1
|
Caselli A, Favaro R, Petacchi R, Valicenti M, Angeli S. The Cuticular Hydrocarbons of Dasineura Oleae Show Differences Between Sex, Adult Age and Mating Status. J Chem Ecol 2023; 49:369-383. [PMID: 37093418 PMCID: PMC10611616 DOI: 10.1007/s10886-023-01428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
In insects, cuticular lipids prevent water loss and act as semiochemicals. Because of their ecological function, the profile change across the insects' sex and development offers insight into insect biology and possible tools for pest management. Here, the first work on cecidomyiid cuticular extracts is proposed considering Dasineura oleae (Diptera: Cecidomyiidae) males and females at different adult ages (0-12 h, 12-24 h, 24-36 h) and distinct sexual conditions (virgin and mated). A set of 49 compounds were recorded (12 alkanes, 1 monomethyl alkane, 11 fatty acids, 4 esters, 1 aldehyde, 1 allylbenzene, 1 amine, 1 flavonoid, 1 ketone, 1 phenol, 1 steradiene, 1 sterol, 1 terpene, 1 triterpene and 11 unknown compounds), and 18 of them showed significant differences between groups. Among alkanes, hexacosane (nC26) exhibited a decreasing trend from the youngest to the oldest females, while pentacosane (nC25) and nonacosane (nC29) showed a decreasing trend from 0 to 12 h to 12-24 h virgin females. In addition, nonadecane (nC19) was significantly more abundant in the youngest males compared to older males and females. The alkanes nC25, nC26 and nC29 have been reported to be age-related also in other dipterans, while nC19 has been described as gender-specific chemical cue for platygastrid parasitoids. Further behavioural trials and analyses are required to assign the specific ecological roles to the characterized compounds. Our results may contribute to develop new low-impact control strategies relying on the manipulation of D. oleae's chemical communication (e.g. disruption of mating or species recognition). HIGHLIGHTS: • Cuticular hydrocarbons are often involved in dipteran intraspecific communication. • We explored the cuticular profile of D. oleae at different age, sex, mating condition. • Five alkanes and one mono-methyl alkane showed differences among groups. • Linoleic acid is the most abundant compound in virgins, absent in mated insects. • Eleven compounds disappear in mated insects, but were present in all virgins.
Collapse
Affiliation(s)
- Alice Caselli
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.
| | - Riccardo Favaro
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
| | - Ruggero Petacchi
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Marta Valicenti
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| |
Collapse
|
2
|
Abstract
Butterflies use structurally highly diverse volatile compounds for communication, in addition to visual signals. These compounds originate from plants or a formed de novo especially by male butterflies that possess specific scent organs.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Ehlers S, Szczerbowski D, Harig T, Stell M, Hötling S, Darragh K, Jiggins CD, Schulz S. Identification and Composition of Clasper Scent Gland Components of the Butterfly Heliconius erato and Its Relation to Mimicry. Chembiochem 2021; 22:3300-3313. [PMID: 34547164 PMCID: PMC9293309 DOI: 10.1002/cbic.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Indexed: 12/01/2022]
Abstract
The butterfly Heliconius erato occurs in various mimetic morphs. The male clasper scent gland releases an anti‐aphrodisiac pheromone and additionally contains a complex mixture of up to 350 components, varying between individuals. In 114 samples of five different mimicry groups and their hybrids 750 different compounds were detected by gas chromatography/mass spectrometry (GC/MS). Many unknown components occurred, which were identified using their mass spectra, gas chromatography/infrared spectroscopy (GC/IR)‐analyses, derivatization, and synthesis. Key compounds proved to be various esters of 3‐oxohexan‐1‐ol and (Z)‐3‐hexen‐1‐ol with (S)‐2,3‐dihydrofarnesoic acid, accompanied by a large variety of other esters with longer terpene acids, fatty acids, and various alcohols. In addition, linear terpenes with up to seven uniformly connected isoprene units occur, e. g. farnesylfarnesol. A large number of the compounds have not been reported before from nature. Discriminant analyses of principal components of the gland contents showed that the iridescent mimicry group differs strongly from the other, mostly also separated, mimicry groups. Comparison with data from other species indicated that Heliconius recruits different biosynthetic pathways in a species‐specific manner for semiochemical formation.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Daiane Szczerbowski
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Tim Harig
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Matthew Stell
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Susan Hötling
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Kathy Darragh
- Department of Evolution and Ecology, Storer Hall University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, Cambridge, UK
| | - Stefan Schulz
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Specialized androconial scales conceal species-specific semiochemicals of sympatric sulphur butterflies (Lepidoptera: Pieridae: Coliadinae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-020-00475-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Odutayo OE, Omonigbehin EA, Olawole TD, Ogunlana OO, Afolabi IS. Fermentation Enhanced Biotransformation of Compounds in the Kernel of Chrysophyllum albidum. Molecules 2020; 25:molecules25246021. [PMID: 33352625 PMCID: PMC7768532 DOI: 10.3390/molecules25246021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Chrysophyllum albidum Linn (African star apple) is a fruit with extensive nutritional and medicinal benefits. The fruit and kernel in the seed are both edible. Strains of lactic acid bacteria (LAB) were isolated from fermented seeds and assessed for probiotic characteristics. The extracts in both the unfermented and the fermented aqueous extracts from the kernels obtained from the seeds of C. albidum were subjected to analysis using the gas chromatography/mass spectrometry (GC-MS) method. This analysis identified the bioactive compounds present as possible substrate(s) for the associated organisms inducing the fermentation and the resultant biotransformed products formed. Three potential probiotic LAB strains identified as Lactococcus raffinolactis (ProbtA1), Lactococcus lactis (ProbtA2a), and Pediococcus pentosaceus (ProbtA2b) were isolated from the fermented C. albidum seeds. All strains were non hemolytic, which indicated their safety, Probt (A1, A2a, and A2b) grew in an acidic environment (pH 3.5) during the 48-h incubation time, and all three strains grew in 1% bile, and exhibited good hydrophobicity and auto-aggregation properties. Mucin binding proteins was not detected in any strain, and bile salt hydrolase was detected in all the strains. l-lactic acid (28.57%), norharman (5.07%), formyl 7E-hexadecenoate (1.73%), and indole (1.51%) were the four major constituents of the fermented kernel of the C. albidum, while 2,5-dimethylpyrazine (C1, 1.27%), 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (C2, 2.90%), indole (C3, 1.31%), norharman (C4, 3.01%), and methyl petroselinate (C5, 4.33%) were the five major constituents of the unfermented kernels. The isolated LAB are safe for consumption. The fermenting process metabolized C1, C2, and C5, which are possible starter cultures for the growth of probiotics. Fermentation is an essential tool for bioengineering molecules in foods into safe and health beneficial products.
Collapse
Affiliation(s)
- Oluwatofunmi E. Odutayo
- Biochemistry Department, College of Science and Technology, Covenant University, Ota 100122, Nigeria; (O.E.O.); (T.D.O.); (O.O.O.)
| | - Emmanuel A. Omonigbehin
- Molecular Biology Laboratory, College of Science and Technology, Covenant University, Ota 100122, Nigeria;
| | - Tolulope D. Olawole
- Biochemistry Department, College of Science and Technology, Covenant University, Ota 100122, Nigeria; (O.E.O.); (T.D.O.); (O.O.O.)
| | - Olubanke O. Ogunlana
- Biochemistry Department, College of Science and Technology, Covenant University, Ota 100122, Nigeria; (O.E.O.); (T.D.O.); (O.O.O.)
| | - Israel S. Afolabi
- Biochemistry Department, College of Science and Technology, Covenant University, Ota 100122, Nigeria; (O.E.O.); (T.D.O.); (O.O.O.)
- Correspondence: ; Tel.: +234-803-392-3264
| |
Collapse
|
6
|
Mann F, Szczerbowski D, de Silva L, McClure M, Elias M, Schulz S. 3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly Ithomia salapia. Beilstein J Org Chem 2020; 16:2776-2787. [PMID: 33281981 PMCID: PMC7684689 DOI: 10.3762/bjoc.16.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022] Open
Abstract
Male ithomiine butterflies (Nymphalidae: Danainae) have hairpencils on the forewings (i.e., androconia) that disseminate semiochemicals during courtship. While most ithomiines are known to contain derivatives of pyrrolizidine alkaloids, dihydropyrrolizines, or γ-lactones in these androconia, here we report on a new class of fatty acid esters identified in two subspecies, Ithomia salapia aquinia and I. s. derasa. The major components were identified as isoprenyl (3-methyl-3-butenyl) (Z)-3-acetoxy-11-octadecenoate, isoprenyl (Z)-3-acetoxy-13-octadecenoate (12) and isoprenyl 3-acetoxyoctadecanoate (11) by GC/MS and GC/IR analyses, microderivatizations, and synthesis of representative compounds. The absolute configuration of 12 was determined to be R. The two subspecies differed not only in the composition of the ester bouquet, but also in the composition of more volatile androconial constituents. While some individuals of I. s. aquinia contained ithomiolide A (3), a pyrrolizidine alkaloid derived γ-lactone, I. s. derasa carried the sesquiterpene α-elemol (8) in the androconia. These differences might be important for the reproductive isolation of the two subspecies, in line with previously reported low gene exchange between the two species in regions where they co-occur. Furthermore, the occurrence of positional isomers of unsaturated fatty acid derivatives indicates activity of two different desaturases within these butterflies, Δ9 and Δ11, which has not been reported before in male Lepidoptera.
Collapse
Affiliation(s)
- Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lisa de Silva
- Institut de Systématique Evolution Biodiversité, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, 45 rue Buffon, CP 50, 75005 Paris, France
| | - Melanie McClure
- Institut de Systématique Evolution Biodiversité, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, 45 rue Buffon, CP 50, 75005 Paris, France.,Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300 Cayenne, France
| | - Marianne Elias
- Institut de Systématique Evolution Biodiversité, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, 45 rue Buffon, CP 50, 75005 Paris, France
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Park SJ, Pandey G, Castro-Vargas C, Oakeshott JG, Taylor PW, Mendez V. Cuticular Chemistry of the Queensland Fruit Fly Bactrocera tryoni (Froggatt). Molecules 2020; 25:E4185. [PMID: 32932681 PMCID: PMC7571174 DOI: 10.3390/molecules25184185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
The cuticular layer of the insect exoskeleton contains diverse compounds that serve important biological functions, including the maintenance of homeostasis by protecting against water loss, protection from injury, pathogens and insecticides, and communication. Bactrocera tryoni (Froggatt) is the most destructive pest of fruit production in Australia, yet there are no published accounts of this species' cuticular chemistry. We here provide a comprehensive description of B. tryoni cuticular chemistry. We used gas chromatography-mass spectrometry to identify and characterize compounds in hexane extracts of B. tryoni adults reared from larvae in naturally infested fruits. The compounds found included spiroacetals, aliphatic amides, saturated/unsaturated and methyl branched C12 to C20 chain esters and C29 to C33 normal and methyl-branched alkanes. The spiroacetals and esters were found to be specific to mature females, while the amides were found in both sexes. Normal and methyl-branched alkanes were qualitatively the same in all age and sex groups but some of the alkanes differed in amounts (as estimated from internal standard-normalized peak areas) between mature males and females, as well as between mature and immature flies. This study provides essential foundations for studies investigating the functions of cuticular chemistry in this economically important species.
Collapse
Affiliation(s)
- Soo J. Park
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Gunjan Pandey
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - Cynthia Castro-Vargas
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - John G. Oakeshott
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Black Mountain, Acton, ACT 2601, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Vivian Mendez
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (G.P.); (C.C.-V.); (J.G.O.); (P.W.T.); (V.M.)
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
8
|
de Oliveira Borges E, Bonfantti D, de Oliveira Ribeiro CA, Zarbin PHG. Structures related to pheromone storage in alar androconia and the female abdominal scent gland of Heliconius erato phyllis, Heliconius ethilla narcaea, and Heliconius besckei (Lepidoptera: Nymphalidae: Heliconiinae). J Morphol 2020; 281:388-401. [PMID: 32003491 DOI: 10.1002/jmor.21106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/07/2022]
Abstract
We describe the morphology of alar androconia and the female abdominal scent gland of Heliconius erato phyllis, Heliconius ethilla narcaea, and Heliconius besckei. Androconial scales of Heliconius, which are arranged in overlapping wing bands, release pheromones during courtship, probably through vibratory movements of male wings over the female to induce her to mate. An antiaphrodisiac is produced by glands located in the valves of the male and is transferred during copulation to the yellow dorsal abdominal sac present in the virgin female, causing this sac to emit a scent that reduces the attractiveness of the female for courtship with other males. Stereomicroscopy, SEM, and TEM analyses were conducted to describe the morphology of the internal and external scales and the external abdominal scent sac. The findings revealed different sizes of external androconial scales and an internal group of porous structural vesicles that are probably related to the preservation of internal space, reception and storage of secretions, and elimination of volatiles when the male is actively involved in courtship. Translucent projections on the female abdominal scent sac create open reservoirs for the reception, storage, and emission of antiaphrodisiac volatiles along with stink clubs. Male valve denticles vary in form and probably attach securely to the female sac during mating, thus ensuring secretion transfer. These features are discussed in the context of a comparative analysis.
Collapse
Affiliation(s)
- Eliane de Oliveira Borges
- Departamento de Zoologia, Programa de Pós-graduação em Entomologia, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil.,Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Dayana Bonfantti
- Departamento de Zoologia, Programa de Pós-graduação em Entomologia, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Ciro A de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Paulo H G Zarbin
- Departamento de Zoologia, Programa de Pós-graduação em Entomologia, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil.,Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
Chen J, Rashid T, Feng G, Feng Y, Zhang A, Grodowitz MJ. Insecticidal Activity of Methyl Benzoate Analogs Against Red Imported Fire Ants, Solenopsis invicta (Hymenoptera: Formicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:691-698. [PMID: 30534996 DOI: 10.1093/jee/toy360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 05/25/2023]
Abstract
Although insecticidal properties of certain benzoates have been investigated for pest insects and mites, toxicity of benzoates to the red imported fire ants, Solenopsis invicta Buren, has never been reported. In this study, 15 commercially available benzoates were assessed for their contact and fumigation toxicity to S. invicta workers and their chemical structure-activity relationships. Among tested benzoates, benzylbenzoate, n-pentybenzoate, and n-hexylbenzoate were three most potent contact toxins against S. invicta workers (mean LD50 value = 23.31, 35.26, 35.99 µg per ant, respectively) and methyl-3-methoxybenzoate, methyl-3-methylbenzoate, and methylbenzoate were the three most potent fumigants (mean LC50 value = 0.61, 0.62, 0.75 µg/ml, respectively). For nonsubstituted alkyl benzoates (esters of benzoic acid and C1-C6 linear alcohols), the contact toxicity was positively correlated to the alkyl chain length (r = 0.89), while the fumigation toxicity was negatively correlated (r = 0.90). Presence of a methoxyl group at either the ortho or meta position of methylbenzoate significantly increased its contact toxicity, so did a methyl group at meta position. However, presence of a methyl group at ortho position reduced the contact toxicity. Presence of methyl or methoxyl group at the meta position did not have significant effect on the fumigation toxicity; however, methyl, methoxyl, chloro, or nitro groups at the ortho position significantly reduced fumigation toxicity. Hexylbenzoate has neither known Occupational Safety and Health Administration hazards nor aquatic toxicity, and methyl 3-methoxybenzoate is not considered a hazardous substance, indicating a great potential for their application in fire ant management.
Collapse
Affiliation(s)
- Jian Chen
- US Department of Agriculture, Agricultural Research Service, National Biological Control Laboratory, Stoneville, MS
| | - Tahir Rashid
- Alcorn State University, Extension/Research Demonstration Farm & Technology Transfer Center, Mound Bayou, MS
| | - Guolei Feng
- Alcorn State University, Extension/Research Demonstration Farm & Technology Transfer Center, Mound Bayou, MS
| | - Yan Feng
- US Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD
| | - Aijun Zhang
- US Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD
| | - Michael J Grodowitz
- US Department of Agriculture, Agricultural Research Service, National Biological Control Laboratory, Stoneville, MS
| |
Collapse
|
10
|
Mann F, Vanjari S, Rosser N, Mann S, Dasmahapatra KK, Corbin C, Linares M, Pardo-Diaz C, Salazar C, Jiggins C, Schulz S. The Scent Chemistry of Heliconius Wing Androconia. J Chem Ecol 2017; 43:843-857. [PMID: 28791540 DOI: 10.1007/s10886-017-0867-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022]
Abstract
Neotropical Heliconius butterflies are members of various mimicry rings characterized by diverse colour patterns. In the present study we investigated whether a similar diversity is observed in the chemistry of volatile compounds present in male wing androconia. Recent research has shown that these androconia are used during courting of females. Three to five wild-caught male Heliconius individuals of 17 species and subspecies were analyzed by GC/MS. Most of the identified compounds originate from common fatty acids precursors, including aldehydes, alcohols, acetates or esters preferentially with a C18 and C20 chain, together with some alkanes. The compounds occurred in species-specific mixtures or signatures. For example, octadecanal is characteristic for H. melpomene, but variation in composition between the individuals was observed. Cluster analysis of compound occurrence in individual bouquets and analyses based on biosynthetic motifs such as functional group, chain length, or basic carbon-backbone modification were used to reveal structural patterns. Mimetic pairs contain different scent bouquets, but also some compounds in common, whereas sympatric species, both mimetic and non-mimetic, have more distinct compound compositions. The compounds identified here may play a role in mate choice thus helping maintain species integrity in a butterfly genus characterized by pervasive interspecific gene flow.
Collapse
Affiliation(s)
- Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Sohini Vanjari
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Neil Rosser
- Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Sandra Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Kanchon K Dasmahapatra
- Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Chris Corbin
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Mauricio Linares
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Chris Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
11
|
Bacquet PMB, de Jong MA, Brattström O, Wang H, Molleman F, Heuskin S, Lognay G, Löfstedt C, Brakefield PM, Vanderpoorten A, Nieberding CM. Differentiation in putative male sex pheromone components across and within populations of the African butterfly Bicyclus anynana as a potential driver of reproductive isolation. Ecol Evol 2016; 6:6064-84. [PMID: 27648226 PMCID: PMC5016632 DOI: 10.1002/ece3.2298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/27/2022] Open
Abstract
Sexual traits are often the most divergent characters among closely related species, suggesting an important role of sexual traits in speciation. However, to prove this, we need to show that sexual trait differences accumulate before or during the speciation process, rather than being a consequence of it. Here, we contrast patterns of divergence among putative male sex pheromone (pMSP) composition and the genetic structure inferred from variation in the mitochondrial cytochrome oxidase 1 and nuclear CAD loci in the African butterfly Bicyclus anynana (Butler, 1879) to determine whether the evolution of "pheromonal dialects" occurs before or after the differentiation process. We observed differences in abundance of some shared pMSP components as well as differences in the composition of the pMSP among B. anynana populations. In addition, B. anynana individuals from Kenya displayed differences in the pMSP composition within a single population that appeared not associated with genetic differences. These differences in pMSP composition both between and within B. anynana populations were as large as those found between different Bicyclus species. Our results suggest that "pheromonal dialects" evolved within and among populations of B. anynana and may therefore act as precursors of an ongoing speciation process.
Collapse
Affiliation(s)
- Paul M. B. Bacquet
- Evolutionary Ecology and Genetics GroupBiodiversity Research CentreEarth and Life InstituteUniversité catholique de LouvainCroix du Sud 4‐51348Louvain‐la‐NeuveBelgium
| | - Maaike A. de Jong
- Biological SciencesUniversity of BristolWoodland RoadBristolBS8 1UGUK
| | - Oskar Brattström
- Department of ZoologyUniversity Museum of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Hong‐Lei Wang
- Department of BiologyPheromone GroupLund UniversitySE‐223 62LundSweden
| | - Freerk Molleman
- Indian Institute of Science Education and Research ThiruvananthapuramVanasiri Evolutionary Ecology LabCollege of Engineering Trivandrum CampusTrivandrum695016KeralaIndia
| | - Stéphanie Heuskin
- Laboratory of Analytical ChemistryDepartment of AgroBioChemGembloux Agro‐Bio TechUniversity of LiegePassage des Déportés 2B‐5030GemblouxBelgium
| | - George Lognay
- Laboratory of Analytical ChemistryDepartment of AgroBioChemGembloux Agro‐Bio TechUniversity of LiegePassage des Déportés 2B‐5030GemblouxBelgium
| | - Christer Löfstedt
- Department of BiologyPheromone GroupLund UniversitySE‐223 62LundSweden
| | - Paul M. Brakefield
- Department of ZoologyUniversity Museum of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Alain Vanderpoorten
- Biologie de l’évolution et de la conservationUniversity of LiègeB22 Sart TilmanB‐4000LiègeBelgium
| | - Caroline M. Nieberding
- Evolutionary Ecology and Genetics GroupBiodiversity Research CentreEarth and Life InstituteUniversité catholique de LouvainCroix du Sud 4‐51348Louvain‐la‐NeuveBelgium
| |
Collapse
|
12
|
Bacquet PMB, Brattström O, Wang HL, Allen CE, Löfstedt C, Brakefield PM, Nieberding CM. Selection on male sex pheromone composition contributes to butterfly reproductive isolation. Proc Biol Sci 2015; 282:20142734. [PMID: 25740889 DOI: 10.1098/rspb.2014.2734] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Selection can facilitate diversification by inducing character displacement in mate choice traits that reduce the probability of maladaptive mating between lineages. Although reproductive character displacement (RCD) has been demonstrated in two-taxa case studies, the frequency of this process in nature is still debated. Moreover, studies have focused primarily on visual and acoustic traits, despite the fact that chemical communication is probably the most common means of species recognition. Here, we showed in a large, mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for predicted male sex pheromone composition, but not for visual mate choice traits. Our results suggest that RCD is not anecdotal, and that selection for divergence in male sex pheromone composition contributed to reproductive isolation within the Bicyclus genus. We propose that selection may target olfactory mate choice traits as a more common sensory modality to ensure reproductive isolation among diverging lineages than previously envisaged.
Collapse
Affiliation(s)
- P M B Bacquet
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - O Brattström
- Department of Zoology, University Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - H-L Wang
- Department of Biology, Pheromone Group, Lund University, SE-223 62 Lund, Sweden
| | - C E Allen
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - C Löfstedt
- Department of Biology, Pheromone Group, Lund University, SE-223 62 Lund, Sweden
| | - P M Brakefield
- Department of Zoology, University Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - C M Nieberding
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|