1
|
Varlı M, Bhosle SR, Jo E, Yu YH, Yang Y, Ha HH, Kim H. Development and synthesis of diffractaic acid analogs as potent inhibitors of colorectal cancer stem cell traits. Sci Rep 2025; 15:6695. [PMID: 40000756 PMCID: PMC11861905 DOI: 10.1038/s41598-025-90552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, evidence for the anti-cancer activity of lichen secondary metabolites has been rapidly increasing. In this study, we synthesised analogues of diffractaic acid, a lichen secondary metabolite, and evaluated their ability to suppress colorectal cancer stem potential. Among the 10 compounds after H/CH₃/benzylation of the diffractaic acid structure or modifications in an aromatic hydrophobic domain, TU3 has a more inhibition effect on the stem potential of colorectal cancer compared to other compounds. The compound TU3 targets ALDH1 and suppresses key signalling pathways such as WNT, STAT3, NF-κB, Hedgehog, and AP-1. Inhibition of these signalling pathways by TU3 contribute to attenuate the survival mechanisms of colorectal cancer stem cell and thus inhibit cancer progression.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Suresh R Bhosle
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Eunsol Jo
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Yi Yang
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
2
|
Rosabal D, Pino-Bodas R. A Review of Laboratory Requirements to Culture Lichen Mycobiont Species. J Fungi (Basel) 2024; 10:621. [PMID: 39330381 PMCID: PMC11433509 DOI: 10.3390/jof10090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Lichens are symbiotic associations between fungi (the mycobiont) and algae or cyanobacteria (the photobionts). They synthesize a large number of secondary metabolites, many of which are potential sources of novel molecules with pharmacological and industrial applications. The advancement of in vitro culture methods of lichen-forming fungi would allow the comprehensive application of these compounds at large scales, enable improvements in the synthesis, facilitate understanding of the role of the partners in the synthesis of these compounds and increase our knowledge about the genes associated with secondary metabolites production. The aim of this work is to summarize the nutritional and physicochemical requirements that have been used to date to culture different lichen-forming fungi species. In total, the requirements for the cultivation of 110 species are presented. This review can provide a starting point for future experiments and help advance the methods of culturing lichenized fungi. The type of diaspore selected to isolate the mycobiont, the composition of the isolation and culture media and the corresponding physicochemical parameters are essential in designing an efficient lichen culture system, allowing the achievement of a suitable growth of lichen-forming fungi and the subsequent production of secondary metabolites.
Collapse
Affiliation(s)
- Dania Rosabal
- Medical Science Faculty, Saint Joseph University, Roseau ZC 00109-8000, Dominica
| | - Raquel Pino-Bodas
- Biologia, Geologia, Fisica and Quimica Department, Universidad Rey Juan Carlos, 28008 Madrid, Spain;
- Instituto de Investigación en Cambio Global de la Universidad Rey Juan Carlos (IICG-URJC), 28008 Madrid, Spain
| |
Collapse
|
3
|
Yu X, Xi Y, Sui Y, Liu Y, Chen G, Zhang M, Zhang Y, Luo G, Long Y, Yang W. Hydroxide-Mediated S NAr Rearrangement for Synthesis of Novel Depside Derivatives Containing Diaryl Ether Skeleton as Antitumor Agents. Molecules 2023; 28:molecules28114303. [PMID: 37298778 DOI: 10.3390/molecules28114303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
A simple and efficient hydroxide-mediated SNAr rearrangement was reported to synthesize new depside derivatives containing the diaryl ether skeleton from the natural product barbatic acid. The prepared compounds were determined using 1H NMR, 13C NMR, HRMS, and X-ray crystallographic analysis and were also screened in vitro for cytotoxicity against three cancer cell lines and one normal cell line. The evaluation results showed that compound 3b possessed the best antiproliferative activity against liver cancer HepG2 cell line and low toxicity, which made it worth further study.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yinkai Xi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Sui
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yang Liu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guifen Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Minjie Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guoyong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
4
|
Yu X, Sui Y, Xi Y, Zhang Y, Luo G, Long Y, Yang W. Semisynthesis, Biological Evaluation and Molecular Docking Studies of Barbatic Acid Derivatives as Novel Diuretic Candidates. Molecules 2023; 28:molecules28104010. [PMID: 37241751 DOI: 10.3390/molecules28104010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Barbatic acid, a compound isolated from lichen, has demonstrated a variety of biological activities. In this study, a series of esters based on barbatic acid (6a-q') were designed, synthesized, and evaluated for their diuretic and litholytic activity at a concentration of 100 μmol/L in vitro. All target compounds were characterized using 1H NMR, 13C NMR, and HRMS, and the spatial structure of compound 6w was confirmed using X-ray crystallography. The biological results showed that some derivatives, including 6c, 6b', and 6f', exhibited potent diuretic activity, and 6j and 6m displayed promising litholytic activity. Molecular docking studies further suggested that 6b' had an optimal binding affinity to WNK1 kinases related to diuresis, while 6j could bind to the bicarbonate transporter CaSR through a variety of forces. These findings indicate that some barbatic acid derivatives could be further developed into novel diuretic agents.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Sui
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yinkai Xi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guoyong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
5
|
Ren M, Jiang S, Wang Y, Pan X, Pan F, Wei X. Discovery and excavation of lichen bioactive natural products. Front Microbiol 2023; 14:1177123. [PMID: 37138611 PMCID: PMC10149937 DOI: 10.3389/fmicb.2023.1177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Lichen natural products are a tremendous source of new bioactive chemical entities for drug discovery. The ability to survive in harsh conditions can be directly correlated with the production of some unique lichen metabolites. Despite the potential applications, these unique metabolites have been underutilized by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability, and technical challenges involved in their artificial cultivation. At the same time, DNA sequence data have revealed that the number of encoded biosynthetic gene clusters in a lichen is much higher than in natural products, and the majority of them are silent or poorly expressed. To meet these challenges, the one strain many compounds (OSMAC) strategy, as a comprehensive and powerful tool, has been developed to stimulate the activation of silent or cryptic biosynthetic gene clusters and exploit interesting lichen compounds for industrial applications. Furthermore, the development of molecular network techniques, modern bioinformatics, and genetic tools is opening up a new opportunity for the mining, modification, and production of lichen metabolites, rather than merely using traditional separation and purification techniques to obtain small amounts of chemical compounds. Heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offer a promising means for a sustainable supply of specialized metabolites. In this review, we summarized the known lichen bioactive metabolites and highlighted the application of OSMAC, molecular network, and genome mining-based strategies in lichen-forming fungi for the discovery of new cryptic lichen compounds.
Collapse
Affiliation(s)
- Meirong Ren
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Shuhua Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Kalra R, Conlan XA, Goel M. Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnol Adv 2023; 62:108072. [PMID: 36464145 DOI: 10.1016/j.biotechadv.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Several research studies have shown that lichens are productive organisms for the synthesis of a broad range of secondary metabolites. Lichens are a self-sustainable stable microbial ecosystem comprising an exhabitant fungal partner (mycobiont) and at least one or more photosynthetic partners (photobiont). The successful symbiosis is responsible for their persistence throughout time and allows all the partners (holobionts) to thrive in many extreme habitats, where without the synergistic relationship they would be rare or non-existent. The ability to survive in harsh conditions can be directly correlated with the production of some unique metabolites. Despite the potential applications, these unique metabolites have been underutilised by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability and technical challenges involved in their artificial cultivation. However, recent development of biotechnological tools such as molecular phylogenetics, modern tissue culture techniques, metabolomics and molecular engineering are opening up a new opportunity to exploit these compounds within the lichen holobiome for industrial applications. This review also highlights the recent advances in culturing the symbionts and the computational and molecular genetics approaches of lichen gene regulation recognized for the enhanced production of target metabolites. The recent development of multi-omics novel biodiscovery strategies aided by synthetic biology in order to study the heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offers a promising means for a sustainable supply of specialized metabolites.
Collapse
Affiliation(s)
- Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India.
| |
Collapse
|
7
|
Yu X, Xi YK, Luo GY, Long Y, Yang WD. Synthesis of barbacic acid. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:1150-1156. [PMID: 34978467 DOI: 10.1080/10286020.2021.2023506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
A new approach for the synthesis of the active barbatic acid has been achieved in eight steps with 22.3% total yield by using commercially available methyl atratate as starting material. This synthesis provides access to multi-gram quantities of barbatic acid with good purity for reference supplies and further analytical and toxicology investigations.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Yin-Kai Xi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Guo-Yong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Wu-De Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| |
Collapse
|
8
|
Cardile V, Graziano ACE, Avola R, Madrid A, Russo A. Physodic acid sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Toxicol In Vitro 2022; 84:105432. [PMID: 35809792 DOI: 10.1016/j.tiv.2022.105432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
In spite of the extensive research for developing new therapies, prostate cancer is still one of the major human diseases with poor prognosis and high mortality. Therefore, with the aim of identifying novel agents with antigrowth and pro-apoptotic activity on prostate cancer cells, in the present study, we evaluated the effect of lichen secondary metabolite physodic acid on cell growth in human prostate cancer cells. In addition, we tested the apoptotic activity of physodic acid on TRAIL-resistant LNCaP cells in combination with TRAIL. The cell viability was measured using MTT assay. LDH release, a marker of membrane breakdown, was also measured. For the detection of apoptosis, the evaluation of DNA fragmentation and caspase-3 activity assay were employed. The expression of proteins was detected by Western blot analysis. It was observed that physodic acid showed a dose-response relationship in the range of 12.5-50 μM concentrations in LNCaP and DU-145 cells, activating an apoptotic process. In addition, physodic acid sensitizes LNCaP cells to TRAIL-induced apoptosis. The combination of physodic acid with other anti-prostate cancer therapies could be considered a promising strategy that warrants further investigations.
Collapse
Affiliation(s)
- Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Adriana C E Graziano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Alejandro Madrid
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
| | - Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
9
|
Dar TUH, Dar SA, Islam SU, Mangral ZA, Dar R, Singh BP, Verma P, Haque S. Lichens as a repository of bioactive compounds: an open window for green therapy against diverse cancers. Semin Cancer Biol 2021; 86:1120-1137. [PMID: 34052413 DOI: 10.1016/j.semcancer.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Lichens, algae and fungi-based symbiotic associations, are sources of many important secondary metabolites, such as antibiotics, anti-inflammatory, antioxidants, and anticancer agents. Wide range of experiments based on in vivo and in vitro studies revealed that lichens are a rich treasure of anti-cancer compounds. Lichen extracts and isolated lichen compounds can interact with all biological entities currently identified to be responsible for tumor development. The critical ways to control the cancer development include induction of cell cycle arrests, blocking communication of growth factors, activation of anti-tumor immunity, inhibition of tumor-friendly inflammation, inhibition of tumor metastasis, and suppressing chromosome dysfunction. Also, lichen-based compounds induce the killing of cells by the process of apoptosis, autophagy, and necrosis, that inturn positively modulates metabolic networks of cells against uncontrolled cell division. Many lichen-based compounds have proven to possess potential anti-cancer activity against a wide range of cancer cells, either alone or in conjunction with other anti-cancer compounds. This review primarily emphasizes on an updated account of the repository of secondary metabolites reported in lichens. Besides, we discuss the anti-cancer potential and possible mechanism of the most frequently reported secondary metabolites derived from lichens.
Collapse
Affiliation(s)
- Tanvir Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India.
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shahid Ul Islam
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Zahid Ahmed Mangral
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Rubiya Dar
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, Haryana, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
10
|
Role of Algae–Fungi Relationship in Sustainable Agriculture. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Ngoc Tuan N, Kuo PC, Trung Hieu T, Tuong Vi LN, Tong Hung Q, Dunge LT, Duy Trinh N, Quang Trung N, Cuu Khoa N, Viet Hai H, Thang TD. A new triterpenoid and other compounds from lichens Cryptothecia faveomaculata Makhija & Patw. Nat Prod Res 2019; 35:1349-1356. [PMID: 31373230 DOI: 10.1080/14786419.2019.1648466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ten compounds (1-10) were purified from the extract of lichens C. faveomaculata, and among these one new triterpenoid, cryptothecin A (1) was characterized through mass spectrometric and 2D NMR spectroscopic analyses. Some of the isolated compounds were assessed for their antimicrobial (1, 6, and 8) and cytotoxic activity (1, 4-5, and 7-9), but only weak inhibitory effects were observed.
Collapse
Affiliation(s)
- Nguyen Ngoc Tuan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.,Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Trung Hieu
- School of Natural Sciences Education, Vinh University, Vinh City, Vietnam
| | - Le Nguyen Tuong Vi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Quach Tong Hung
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | | | - Nguyen Duy Trinh
- NTT Institute of High Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | | - Nguyen Cuu Khoa
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Ha Viet Hai
- Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Tran Dinh Thang
- School of Chemistry, Biology and Environment, Vinh University, Vinh City, Vietnam
| |
Collapse
|
12
|
Varol M. Lichens as a Promising Source of Unique and Functional Small Molecules for Human Health and Well-Being. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00012-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Wang H, Yang T, Cheng X, Kwong S, Liu C, An R, Li G, Wang X, Wang C. Simultaneous determination of usnic, diffractaic, evernic and barbatic acids in rat plasma by ultra-high-performance liquid chromatography-quadrupole exactive Orbitrap mass spectrometry and its application to pharmacokinetic studies. Biomed Chromatogr 2017; 32. [PMID: 29055065 DOI: 10.1002/bmc.4123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/18/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Usnea longissima Ach. (Usnea) is used in pharmaceuticals, food and cosmetics. Evernic acid (EA), barbatic acid (BA), diffractaic acid (DA) and usnic acid (UA) are the most typical ingredients in U. longissima and exert a wide variety of biological functions. The study aimed to develop a sensitive method for simultaneous analysis of EA, BA, DA and UA in rat plasma and was applied to pharmacokinetic studies after consumption of UA and ethanol extract from U. longissima (UE). The samples were separated on a BEH C18 column by gradient elution with 0.5% formic acid in water and in methanol. The relative molecular masses of analytes were obtained in full-scan range from 50.0 to 750.0 m/z under negative ionization mode by UPLC-Q-Exactive Orbitrap MS. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for biological specimen analysis. The pharmacokinetic results indicated that the absolute bioavailabilities of UA after oral administration of UA and UE reached 69.2 and 146.9%, respectively. Compared with UA in UE, the relative bioavailability of DA, BA and EA reached 103.7, 10.4 and 0.7% after oral administration of UE.
Collapse
Affiliation(s)
- Hanxue Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Cheng
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sukfan Kwong
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui An
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guowen Li
- Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Bellio P, Di Pietro L, Mancini A, Piovano M, Nicoletti M, Brisdelli F, Tondi D, Cendron L, Franceschini N, Amicosante G, Perilli M, Celenza G. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 29:11-18. [PMID: 28515022 DOI: 10.1016/j.phymed.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. PURPOSE Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. METHODS The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. RESULTS Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC50) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. CONCLUSION In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity.
Collapse
Affiliation(s)
- Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Letizia Di Pietro
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Alisia Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Marisa Piovano
- Department of Chemistry, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaíso, 6, Chile
| | - Marcello Nicoletti
- Department of Environmental Biology, University Sapienza, P.le A. Moro, 00185, Rome, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena e Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy.
| |
Collapse
|
15
|
Luzina OA, Salakhutdinov NF. Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016020084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Timsina BA, Sorensen JL, Weihrauch D, Piercey-Normore MD. Effect of aposymbiotic conditions on colony growth and secondary metabolite production in the lichen-forming fungus Ramalina dilacerata. Fungal Biol 2013; 117:731-43. [PMID: 24295912 DOI: 10.1016/j.funbio.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022]
Affiliation(s)
- Brinda A Timsina
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | |
Collapse
|
17
|
SHREVE SCOTTM, MOCKFORD EDWARDL, JOHNSON KEVINP. Elevated genetic diversity of mitochondrial genes in asexual populations of Bark Lice (‘Psocoptera’: Echmepteryx hageni). Mol Ecol 2011; 20:4433-51. [DOI: 10.1111/j.1365-294x.2011.05298.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Culture studies on the mycobiont isolated from Parmotrema reticulatum (Taylor) Choisy: metabolite production under different conditions. Mycol Prog 2009. [DOI: 10.1007/s11557-009-0609-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Valarmathi R, Hariharan GN, Venkataraman G, Parida A. Characterization of a non-reducing polyketide synthase gene from lichen Dirinaria applanata. PHYTOCHEMISTRY 2009; 70:721-729. [PMID: 19427006 DOI: 10.1016/j.phytochem.2009.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 05/27/2023]
Abstract
Lichens are known to produce a variety of secondary metabolites including polyketides that have diverse biological role(s). The biosynthesis of fungal polyketides is governed by type I polyketide synthases (PKS), enzymes with a multidomain structure, including the beta-ketoacyl synthase (KS), acyl transferase (AT), ketoreductase (KR), dehydratase (DH), enoyl reductase (ER) and acyl carrier protein (ACP) domains. Established soredial cultures of Dirinaria applanata (Fée) producing atranorin and divaricatic acid were used to characterize a polyketide synthase gene (DnPKS). A 743bp fragment corresponding to the ketosynthase domain (KS) was isolated using degenerate primers. Complete sequence information for DnPKS (8162bp) was obtained by walking in the 5'and 3' directions of the isolated KS domain using TAIL PCR. A translation of the DnPKS sequence identified the presence of KS, AT, two ACP and TE domains with eight intervening introns. TBLASTX analysis and comparison with other PKS sequences suggest that the coding region of DnPKS sequence is complete with the identification of putative start and stop codons and a stretch of 1226 upstream of the start codon corresponding to the putative promoter. This sequence shows the presence of putative binding sites for fungal transcription factors such as AflR, AreA and PacC. Southern blot analysis suggests that additional DnPKS-like genes may be present in the D. applanata genome. Additionally, expression of a DnPKS-like transcript was examined under different culture conditions and found to be down-regulated by sucrose and up-regulated by mannitol, UV and neutral pH.
Collapse
Affiliation(s)
- R Valarmathi
- Lichen Ecology and Bioprospecting Laboratory, M.S. Swaminathan Research Foundation, Taramani, Chennai, India
| | | | | | | |
Collapse
|