1
|
Mehrvar A, Ghanbari S, Söylemezoğlu G, Toprak U. A novel tank-mix formulation increases the efficacy of alphabaculoviruses on different phylloplanes. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:83-92. [PMID: 39724221 PMCID: PMC11818393 DOI: 10.1093/jee/toae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae) and Spodoptera exigua Hübner (Lepidoptera: Noctuidae) pose substantial threats to many crops, necessitating the exploration of biopesticides as potential chemical alternatives. One alternative is baculoviruses; however, their instability in the field has hindered their widespread use. Host plant phylloplane affects baculovirus activity at varying levels in different host plants. Formulation contributes significantly to optimizing the baculoviral stability on different phylloplanes against environmental conditions; however, it is expensive and difficult to make in developing or nondeveloped countries. In the current study, we developed a simple tank-mix application (MBF-Tm5) for immediate use, resembling the characteristics of a suspension concentrate formulation for Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV). We examined their biological activity against 2nd instar larvae first on an artificial diet under laboratory conditions and on eggplant and pepper phylloplane in greenhouse conditions compared to plain viruses. This formulation exhibited no significant improvement in the biological activity of both viruses on an artificial diet under laboratory conditions but significantly improved the biological activity of both viruses on both plants under greenhouse conditions. The original activity remaining (OAR%) of both unformulated and formulated viruses decreased over time under greenhouse conditions; however, the OAR value of both viruses on eggplants was significantly higher than on pepper plants. Overall, the tank-mix simple formulation of baculoviruses might be a great alternative for improved stability in nature, providing better control.
Collapse
Affiliation(s)
- Ali Mehrvar
- Molecular Entomology (MOLEN) Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Solmaz Ghanbari
- Molecular Entomology (MOLEN) Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Türkiye
| | - Gökhan Söylemezoğlu
- Molecular Entomology (MOLEN) Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Türkiye
- Department of Horticulture, Faculty of Agriculture, Ankara University, Ankara, Türkiye
| | - Umut Toprak
- Molecular Entomology (MOLEN) Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Türkiye
| |
Collapse
|
2
|
Guo Y, Zhao Y, Yang Y, Zhang Y, Li Y, Tian H, Liu TX, Li Z. Plants affect the horizontal transmission of a new densovirus infecting the green peach aphid Myzus persicae by modulating honeydew production. INSECT SCIENCE 2024; 31:236-254. [PMID: 37370252 DOI: 10.1111/1744-7917.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/29/2023]
Abstract
In a tritrophic context of plant-insect-entomopathogen, plants play important roles in modulating the interaction of insects and their pathogenic viruses. Currently, the influence of plants on the transmission of insect viruses has been mainly studied on baculoviruses and some RNA viruses, whereas the impact of plants on other insect viruses is largely unknown. Here, we identified a new densovirus infecting the green peach aphid Myzus persicae and tested whether and how host plants influence the transmission of the aphid densovirus. The complete single-stranded DNA genome of the virus, M. persicae densovirus 2, is 5 727 nt and contains inverted terminal repeats. Transcription and phylogenetic analysis indicated that the virus was distinct from other a few identified aphid densoviruses. The virus abundance was detected highly in the intestinal tract of aphids, compared with the lower level of it in other tissues including head, embryo, and epidermis. Cabbage and pepper plants had no obvious effect on the vertical transmission and saliva-mediated horizontal transmission of the virus. However, the honeydew-mediated horizontal transmission among aphids highly depended on host plants (65% on cabbages versus 17% on peppers). Although the virus concentration in the honeydew produced by aphids between 2 plants was similar, the honeydew production of the infected aphids reared on peppers was dramatically reduced. Taken together, our results provide evidence that plants influence the horizontal transmission of a new densovirus in an aphid population by modulating honeydew secretion of aphids, suggesting plants may manipulate the spread of an aphid-pathogenic densovirus in nature.
Collapse
Affiliation(s)
- Ya Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yani Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yahong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Honggang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
- Institute of Entomology and Institute of Plant Health & Medicine, Guizhou University, Guiyang, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Kolge H, Kadam K, Galande S, Lanjekar V, Ghormade V. New Frontiers in Pest Control: Chitosan Nanoparticles-Shielded dsRNA as an Effective Topical RNAi Spray for Gram Podborer Biocontrol. ACS APPLIED BIO MATERIALS 2021; 4:5145-5157. [PMID: 35006998 DOI: 10.1021/acsabm.1c00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chickpea pod borer, Helicoverpa armigera, displays resistance to chemical insecticides and transgenics. The potential nontransformative RNAi approach of specific gene silencing by mRNA breakdown through exogenous double-stranded (dsRNA) delivery to Helicoverpa faces problems of degradation by nucleases and insect gut pH. We demonstrate that chitosan nanoparticles (CNPs) effectively mediate specific dsRNA delivery against Helicoverpa armigera juvenile hormone methyltransferase (JHAMT) and acetylcholine esterase (ACHE) target genes. Ionotropically synthesized cationic CNPs (100 nm size, +32 mV charge) loaded dsRNA efficiently and protected it effectively from degradation by nucleases and insect gut pH. Tagging CNPs with Calcofluor fluorescence illustrated its efficient uptake in columnar insect gut cells. The potential of CNPs-mediated dsRNA delivery was elucidated with effective silencing of green fluorescent protein transformed Sf9 cells. Furthermore, CNPs-dsRNA complexes were stable for 5 d on leaf surfaces, and their ingestion with leaf effectively silenced H. armigera JHAMT and ACHE genes to suppress related enzyme activities and caused 100% insect mortality. Further, in planta bioassay with CNPs-dsRNA spray confirmed the RNAi induced insect mortality. Moreover, CNPs-dsRNA fed nontarget insects Spodoptera litura and Drosophila melanogaster were unaffected, and no toxicity was observed for CNPs in cell line studies. Remarkably, only two low dose (0.028 g/ha) topical CNPs-ache-dsRNA sprays on chickpea displayed reduced pod damage with high yields on par with chemical control in the field, which was followed by CNPs-jhamt-dsRNA nanoformulation. These studies can pave the way for the development of topical application of CNPs-dsRNA spray as a safe, specific, innovative insecticide for sustainable crop protection.
Collapse
Affiliation(s)
- Henry Kolge
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.,Savitribai Phule Pune University, Pune 411007, India
| | - Kartiki Kadam
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Sharad Galande
- Agricultural Entomology Section, College of Agriculture, Mahatma Phule Krishi Vidyapeeth, Pune 411005, India
| | - Vikram Lanjekar
- Biodiversity and Bioenergy, Agharkar Research Institute, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.,Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
4
|
Hurst MRH, Jones S, Young S, Muetzel S, Calder J, van Koten C. Assessment of toxicity and persistence of Yersinia entomophaga and its Yen-Tc associated toxin. PEST MANAGEMENT SCIENCE 2020; 76:4301-4310. [PMID: 32648630 DOI: 10.1002/ps.5997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/06/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The insect-pathogenic bacterium Yersinia entomophaga MH96 is currently under development as a microbial pesticide active against various pasture and crop pests such as the diamondback moth Plutella xylostella and the cotton bollworm Helicoverpa armigeria. To enable nonrestricted field trials of Y. entomophaga MH96, information on the persistence and nontarget effects of the bacterium and its Yen-Tc proteinaceous toxin are required. RESULTS The Y. entomophaga Yen-Tc associated toxin was found to have limited persistence on foliage and is inactivated by UV light. The Yen-Tc was rapidly degraded in ovine or bovine rumen fluid or the intestinal fluid of H. armigera. In H. armigera an intestinal protein of >50 kDa was found to cleave the Yen-Tc bond. Assessment of Y. entomophaga persistence on foliage and in soil found that after 42 days the bacterium could not be detected in soil at 20% soil moisture content but persisted for 72 days at 30-40% soil moisture. Nontarget effects of Y. entomophaga towards earthworms found that the bacterium afforded no adverse effects on worm growth or behavior. A summary of historic Yen-Tc and Y. entomophaga persistence and toxicity data is presented. CONCLUSION The bacterium Y. entomophaga and its Yen-Tc associated toxin have limited persistence in the environment, with the Yen-Tc being susceptible to UV inactivation and proteolytic degradation, and the bacterium persisting longer in soil of a high moisture content. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Sandra Jones
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Sandra Young
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Stefan Muetzel
- Animal Science, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joanne Calder
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Chikako van Koten
- Knowledge & Analytics, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| |
Collapse
|
5
|
Resnik JL, Smilanich AM. The Effect of Phenoloxidase Activity on Survival Is Host Plant Dependent in Virus-Infected Caterpillars. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5934963. [PMID: 33089871 PMCID: PMC7583276 DOI: 10.1093/jisesa/ieaa116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/11/2023]
Abstract
An important goal of disease ecology is to understand trophic interactions influencing the host-pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Parvovirididae: Densovirinae, Lepidopteran Potoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars' response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity.
Collapse
|
6
|
Wen Z, Pang J, Tueux G, Liu Y, Shen J, Ryan MH, Lambers H, Siddique KHM. Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhihui Wen
- The UWA Institute of Agriculture The University of Western Australia Perth WA Australia
- School of Biological Sciences The University of Western Australia Perth WA Australia
- Department of Plant Nutrition College of Resources and Environmental Sciences China Agricultural University Beijing China
- National Academy of Agriculture Green Development China Agricultural University Beijing China
- Key Laboratory of Plant‐Soil Interactions Ministry of Education China Agricultural University Beijing China
| | - Jiayin Pang
- The UWA Institute of Agriculture The University of Western Australia Perth WA Australia
- UWA School of Agriculture and Environment The University of Western Australia Perth WA Australia
| | | | - Yifei Liu
- The UWA Institute of Agriculture The University of Western Australia Perth WA Australia
- School of Biological Sciences The University of Western Australia Perth WA Australia
- College of Land and Environment National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources Shenyang Agricultural University Shenyang China
| | - Jianbo Shen
- Department of Plant Nutrition College of Resources and Environmental Sciences China Agricultural University Beijing China
- National Academy of Agriculture Green Development China Agricultural University Beijing China
- Key Laboratory of Plant‐Soil Interactions Ministry of Education China Agricultural University Beijing China
| | - Megan H. Ryan
- The UWA Institute of Agriculture The University of Western Australia Perth WA Australia
- UWA School of Agriculture and Environment The University of Western Australia Perth WA Australia
| | - Hans Lambers
- The UWA Institute of Agriculture The University of Western Australia Perth WA Australia
- School of Biological Sciences The University of Western Australia Perth WA Australia
- Department of Plant Nutrition College of Resources and Environmental Sciences China Agricultural University Beijing China
- National Academy of Agriculture Green Development China Agricultural University Beijing China
- Key Laboratory of Plant‐Soil Interactions Ministry of Education China Agricultural University Beijing China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture The University of Western Australia Perth WA Australia
- UWA School of Agriculture and Environment The University of Western Australia Perth WA Australia
| |
Collapse
|
7
|
Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. J Chem Ecol 2018; 44:947-956. [PMID: 29980959 DOI: 10.1007/s10886-018-0987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Plants can influence the effectiveness of microbial insecticides through numerous mechanisms. One of these mechanisms is the oxidation of plant phenolics by plant enzymes, such as polyphenol oxidases (PPO) and peroxidases (POD). These reactions generate a variety of products and intermediates that play important roles in resistance against herbivores. Oxidation of the catecholic phenolic compound chlorogenic acid by PPO enhances the lethality of the insect-killing bacterial pathogen, Bacillus thuringiensis var. kurstaki (Bt) to the polyphagous caterpillar, Helicoverpa zea. Since herbivore feeding damage often triggers the induction of higher activities of oxidative enzymes in plant tissues, here we hypothesized that the induction of plant defenses would enhance the lethality of Bt on those plants. We found that the lethality of a commercial formulation of Bt (Dipel® PRO DF) on tomato plants was higher if it was applied to plants that were induced by H. zea feeding or induced by the phytohormone jasmonic acid. Higher proportions of H. zea larvae killed by Bt were strongly correlated with higher levels of PPO activity in the leaflet tissue. Higher POD activity was only weakly associated with higher levels of Bt-induced mortality. While plant-mediated variation in entomopathogen lethality is well known, our findings demonstrate that plants can induce defensive responses that work in concert with a microbial insecticide/entomopathogen to protect against insect herbivores.
Collapse
|
8
|
Shikano I. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens. J Chem Ecol 2017; 43:586-598. [DOI: 10.1007/s10886-017-0850-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
9
|
Arrizubieta M, Simón O, Torres-Vila LM, Figueiredo E, Mendiola J, Mexia A, Caballero P, Williams T. Insecticidal efficacy and persistence of a co-occluded binary mixture of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) variants in protected and field-grown tomato crops on the Iberian Peninsula. PEST MANAGEMENT SCIENCE 2016; 72:660-670. [PMID: 25960129 DOI: 10.1002/ps.4035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND A binary co-occluded mixture (HearSP1B:LB6) of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) variants was previously found to be highly pathogenic under laboratory conditions. The insecticidal efficacy and persistence of this mixture were determined in greenhouse and field-grown tomato crops in Spain and Portugal. RESULTS Concentrations of 10(9) -10(11) occlusion bodies (OBs) L(-1) of HearSP1B:LB6 resulted in 89-100% mortality of larvae on treated tomato plants in growth chambers. In protected tomato crops, application of 10(10) OBs L(-1) of HearSP1B:LB6 was as effective as Bacillus thuringiensis (Bt) and spinosad in reducing the percentage of damaged fruits, and resulted in higher larval mortality than the Bt treatment. In open-field tomato crops, virus treatments were as effective in reducing the percentage of damaged fruit as spinosad, Bt and chlorpyrifos treatments. The persistence of the insecticides on tomato plants was negatively correlated with solar radiation in both field and greenhouse settings. Residual insecticidal activity of OBs on protected tomato crops at 6 days post-application was 55 and 35% higher than that of Bt and spinosad respectively. On field-grown tomato, OB persistence was significantly lower than with spinosad or chlorpyrifos. CONCLUSION The efficacy and persistence of HearSP1B:LB6 OBs were comparable with those of commercial insecticides in both field and greenhouse tomato crops. Future studies should focus on reducing application rates to determine insecticidal efficacy at lower OB concentrations. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maite Arrizubieta
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Mutilva Baja, Spain
| | - Oihane Simón
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Mutilva Baja, Spain
| | - Luis M Torres-Vila
- Servicio de Sanidad Vegetal, Consejería de Agricultura DRMAyE, Gobierno de Extremadura, Mérida, Spain
| | - Elisabete Figueiredo
- Centro de Engenharia dos Biossistemas, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Javier Mendiola
- Servicio de Sanidad Vegetal, Consejería de Agricultura DRMAyE, Gobierno de Extremadura, Mérida, Spain
| | - Antonio Mexia
- Centro de Engenharia dos Biossistemas, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Mutilva Baja, Spain
- Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
| | | |
Collapse
|
10
|
Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol 2015. [DOI: 10.1016/j.jip.2015.07.009] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Cory JS. Insect virus transmission: different routes to persistence. CURRENT OPINION IN INSECT SCIENCE 2015; 8:130-135. [PMID: 32846660 DOI: 10.1016/j.cois.2015.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 05/05/2023]
Abstract
Transmission is a fundamental process in disease ecology; however, the factors that modulate transmission and the dynamical and evolutionary consequences of these factors in host populations are difficult to study in natural settings. Much of our current knowledge comes from a limited number of virus groups and few ecological studies. Alternatively, progress has been made in the detection of new viruses and in probing the molecular basis of behavioural manipulation of hosts that might influence virus transmission. An expanding theoretical framework provides guidelines on the conditions under which particular transmission strategies might evolve, and their dynamical consequences, but empirical tests are lacking.
Collapse
Affiliation(s)
- Jenny S Cory
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| |
Collapse
|
12
|
Hewson I, Brown JM, Gitlin SA, Doud DF. Nucleopolyhedrovirus detection and distribution in terrestrial, freshwater, and marine habitats of Appledore Island, Gulf of Maine. MICROBIAL ECOLOGY 2011; 62:48-57. [PMID: 21509607 DOI: 10.1007/s00248-011-9856-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 04/05/2011] [Indexed: 05/30/2023]
Abstract
Viruses in aquatic ecosystems comprise those produced by both autochthonous and allochthonous host taxa. However, there is little information on the diversity and abundance of viruses of allochthonous origin, particularly from non-anthropogenic sources, in freshwater and marine ecosystems. We investigated the presence of nucleopolyhedroviruses (NPV) (Baculovirus), which commonly infect terrestrial lepidopteran taxa, across the landscape of Appledore Island, Gulf of Maine. PCR and qPCR primers were developed around a 294-bp fragment of the polyhedrin (polH) gene, which is the major constituent protein of NPV multivirion polyhedral occlusion bodies. polH was successfully amplified from several aquatic habitats, and recovered polH sequences were most similar to known lepidopteran NPV. Using quantitative PCR designed around a cluster of detected sequences, we detected polH in Appledore Island soils, supratidal freshwater ponds, nearshore sediments, near- and offshore plankton, and in floatsam. This diverse set of locations suggests that NPVs are widely dispersed along the terrestrial--marine continuum and that free polyhedra may be washed into ponds and eventually to sea. The putative hosts of detected NPVs were webworms (Hyphantria sp.) which form dense nests in late summer on the dominant Appledore Island vegetation (Prunus virginiana). Our data indicate that viruses of terrestrial origin (i.e., allochthonous viruses) may be dispersed widely in coastal marine habitats. The dispersal of NPV polH and detection within offshore net plankton (>64 μm) demonstrates that terrestrial viruses may interact with larger particles and plankton of coastal marine ecosystem, which further suggests that viral genomic information may be transported between biomes.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|