1
|
Zhou Z, Wu H, Wu Z, Mo L, Li D, Zeng W, Luo H, Huang J. Identification of sex pheromone of red swamp crayfish Procambarus clarkii and exploration of the chemosensory mechanism of their antennae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105580. [PMID: 37666605 DOI: 10.1016/j.pestbp.2023.105580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Red swamp crayfish, Procambarus clarkii, is a globally invasive species, which has caused great damage to biodiversity, agriculture, and fishing. Therefore, the development of effective management methods, such as pheromone control, is necessary for biological control and biodiversity protection. However, the components of P. clarkii sex pheromones have not yet been explored, and the chemosensory mechanism of the P. clarkii antennae after stimulation by sex pheromone also remains unknown. In this study, we isolated and identified the candidate bioactive component of the female P. clarkii sex pheromone using ultrafiltration centrifugation, semi-preparative liquid phase separation and omics technologies and conducted bioassays to determine its attraction ability. Meanwhile, RNA-Seq technology was used to analyze the potential chemosensory mechanism of antennae. Our results indicated that the male P. clarkii were uniaxially attracted to the female crude conditioned water (FCW), medium fraction (MF, isolated by ultrafiltration centrifugation), and preparative fragment 6 of females (PFF6, isolated by semi-preparative liquid phase separation). Metabolomic analysis revealed the presence of 18 differential metabolites between the PFF6 and PFM6 samples, among which 15 were significantly upregulated in the PFF6 sample. Bioassay test also showed that mestranol, especially at concentrations of 10-5-10-2 mol∙l-1, could significantly attract P. clarkii males; therefore, mestranol was identified as the candidate sex pheromone component of P. clarkii females. Furthermore, RNA-Seq results showed that most differentially expressed genes (DEGs) enriched in lipid metabolism and signal transduction pathways were up-regulated in P. clarkii males. In addition, high expressions of Ca2+-binding protein and ion transporting ATPases may enhance the sensitivity of the antennae of P. clarkii males towards sex pheromones. Our study provides data on P. clarkii sex pheromone composition and reveals the molecular mechanism of sex pheromone response in P. clarkii. Moreover, our study provides a referable method for the isolation of candidate bioactive molecules from the P. clarkii sex pheromone.
Collapse
Affiliation(s)
- Zihao Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Hongying Wu
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Lili Mo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Dinghong Li
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Wenlong Zeng
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Haiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Jinlong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China.
| |
Collapse
|
2
|
Sea Lamprey Alarm Cue Comprises Water- and Chloroform- Soluble Components. J Chem Ecol 2022; 48:704-717. [PMID: 36229713 PMCID: PMC9559537 DOI: 10.1007/s10886-022-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
Abstract
A diversity of aquatic organisms manage predation risk by avoiding waters activated with conspecific alarm cues, a chemical mixture released from injuries. The sea lamprey (Petromyzon marinus) is a nocturnal migratory species that relies on its alarm cue to navigate around areas of predation risk when moving through river channels. Identification of the cue’s chemistry would allow managers to harness this innate behavioral response to guide migrating sea lamprey to traps (invasive population in the Laurentian Great Lakes) or to fish passage devices where dams block migrations in their native range. We pursued isolation of the sea lamprey alarm cue through behaviorally guided fractionation, fractionating the alarm cue into water-soluble and chloroform-soluble fractions, each of which elicited a substantial avoidance response. Recombining the two fractions restored full reactivity, suggesting the alarm cue mixture contains components that exhibit high solubility in water (e.g., nitrogenous compounds), chloroform (e.g., lipids), or perhaps materials that dissolve readily in either solvent. We further screened 13 individual compounds or pure isolates and 6 sub-fractions from the water-soluble fraction and found one of the pure isolates, isoleucine, evoked an avoidance response on its own, but not consistently when found in other mixtures. In a third experiment, we observed no behavioral response after recombining 32 compounds isolated and identified from the water-soluble fraction. These results confirm other suggestions that the process of elucidating alarm cue constituents is challenging. However, we suggest the pursuit is worthwhile given the strong evidence for the utility of alarm cues for use in the conservation and management of fishes and other aquatic organisms.
Collapse
|
3
|
Push, pull, or push–pull? An alarm cue better guides sea lamprey towards capture devices than a mating pheromone during the reproductive migration. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02242-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Johnson NS, Lewandoski SA, Alger BJ, O'Connor L, Bravener G, Hrodey P, Huerta B, Barber J, Li W, Wagner CM, Siefkes MJ. Behavioral Responses of Sea Lamprey to Varying Application Rates of a Synthesized Pheromone in Diverse Trapping Scenarios. J Chem Ecol 2020; 46:233-249. [PMID: 31970605 DOI: 10.1007/s10886-020-01151-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Use of the first fish pheromone biopesticide, 3-keto petromyzonol sulfate (3kPZS) in sea lamprey (Petromyzon marinus) control requires an understanding of both how the amount 3kPZS applied to a trap relates to catch, and how that relationship varies among stream types. By conducting 3kPZS dose-response experiments over two years and across six varied trapping contexts, we conclude (1) that 3kPZS application is best standardized by how much is emitted from the trap instead of the fully mixed concentration achieved downstream, and (2) that 3kPZS is more effective in wide streams (>30 m). In wide streams, emission of 3kPZS at 50 mg hr.-1 from the trap increased capture rate by 10-15% as sea lamprey were 25-50% more likely to enter the trap after encounter. However, in narrow streams (< 15 m), 50 mg hr.-1 3kPZS generally reduced probabilities of upstream movement, trap encounter, and entrance. While 3kPZS significantly influenced upstream movement, encounter, and capture probabilities, these behaviors were also highly influenced by water temperature, stream width, sea lamprey length, and sex. This study highlights that a pheromone component in a stream environment does not ubiquitously increase trap catch in all contexts, but that where, how, and when the pheromone is applied has major impacts on whether it benefits or hinders trapping efforts.
Collapse
Affiliation(s)
- Nicholas S Johnson
- U. S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA.
| | - Sean A Lewandoski
- U. S. Fish and Wildlife Service, Marquette Biological Station, 3090 Wright St, Marquette, MI, 49855, USA
| | - Bethany J Alger
- U. S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA
| | - Lisa O'Connor
- Fisheries and Oceans Canada, Great Lakes Laboratory for Fisheries and Aquatic Sciences, 1219 Queen Street, East Sault Ste., Marie, ON, Canada
| | - Gale Bravener
- Fisheries and Oceans Canada, Sea Lamprey Control Centre, 1219 Queen Street, East Sault Ste., Marie, ON, P6A 2E5, USA
| | - Peter Hrodey
- U. S. Fish and Wildlife Service, Marquette Biological Station, 3090 Wright St, Marquette, MI, 49855, USA
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, East Lansing, MI, 48824, USA
| | - Jessica Barber
- U. S. Fish and Wildlife Service, Marquette Biological Station, 3090 Wright St, Marquette, MI, 49855, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, East Lansing, MI, 48824, USA
| | - C Michael Wagner
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, East Lansing, MI, 48824, USA
| | - Michael J Siefkes
- Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI, 48105, USA
| |
Collapse
|
5
|
Wagner CM, Hanson JE, Meckley TD, Johnson NS, Bals JD. A simple, cost-effective emitter for controlled release of fish pheromones: Development, testing, and application to management of the invasive sea lamprey. PLoS One 2018; 13:e0197569. [PMID: 29897927 PMCID: PMC5999092 DOI: 10.1371/journal.pone.0197569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/05/2018] [Indexed: 11/18/2022] Open
Abstract
Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.
Collapse
Affiliation(s)
- C. Michael Wagner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - James E. Hanson
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, United States of America
| | - Trevor D. Meckley
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Nicholas S. Johnson
- USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, Michigan, United States of America
| | - Jason D. Bals
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
6
|
Enabling the hypothesis-driven prioritization of ligand candidates in big databases: Screenlamp and its application to GPCR inhibitor discovery for invasive species control. J Comput Aided Mol Des 2018; 32:415-433. [DOI: 10.1007/s10822-018-0100-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/17/2018] [Indexed: 01/20/2023]
|
7
|
Siefkes MJ. Use of physiological knowledge to control the invasive sea lamprey ( Petromyzon marinus) in the Laurentian Great Lakes. CONSERVATION PHYSIOLOGY 2017; 5:cox031. [PMID: 28580146 PMCID: PMC5448140 DOI: 10.1093/conphys/cox031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 05/14/2023]
Abstract
Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species.
Collapse
Affiliation(s)
- Michael J. Siefkes
- Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA
- Corresponding author: Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA. Tel: +1 7346693013; Fax: +1 7347412010;
| |
Collapse
|
8
|
Sorensen PW, Johnson NS. Theory and Application of Semiochemicals in Nuisance Fish Control. J Chem Ecol 2016; 42:698-715. [PMID: 27417504 DOI: 10.1007/s10886-016-0729-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/26/2022]
Abstract
Controlling unwanted, or nuisance, fishes is becoming an increasingly urgent issue with few obvious solutions. Because fish rely heavily on semiochemicals, or chemical compounds that convey information between and within species, to mediate aspects of their life histories, these compounds are increasingly being considered as an option to help control wild fish. Possible uses of semiochemicals include measuring their presence in water to estimate population size, adding them to traps to count or remove specific species of fish, adding them to waterways to manipulate large-scale movement patterns, and saturating the environment with synthesized semiochemicals to disrupt responses to the natural cue. These applications may be especially appropriate for pheromones, chemical signals that pass between members of same species and which also have extreme specificity and potency. Alarm cues, compounds released by injured fish, and cues released by potential predators also could function as repellents and be especially useful if paired with pheromonal attractants in "push-pull" configurations. Approximately half a dozen attractive pheromones now have been partially identified in fish, and those for the sea lamprey and the common carp have been tested in the field with modest success. Alarm and predator cues for sea lamprey also have been tested in the laboratory and field with some success. Success has been hampered by our incomplete understanding of chemical identity, a lack of synthesized compounds, the fact that laboratory bioassays do not always reflect natural environments, and the relative difficulty of conducting trials on wild fishes because of short field seasons and regulatory requirements. Nevertheless, workers continue efforts to identify pheromones because of the great potential elucidated by insect control and the fact that few tools are available to control nuisance fish. Approaches developed for nuisance fish also could be applied to valued fishes, which suffer from a lack of powerful management tools.
Collapse
Affiliation(s)
- Peter W Sorensen
- Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, 324 Skok Hall, St Paul Campus, MN, 55108, USA.
| | - Nicholas S Johnson
- U.S. Geological Survey, Hammond Bay Biological Station, Great Lakes Science Center, 11188 Ray Road, Millersburg, MI, 49759, USA
| |
Collapse
|
9
|
A portable trap with electric lead catches up to 75% of an invasive fish species. Sci Rep 2016; 6:28430. [PMID: 27341485 PMCID: PMC4920034 DOI: 10.1038/srep28430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/02/2016] [Indexed: 11/22/2022] Open
Abstract
A novel system combining a trap and pulsed direct current electricity was able to catch up to 75% of tagged invasive sea lamprey Petromyzon marinus in free-flowing streams. Non-target mortality was rare and impacts to non-target migration were minimal; likely because pulsed direct current only needed to be activated at night (7 hours of each day). The system was completely portable and the annual cost of the trapping system was low ($4,800 U.S. dollars). Use of the technology is poised to substantially advance integrated control of sea lamprey, which threaten a fishery valued at 7 billion U.S. dollars annually, and help restore sea lamprey populations in Europe where they are native, but imperiled. The system may be broadly applicable to controlling invasive fishes and restoring valued fishes worldwide, thus having far reaching effects on ecosystems and societies.
Collapse
|
10
|
Buchinger TJ, Siefkes MJ, Zielinski BS, Brant CO, Li W. Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front Zool 2015; 12:32. [PMID: 26609313 PMCID: PMC4658815 DOI: 10.1186/s12983-015-0126-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/16/2015] [Indexed: 01/21/2023] Open
Abstract
Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI USA
| | | | - Barbara S Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| | - Cory O Brant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI USA
| |
Collapse
|