1
|
Mauduit M, Derrien M, Grenier M, Greff S, Molinari S, Chevaldonné P, Simmler C, Pérez T. In Situ Capture and Real-Time Enrichment of Marine Chemical Diversity. ACS CENTRAL SCIENCE 2023; 9:2084-2095. [PMID: 38033807 PMCID: PMC10683479 DOI: 10.1021/acscentsci.3c00661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 12/02/2023]
Abstract
Analyzing the chemical composition of seawater to understand its influence on ecosystem functions is a long-lasting challenge due to the inherent complexity and dynamic nature of marine environments. Describing the intricate chemistry of seawater requires optimal in situ sampling. Here is presented a novel underwater hand-held solid-phase extraction device, I-SMEL (In Situ Marine moleculELogger), which aims to concentrate diluted molecules from large volumes of seawater in a delimited zone targeting keystone benthic species. Marine benthic holobionts, such as sponges, can impact the chemical composition of their surroundings possibly through the production and release of their specialized metabolites, hence termed exometabolites (EMs). I-SMEL was deployed in a sponge-dominated Mediterranean ecosystem at a 15 m depth. Untargeted MS-based metabolomics was performed on enriched EM extracts and showed (1) the chemical diversity of enriched seawater metabolites and (2) reproducible recovery and enrichment of specialized sponge EMs such as aerothionin, demethylfurospongin-4, and longamide B methyl ester. These EMs constitute the chemical identity of each targeted species: Aplysina cavernicola, Spongia officinalis, and Agelas oroides, respectively. I-SMEL concentrated sponge EMs from 10 L of water in a 10 min sampling time. The present proof of concept with I-SMEL opens new research perspectives in marine chemical ecology and sets the stage for further sustainable efforts in natural product chemistry.
Collapse
Affiliation(s)
| | | | | | - Stéphane Greff
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | - Sacha Molinari
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | - Pierre Chevaldonné
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | | | | |
Collapse
|
2
|
Mauduit M, Greff S, Herbette G, Naubron JV, Chentouf S, Huy Ngo T, Nam JW, Molinari S, Mabrouki F, Garayev E, Baghdikian B, Pérez T, Simmler C. Diving into the Molecular Diversity of Aplysina cavernicola's Exometabolites: Contribution of Bromo-Spiroisoxazoline Alkaloids. ACS OMEGA 2022; 7:43068-43083. [PMID: 36467926 PMCID: PMC9713894 DOI: 10.1021/acsomega.2c05415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Sponges are prolific producers of specialized metabolites with unique structural scaffolds. Their chemical diversity has always inspired natural product chemists working in drug discovery. As part of their metabolic filter-feeding activities, sponges are known to release molecules, possibly including their specialized metabolites. These released "Exo-Metabolites" (EMs) may be considered as new chemical reservoirs that could be collected from the water column while preserving marine biodiversity. The present work aims to determine the proportion and diversity of specialized EMs released by the sponge Aplysina cavernicola (Vacelet 1959). This Mediterranean sponge produces bromo-spiroisoxazoline alkaloids that are widely distributed in the Aplysinidae family. Aquarium experiments were designed to facilitate a continuous concentration of dissolved and diluted metabolites from the seawater around the sponges. Mass Spectrometry (MS)-based metabolomics combined with a dereplication pipeline were performed to investigate the proportion and identity of brominated alkaloids released as EMs. Chemometric analysis revealed that brominated features represented 12% of the total sponge's EM features. Consequently, a total of 13 bromotyrosine alkaloids were reproducibly detected as EMs. The most abundant ones were aerothionin, purealidin L, aerophobin 1, and a new structural congener, herein named aplysine 1. Their structural identity was confirmed by NMR analyses following their isolation. MS-based quantification indicated that these major brominated EMs represented up to 1.0 ± 0.3% w/w of the concentrated seawater extract. This analytical workflow and collected results will serve as a stepping stone to characterize the composition of A. cavernicola's EMs and those released by other sponges through in situ experiments, leading to further evaluate the biological properties of such EMs.
Collapse
Affiliation(s)
- Morgane Mauduit
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Endoume Marine Station, Chemin de la batterie des lions, 13007 Marseille, France
| | - Stéphane Greff
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Endoume Marine Station, Chemin de la batterie des lions, 13007 Marseille, France
| | - Gaëtan Herbette
- Aix
Marseille Université, CNRS, Centrale Marseille, FSCM-Spectropole,Service 511, Campus Saint-Jérome, 13397 Marseille, France
| | - Jean-Valère Naubron
- Aix
Marseille Université, CNRS, Centrale Marseille, FSCM-Spectropole,Service 511, Campus Saint-Jérome, 13397 Marseille, France
| | - Sara Chentouf
- Aix
Marseille Université, CNRS, Centrale Marseille, FSCM-Spectropole,Service 511, Campus Saint-Jérome, 13397 Marseille, France
| | - Trung Huy Ngo
- College
of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| | - Joo-Won Nam
- College
of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, South Korea
| | - Sacha Molinari
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Endoume Marine Station, Chemin de la batterie des lions, 13007 Marseille, France
| | - Fathi Mabrouki
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, Cedex 5, France
| | - Elnur Garayev
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, Cedex 5, France
| | - Béatrice Baghdikian
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, Cedex 5, France
| | - Thierry Pérez
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Endoume Marine Station, Chemin de la batterie des lions, 13007 Marseille, France
| | - Charlotte Simmler
- IMBE,
UMR CNRS 7263, IRD 237, Aix Marseille Université, Avignon Université,
Endoume Marine Station, Chemin de la batterie des lions, 13007 Marseille, France
| |
Collapse
|
3
|
Abstract
BACKGROUND Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, 130-701, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges. Sci Rep 2022; 12:3356. [PMID: 35233042 PMCID: PMC8888554 DOI: 10.1038/s41598-022-07292-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Marine sponges (phylum Porifera) are leading organisms for the discovery of bioactive compounds from nature. Their often rich and species-specific microbiota is hypothesised to be producing many of these compounds. Yet, environmental influences on the sponge-associated microbiota and bioactive compound production remain elusive. Here, we investigated the changes of microbiota and metabolomes in sponges along a depth range of 1232 m. Using 16S rRNA gene amplicon sequencing and untargeted metabolomics, we assessed prokaryotic and chemical diversities in three deep-sea sponge species: Geodia barretti, Stryphnus fortis, and Weberella bursa. Both prokaryotic communities and metabolome varied significantly with depth, which we hypothesized to be the effect of different water masses. Up to 35.5% of microbial ASVs (amplicon sequence variants) showed significant changes with depth while phylum-level composition of host microbiome remained unchanged. The metabolome varied with depth, with relative quantities of known bioactive compounds increasing or decreasing strongly. Other metabolites varying with depth were compatible solutes regulating osmolarity of the cells. Correlations between prokaryotic community and the bioactive compounds in G. barretti suggested members of Acidobacteria, Proteobacteria, Chloroflexi, or an unclassified prokaryote as potential producers.
Collapse
|
5
|
Bayona LM, Kim MS, Swierts T, Hwang GS, de Voogd NJ, Choi YH. Metabolic variation in Caribbean giant barrel sponges: Influence of age and sea-depth. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105503. [PMID: 34673313 DOI: 10.1016/j.marenvres.2021.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The biochemical differentiation of widely distributed long-living marine organisms according to their age or the depth of waters in which they grow is an intriguing topic in marine biology. Especially sessile life forms, such as sponges, could be expected to actively regulate biological processes and interactions with their environment through chemical signals in a multidimensional manner. In recent years, the development of chemical profiling methods such as metabolomics provided an approach that has encouraged the investigation of the chemical interactions of these organisms. In this study, LC-MS based metabolomics followed by Feature-based molecular networking (FBMN) was used to explore the effects of both biotic and environmental factors on the metabolome of giant barrel sponges, chosen as model organisms as they are distributed throughout a wide range of sea-depths. This allowed the identification of differences in the metabolic composition of the sponges related to their age and depth.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands.
| | - Min-Sun Kim
- Food Analysis Research Center, Korea Food Research Institute, Wanju, South Korea
| | - Thomas Swierts
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands; Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 130, Seoul, South Korea
| |
Collapse
|
6
|
Lever J, Brkljača R, Rix C, Urban S. Application of Networking Approaches to Assess the Chemical Diversity, Biogeography, and Pharmaceutical Potential of Verongiida Natural Products. Mar Drugs 2021; 19:582. [PMID: 34677481 PMCID: PMC8539549 DOI: 10.3390/md19100582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
This study provides a review of all isolated natural products (NPs) reported for sponges within the order Verongiida (1960 to May 2020) and includes a comprehensive compilation of their geographic and physico-chemical parameters. Physico-chemical parameters were used in this study to infer pharmacokinetic properties as well as the potential pharmaceutical potential of NPs from this order of marine sponge. In addition, a network analysis for the NPs produced by the Verongiida sponges was applied to systematically explore the chemical space relationships between taxonomy, secondary metabolite and drug score variables, allowing for the identification of differences and correlations within a dataset. The use of scaffold networks as well as bipartite relationship networks provided a platform to explore chemical diversity as well as the use of chemical similarity networks to link pharmacokinetic properties with structural similarity. This study paves the way for future applications of network analysis procedures in the field of natural products for any order or family.
Collapse
Affiliation(s)
- James Lever
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Sylvia Urban
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| |
Collapse
|
7
|
Vad J, Barnhill KA, Kazanidis G, Roberts JM. Human impacts on deep-sea sponge grounds: Applying environmental omics to monitoring. ADVANCES IN MARINE BIOLOGY 2021; 89:53-78. [PMID: 34583815 DOI: 10.1016/bs.amb.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sponges (Phylum Porifera) are the oldest extant Metazoans. In the deep sea, sponges can occur at high densities forming habitats known as sponge grounds. Sponge grounds can extend over large areas of up to hundreds of km2 and are biodiversity hotspots. However, as human activities, including deep-water hydrocarbon extraction, continue to expand into areas harbouring sponge grounds, understanding how anthropogenic impacts affect sponges and the ecosystem services they provide at multiple biological scales (community, individual and (sub)cellular levels) is key for achieving sustainable management. This chapter (1) provides an update to the chapter of Advances in Marine Biology Volume 79 entitled "Potential Impacts of Offshore Oil and Gas Activities on Deep-Sea Sponges and the Habitats They Form" and (2) discusses the use of omics as a future tool for deep-sea ecosystem monitoring. While metagenomics and (meta)transcriptomics studies have contributed to improve our understanding of sponge biology in recent years, metabolomics analysis has mostly been used to identify natural products. The sponge metabolome, therefore, remains vastly unknown despite the fact that the metabolome is a key link between the genotype and phenotype, giving us a unique new insight to how key components of an ecosystem are functioning. As the fraction of the metabolome released into the seawater, the sponge exometabolome has only just started to be characterised in comparative environmental metabolomic studies. Yet, the sponge exometabolome constitute a unique opportunity for the identification of biomarkers of sponge health as compounds can be measured in seawater, bypassing the need for physical samples which can still be difficult to collect in the deep sea. Within sponge grounds, the characterisation of a shared sponge exometabolome could lead to the identification of biomarkers of ecosystem functioning and overall health. Challenges remain in establishing omics approaches in environmental monitoring but constant technological advances and reduction in costs means these techniques will become widely available in the future.
Collapse
Affiliation(s)
- Johanne Vad
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Kelsey Archer Barnhill
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Georgios Kazanidis
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J Murray Roberts
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Wu YC, García-Altares M, Pintó B, Ribes M, Hentschel U, Pita L. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci Rep 2020; 10:21934. [PMID: 33318508 PMCID: PMC7736331 DOI: 10.1038/s41598-020-78667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023] Open
Abstract
Sponges thrive in marine benthic communities due to their specific and diverse chemical arsenal against predators and competitors. Yet, some animals specifically overcome these defences and use sponges as food and home. Most research on sponge chemical ecology has characterised crude extracts and investigated defences against generalist predators like fish. Consequently, we know little about chemical dynamics in the tissue and responses to specialist grazers. Here, we studied the response of the sponge Aplysina aerophoba to grazing by the opisthobranch Tylodina perversa, in comparison to mechanical damage, at the cellular (via microscopy) and chemical level (via matrix-assisted laser desorption/ionization imaging mass spectrometry, MALDI-imaging MS). We characterised the distribution of two major brominated alkaloids in A. aerophoba, aerophobin-2 and aeroplysinin-1, and identified a generalised wounding response that was similar in both wounding treatments: (i) brominated compound-carrying cells (spherulous cells) accumulated at the wound and (ii) secondary metabolites reallocated to the sponge surface. Upon mechanical damage, the wound turned dark due to oxidised compounds, causing T. perversa deterrence. During grazing, T. perversa's way of feeding prevented oxidation. Thus, the sponge has not evolved a specific response to this specialist predator, but rather relies on rapid regeneration and flexible allocation of constitutive defences.
Collapse
Affiliation(s)
- Yu-Chen Wu
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - María García-Altares
- Department Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Berta Pintó
- Department of Animal Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribes
- Department Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Ute Hentschel
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Lucía Pita
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| |
Collapse
|
9
|
Bovio E, Sfecci E, Poli A, Gnavi G, Prigione V, Lacour T, Mehiri M, Varese GC. The culturable mycobiota associated with the Mediterranean sponges Aplysina cavernicola, Crambe crambe and Phorbas tenacior. FEMS Microbiol Lett 2019; 366:5710934. [PMID: 31960895 DOI: 10.1093/femsle/fnaa014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/20/2020] [Indexed: 01/15/2023] Open
Abstract
Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.
Collapse
Affiliation(s)
- Elena Bovio
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy.,University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Estelle Sfecci
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Anna Poli
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Giorgio Gnavi
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Valeria Prigione
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | | | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
10
|
Ereskovsky AV, Tokina DB, Saidov DM, Baghdiguian S, Le Goff E, Lavrov AI. Transdifferentiation and mesenchymal-to-epithelial transition during regeneration in Demospongiae (Porifera). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:37-58. [PMID: 31725194 DOI: 10.1002/jez.b.22919] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Origin and early evolution of regeneration mechanisms remain among the most pressing questions in animal regeneration biology. Porifera have exceptional regenerative capacities and, as early Metazoan lineage, are a promising model for studying evolutionary aspects of regeneration. Here, we focus on reparative regeneration of the body wall in the Mediterranean demosponge Aplysina cavernicola. The epithelialization of the wound surface is completed within 2 days, and the wound is completely healed within 2 weeks. The regeneration is accompanied with the formation of a mass of undifferentiated cells (blastema), which consists of archaeocytes, dedifferentiated choanocytes, anucleated amoebocytes, and differentiated spherulous cells. The main mechanisms of A. cavernicola regeneration are cell dedifferentiation with active migration and subsequent redifferentiation or transdifferentiation of polypotent cells through the mesenchymal-to-epithelial transformation. The main cell sources of the regeneration are archaeocytes and choanocytes. At early stages of the regeneration, the blastema almost devoid of cell proliferation, but after 24 hr postoperation (hpo) and up to 72 hpo numerous DNA-synthesizing cells appear there. In contrast to intact tissues, where vast majority of DNA-synthesizing cells are choanocytes, all 5-ethynyl-2'-deoxyuridine-labeled cells in the blastema are mesohyl cells. Intact tissues, distant from the wound, retains intact level of cell proliferation during whole regeneration process. For the first time, the apoptosis was studied during the regeneration of sponges. Two waves of apoptosis were detected during A. cavernicola regeneration: The first wave at 6-12 hpo and the second wave at 48-72 hpo.
Collapse
Affiliation(s)
- Alexander V Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Rue de la Batterie des Lions, Avignon University, Marseille, France.,Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Daria B Tokina
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Rue de la Batterie des Lions, Avignon University, Marseille, France
| | - Danial M Saidov
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Emilie Le Goff
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Andrey I Lavrov
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Gómez‐Gras D, Linares C, de Caralt S, Cebrian E, Frleta‐Valić M, Montero‐Serra I, Pagès‐Escolà M, López‐Sendino P, Garrabou J. Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol Evol 2019; 9:4168-4180. [PMID: 31015996 PMCID: PMC6468064 DOI: 10.1002/ece3.5045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 01/04/2023] Open
Abstract
Climate change threatens coastal benthic communities on a global scale. However, the potential effects of ongoing warming on mesophotic temperate reefs at the community level remain poorly understood. Investigating how different members of these communities will respond to the future expected environmental conditions is, therefore, key to anticipating their future trajectories and developing specific management and conservation strategies. Here, we examined the responses of some of the main components of the highly diverse Mediterranean coralligenous assemblages to thermal stress. We performed thermotolerance experiments with different temperature treatments (from 26 to 29°C) with 10 species from different phyla (three anthozoans, six sponges and one ascidian) and different structural roles. Overall, we observed species-specific contrasting responses to warming regardless of phyla or growth form. Moreover, the responses ranged from highly resistant species to sensitive species and were mostly in agreement with previous field observations from mass mortality events (MMEs) linked to Mediterranean marine heat waves. Our results unravel the diversity of responses to warming in coralligenous outcrops and suggest the presence of potential winners and losers in the face of climate change. Finally, this study highlights the importance of accounting for species-specific vulnerabilities and response diversity when forecasting the future trajectories of temperate benthic communities in a warming ocean.
Collapse
Affiliation(s)
- Daniel Gómez‐Gras
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO)Universitat de BarcelonaBarcelonaSpain
| | - Sonia de Caralt
- Centre d' Estudis Avançats de Blanes (CSIC)BlanesSpain
- GR MAR, Institut d'Ecologia Aquàtica, Facultat de CiènciesUniversitat de GironaGironaSpain
| | - Emma Cebrian
- Centre d' Estudis Avançats de Blanes (CSIC)BlanesSpain
- GR MAR, Institut d'Ecologia Aquàtica, Facultat de CiènciesUniversitat de GironaGironaSpain
| | - Maša Frleta‐Valić
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Ignasi Montero‐Serra
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO)Universitat de BarcelonaBarcelonaSpain
| | - Marta Pagès‐Escolà
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO)Universitat de BarcelonaBarcelonaSpain
| | - Paula López‐Sendino
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Joaquim Garrabou
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| |
Collapse
|
12
|
Gaubert J, Payri CE, Vieira C, Solanki H, Thomas OP. High metabolic variation for seaweeds in response to environmental changes: a case study of the brown algae Lobophora in coral reefs. Sci Rep 2019; 9:993. [PMID: 30700781 PMCID: PMC6353962 DOI: 10.1038/s41598-018-38177-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023] Open
Abstract
In the marine environment, macroalgae face changing environmental conditions and some species are known for their high capacity to adapt to the new factors of their ecological niche. Some macroalgal metabolites play diverse ecological functions and belong to the adaptive traits of such species. Because algal metabolites are involved in many processes that shape marine biodiversity, understanding their sources of variation and regulation is therefore of utmost relevance. This work aims at exploring the possible sources of metabolic variations with time and space of four common algal species from the genus Lobophora (Dictyotales, Phaeophyceae) in the New Caledonian lagoon using a UHPLC-HRMS metabolomic fingerprinting approach. While inter-specific differences dominated, a high variability of the metabolome was noticed for each species when changing their natural habitats and types of substrates. Fatty acids derivatives and polyolefins were identified as chemomarkers of these changing conditions. The four seaweeds metabolome also displayed monthly variations over the 13-months survey and a significant correlation was made with sea surface temperature and salinity. This study highlights a relative plasticity for the metabolome of Lobophora species.
Collapse
Affiliation(s)
- Julie Gaubert
- Sorbonne Universités, Collège Doctoral, F-75005, Paris, France.
- UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, B.P. A5, 98848, Nouméa Cedex, Nouvelle-Calédonie, France.
| | - Claude E Payri
- UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, B.P. A5, 98848, Nouméa Cedex, Nouvelle-Calédonie, France
| | - Christophe Vieira
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), 9000, Gent, Belgium
| | - Hiren Solanki
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33, Galway, Ireland
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
13
|
Reverter M, Tribalat MA, Pérez T, Thomas OP. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: specificity, time, and space. Metabolomics 2018; 14:114. [PMID: 30830434 DOI: 10.1007/s11306-018-1401-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The study of natural variation of metabolites brings valuable information on the physiological state of the organisms as well as their phenotypic traits. In marine organisms, metabolome variability has mostly been addressed through targeted studies on metabolites of ecological or pharmaceutical interest. However, comparative metabolomics has demonstrated its potential to address the overall and complex metabolic variability of organisms. OBJECTIVES In this study, the intraspecific (temporal and spatial) variability of two Mediterranean Haliclona sponges (H. fulva and H. mucosa) was investigated through an untargeted and then targeted metabolomics approach and further compared to their interspecific variability. METHODS Samples of both species were collected monthly during 1 year in the coralligenous habitat of the Northwestern Mediterranean sae at Marseille and Nice. Their metabolomic profiles were obtained by UHPLC-QqToF analyses. RESULTS Marked variations were noticed in April and May for both species including a decrease in Shannon's diversity and concentration in specialized metabolites together with an increase in fatty acids and lyso-PAF like molecules. Spatial variations across different sampling sites could also be observed for both species, however in a lesser extent. CONCLUSIONS Synchronous metabolic changes possibly triggered by physiological factors like reproduction and/or environmental factors like an increase in the water temperature were highlighted for both Mediterranean Haliclona species inhabiting close habitats but displaying different biosynthetic pathways. Despite significative intraspecific variations, metabolomic variability remains minor when compared to interspecific variations for these congenerous species, therefore suggesting the predominance of genetic information of the holobiont in the observed metabolome.
Collapse
Affiliation(s)
- Miriam Reverter
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland
| | - Marie-Aude Tribalat
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France
| | - Thierry Pérez
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), CNRS, IRD, Aix Marseille Université, Université Avignon, Station Marine d'Endoume, Rue de la Batterie des Lions, Marseille, France
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91 TK33, Ireland.
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 06560, Valbonne, France.
| |
Collapse
|
14
|
Microalgal Microscale Model for Microalgal Growth Inhibition Evaluation of Marine Natural Products. Sci Rep 2018; 8:10541. [PMID: 30002474 PMCID: PMC6043507 DOI: 10.1038/s41598-018-28980-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/01/2018] [Indexed: 01/31/2023] Open
Abstract
Marine organisms especially sessile invertebrates, such as soft corals, gorgonians and sponges, can survive in the competitive environment mainly relying on their second metabolites with chemoecological effects including allelopathy and algal growth inhibition. It is well known that the microscale models are urgently needed in marine chemoecology assessment to evaluate the algal growth inhibition activity of trace quantity natural products. In this work, a microalgal growth inhibition model was established for microalgal inhibition evaluation of marine natural products with 96-well microplate by automatic fluorescence observation using microplate reader. Subsequently, this model was applied to bioassay-guided isolation and preliminary bioactivity screening of the secondary metabolites from soft corals, gorgonians, sponges and their symbiotic microbes collected from the South China Sea. As a result, fifteen compounds (1‒15) were found to exhibit microalgal growth inhibition activities against at least one of marine microalgae, Karenia mikimotoi, Isochrysis galbana, and Heterosigma akashiwo. Specifically, altersolanol C (13) demonstrated potent activity against K. mikimotoi with the 96h-EC50 value of 1.16 µg/mL, more than four times stronger than that of the positive control K2Cr2O7. It was suggested that the microalgal growth inhibition microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.
Collapse
|
15
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
16
|
Broeckling CD, Prenni JE. Stacked Injections of Biphasic Extractions for Improved Metabolomic Coverage and Sample Throughput. Anal Chem 2018; 90:1147-1153. [PMID: 29231702 DOI: 10.1021/acs.analchem.7b03654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Omics technologies attempt to provide comprehensive coverage of their target analytes. Comprehensive coverage of metabolites, the aim of nontargeted metabolomics applications, is hindered by the extreme diversity in physiochemical properties of the metabolome. One approach to deal with this challenge is the use of biphasic extractions. These methods generate two largely complementary extracts from a single sample, with an organic lipid-rich fraction and an aqueous fraction containing largely primary and secondary metabolites. To improve metabolite coverage, these two fractions are then independently analyzed resulting in a doubling of the experimental time. In this manuscript, we describe a novel injection approach, stacked injections of a biphasic extraction (SIBE), which enables simultaneous analysis of the two fractions. We demonstrate that SIBE offers nearly 3-fold more total peak area than a monophasic extract without dramatically increasing instrumentation time required for the analysis. The analytical variance is very slightly increased; however, significant improvements in retention time stability are obtained with SIBE vs monophasic injections. Collectively, these data indicate that SIBE is a viable injection approach whenever comprehensive metabolomic coverage is desired.
Collapse
Affiliation(s)
- Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University , C-121 Microbiology Building, 2021 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University , C-121 Microbiology Building, 2021 Campus Delivery, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Tarazona G, Santamaría G, Cruz PG, Fernández R, Pérez M, Martínez-Leal JF, Rodríguez J, Jiménez C, Cuevas C. Cytotoxic Anomoian B and Aplyzanzine B, New Bromotyrosine Alkaloids from Indonesian Sponges. ACS OMEGA 2017; 2:3494-3501. [PMID: 30023696 PMCID: PMC6044681 DOI: 10.1021/acsomega.7b00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 05/19/2023]
Abstract
Two new bromotyrosine derivatives, anomoian B (1) and aplyzanzine B (2), were isolated, respectively, from the organic extracts of a Verongida sponge belonging to the Hexadella genus and from a two-sponge association (Jaspis sp. and Bubaris sp.), both collected off the coast of Indonesia. The planar structure of 1 and 2 was determined by 1D and 2D NMR experiments and by high-resolution mass spectrometry, while their absolute stereochemistry was assigned by comparison with optical rotation values of known bromotyrosines and by chemical degradation. Both compounds showed moderate antiproliferative activity against a panel of different cancer cell lines. Their cytotoxic activity is facilitated through the induction of apoptosis, which is mediated neither by the generation of reactive oxygen species nor by the inhibition of histone deacetylases in these cell lines.
Collapse
Affiliation(s)
- Guillermo Tarazona
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Gema Santamaría
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Patricia G. Cruz
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Rogelio Fernández
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
- E-mail: (R.F.)
| | - Marta Pérez
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Juan Fernando Martínez-Leal
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| | - Jaime Rodríguez
- Departamento
de Química, Facultade de Ciencias e Centro de Investigacións
Científicas Avanzadas (CICA), Universidade
da Coruña, 15071 A Coruña, Spain
- E-mail: (J.R.)
| | - Carlos Jiménez
- Departamento
de Química, Facultade de Ciencias e Centro de Investigacións
Científicas Avanzadas (CICA), Universidade
da Coruña, 15071 A Coruña, Spain
| | - Carmen Cuevas
- Medicinal
Chemistry Department, PharmaMar S. A., Pol. Ind. La Mina Norte, Avenida
de los Reyes 1, Colmenar Viejo, Madrid 28770, Spain
| |
Collapse
|
18
|
Furanoterpene Diversity and Variability in the Marine Sponge Spongia officinalis, from Untargeted LC-MS/MS Metabolomic Profiling to Furanolactam Derivatives. Metabolites 2017; 7:metabo7020027. [PMID: 28608848 PMCID: PMC5487998 DOI: 10.3390/metabo7020027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
The Mediterranean marine sponge Spongia officinalis has been reported as a rich source of secondary metabolites and also as a bioindicator of water quality given its capacity to concentrate trace metals. In this study, we evaluated the chemical diversity within 30 S. officinalis samples collected over three years at two sites differentially impacted by anthropogenic pollutants located near Marseille (South of France). Untargeted liquid chromatography—mass spectrometry (LC–MS) metabolomic profiling (C18 LC, ESI-Q-TOF MS) combined with XCMS Online data processing and multivariate statistical analysis revealed 297 peaks assigned to at least 86 compounds. The spatio-temporal metabolite variability was mainly attributed to variations in relative content of furanoterpene derivatives. This family was further characterized through LC–MS/MS analyses in positive and negative ion modes combined with molecular networking, together with a comprehensive NMR study of isolated representatives such as demethylfurospongin-4 and furospongin-1. The MS/MS and NMR spectroscopic data led to the identification of a new furanosesterterpene, furofficin (2), as well as two derivatives with a glycinyl lactam moiety, spongialactam A (12a) and B (12b). This study illustrates the potential of untargeted LC–MS metabolomics and molecular networking to discover new natural compounds even in an extensively studied organism such as S. officinalis. It also highlights the effect of anthropogenic pollution on the chemical profiles within the sponge.
Collapse
|