimuli and the classes of fungus-released stress agents discussed must be determined in further studies.
Collapse
Affiliation(s)
- Gerhard Gramss
- Institute of Earth Sciences, Friedrich-Schiller-University, Burgweg 11, D-07749 Jena, Germany.
| | | |
Collapse
|
30
|
Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, Quaggiotti S, Nardi S. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:604-14. [PMID: 20636903 DOI: 10.1111/j.1438-8677.2009.00248.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Humic substances (HS) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. HS exert auxin-like activity, but data supporting this hypothesis are under debate. To investigate the auxin-like activity of HS, we studied their biological effect on lateral root initiation in Arabidopsis thaliana. To this aim we characterised HS by means of DRIFT and (13)C CP/MAS NMR spectroscopy, and measured their endogenous content of IAA. We then utilised a combination of genetic and molecular approaches to unravel HS auxin activity in the initiation of lateral roots. The data obtained using specific inhibitors of auxin transport or action showed that HS induce lateral root formation mostly through their 'auxin activity'. These findings were further supported by the fact that HS used in this study activated the auxin synthetic reporter DR5::GUS and enhanced transcription of the early auxin responsive gene IAA19.
Collapse
Affiliation(s)
- S Trevisan
- Department of Agricultural Biotechnology, University of Padua, Agripolis, Legnaro (Padua), Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Trevisan S, Francioso O, Quaggiotti S, Nardi S. Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. PLANT SIGNALING & BEHAVIOR 2010; 5:635-43. [PMID: 20495384 PMCID: PMC3001551 DOI: 10.4161/psb.5.6.11211] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an "auxin-like" activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities.
Collapse
Affiliation(s)
- Sara Trevisan
- Department of Agricultural Biotechnology; University of Padua; Agripolis, Legnaro (Padova) Italy
| | - Ornella Francioso
- Department of Agroenvironmental Science and Technology; University of Bologna Viale Fanin; Bologna, Italy
| | - Silvia Quaggiotti
- Department of Agricultural Biotechnology; University of Padua; Agripolis, Legnaro (Padova) Italy
| | - Serenella Nardi
- Department of Agricultural Biotechnology; University of Padua; Agripolis, Legnaro (Padova) Italy
| |
Collapse
|
32
|
Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Façanha AR. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. CHEMOSPHERE 2010; 78:457-66. [PMID: 19910019 DOI: 10.1016/j.chemosphere.2009.10.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 05/20/2023]
Abstract
Preparative high performance size-exclusion chromatography (HPSEC) was applied to humic acids (HA) extracted from vermicompost in order to separate humic matter of different molecular dimension and evaluate the relationship between chemical properties of size-fractions (SF) and their effects on plant root growth. Molecular dimensions of components in humic SF was further achieved by diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR) based on diffusion coefficients (D), while carbon distribution was evaluated by solid state (CP/MAS) (13)C NMR. Seedlings of maize and Arabidopsis were treated with different concentrations of SF to evaluate root growth. Six different SF were obtained and their carbohydrate-like content and alkyl chain length decreased with decreasing molecular size. Progressive reduction of aromatic carbon was also observed with decreasing molecular size of separated fractions. Diffusion-ordered spectroscopy (DOSY) spectra showed that SF were composed of complex mixtures of aliphatic, aromatic and carbohydrates constituents that could be separated on the basis of their diffusion. All SF promoted root growth in Arabidopsis and maize seedlings but the effects differed according to molecular size and plant species. In Arabidopsis seedlings, the bulk HA and its SF revealed a classical large auxin-like exogenous response, i.e.: shortened the principal root axis and induced lateral roots, while the effects in maize corresponded to low auxin-like levels, as suggested by enhanced principal axis length and induction of lateral roots. The reduction of humic heterogeneity obtained in HPSEC separated size-fractions suggested that their physiological influence on root growth and architecture was less an effect of their size than their content of specific bioactive molecules. However, these molecules may be dynamically released from humic superstructures and exert their bioactivity when weaker is the humic conformational stability as that obtained in the separated size-fractions.
Collapse
Affiliation(s)
- Luciano P Canellas
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA) Av. Alberto Lamego 2000, Campos dos Goytacazes 28602-013, Brazil.
| | | | | | | | | | | | | |
Collapse
|
33
|
Schepetkin IA, Xie G, Jutila MA, Quinn MT. Complement-fixing activity of fulvic acid from Shilajit and other natural sources. Phytother Res 2009; 23:373-84. [PMID: 19107845 PMCID: PMC2650748 DOI: 10.1002/ptr.2635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Shilajit has been used traditionally in folk medicine for the treatment of a variety of disorders, including syndromes involving excessive complement activation. Extracts of Shilajit contain significant amounts of fulvic acid (FA), and it has been suggested that FA is responsible for many therapeutic properties of Shilajit. However, little is known regarding the physical and chemical properties of Shilajit extracts, and nothing is known about their effects on the complement system. To address this issue, extracts of commercial Shilajit were fractionated using anion exchange and size-exclusion chromatography. One neutral (S-I) and two acidic (S-II and S-III) fractions were isolated, characterized and compared with standardized FA samples. The most abundant fraction (S-II) was further fractionated into three sub-fractions (S-II-1 to S-II-3). The van Krevelen diagram showed that the Shilajit fractions are the products of polysaccharide degradation, and all fractions, except S-II-3, contained type II arabinogalactan. All Shilajit fractions exhibited dose-dependent complement-fixing activity in vitro with high potency. Furthermore, a strong correlation was found between the complement-fixing activity and carboxylic group content in the Shilajit fractions and other FA sources. These data provide a molecular basis to explain at least part of the beneficial therapeutic properties of Shilajit and other humic extracts.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Gang Xie
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Mark A. Jutila
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Mark T. Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
34
|
Carletti P, Masi A, Spolaore B, Polverino De Laureto P, De Zorzi M, Turetta L, Ferretti M, Nardi S. Protein Expression Changes in Maize Roots in Response to Humic Substances. J Chem Ecol 2008; 34:804-18. [DOI: 10.1007/s10886-008-9477-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/28/2008] [Accepted: 04/11/2008] [Indexed: 11/28/2022]
|