1
|
Chen YW, Yang HH, Gu N, Li JQ, Zhu XY, Zhang YN. Identification of attractants for adult Spodoptera litura based on the interaction between odorant-binding protein 34 and host volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106005. [PMID: 39084800 DOI: 10.1016/j.pestbp.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Nan Gu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
2
|
Wang Q, Zhou X, Zhang K, Qin L, Wu Q, Deng L, Xu Z, Guo J. Ligand-binding properties of XaffOBP9, a Minus-C odorant-binding protein from Xyleborus affinis (Coleoptera: Curculionidae: Scolytinae). Front Physiol 2024; 14:1326099. [PMID: 38235380 PMCID: PMC10791897 DOI: 10.3389/fphys.2023.1326099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Xyleborus affinis, one of the most important pests of rubber trees, has caused severe damage to the natural rubber industry in Hainan province. The ability to detect host plants through a sensitive and specific olfactory system is crucial for Xyleborus affinis. Odorant binding proteins (OBPs) are believed to bind and carry hydrophobic active compounds from the environment to the surface of olfactory receptor neurons. To investigate the potential functional role of the highly expressed XaffOBP9 in binding with semiochemicals, we cloned and analyzed the cDNA sequence of XaffOBP9. The results showed that XaffOBP9 contains a 411bp open reading frame that encodes 136 amino acids. Then XaffOBP9 was expressed in Escherichia coli. The binding affinity of the recombinant OBP to 15 different ligands (14 host plant volatiles and 1 aggregation pheromone) was then examined using a fluorescence competitive binding approach. The results demonstrated that XaffOBP9 exhibited broad binding capabilities and strong affinities for 14 ligands. The structure of XaffOBP9 and its interactions with fourteen ligands were further analyzed by modeling and molecular docking, respectively. Based on the docking result, we found hydrophobic interactions are important between XaffOBP9 to these ligands and three amino acid residues (L71, Y106, and L114) were highly overlapped and contributed to the interaction with ligands. Mutation functional assays confirmed that the mutant L114A showed significantly reduced binding capacity to these ligands. This study suggested that XaffOBP9 may be involved in the chemoreception of semiochemicals and that it is helpful for the integrated management of X. affinis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jixing Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
3
|
Guo P, Hao E, Li H, Yang X, Lu P, Qiao H. Expression Pattern and Ligand Binding Characteristics Analysis of Chemosensory Protein SnitCSP2 from Sirex nitobei. INSECTS 2023; 14:583. [PMID: 37504589 PMCID: PMC10380366 DOI: 10.3390/insects14070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Sirex nitobei is an important wood-boring wasp to conifers native to Asia, causing considerable economic and ecological damage. However, the current control means cannot achieve better efficiency, and it is expected to clarify the molecular mechanism of protein-ligand binding for effective pest control. This study analyzed the expression pattern of CSP2 in S. nitobei (SnitCSP2) and its features of binding to the screened ligands using molecular docking and dynamic simulations. The results showed that SnitCSP2 was significantly expressed in female antennae. Molecular docking and dynamic simulations revealed that SnitCSP2 bound better to the host plant volatile (+)-α-pinene and symbiotic fungal volatiles terpene and (-)-globulol than other target ligands. By the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, the free binding energies of the three complexes were calculated as -44.813 ± 0.189 kJ/mol, -50.446 ± 0.396 kJ/mol, and -56.418 ± 0.368 kJ/mol, and the van der Waals energy was found to contribute significantly to the stability of the complexes. Some key amino acid residues were also identified: VAL13, GLY14, LYS61, MET65, and LYS68 were important for the stable binding of (+)-α-pinene by SnitCSP2, while for terpenes, ILE16, ALA25, TYR26, CYS29, GLU39, THR37, and GLY40 were vital for a stable binding system. We identified three potential ligands and analyzed the interaction patterns of the proteins with them to provide a favorable molecular basis for regulating insect behavioral interactions and developing new pest control strategies.
Collapse
Affiliation(s)
- Pingping Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Xue J, Ai D, Xu X, Wang C, Jiang X, Han T, Er D. Isolation and Identification of Volatile Substances with Attractive Effects on Wohlfahrtia magnifica from Vagina of Bactrian Camel. Vet Sci 2022; 9:637. [PMID: 36423086 PMCID: PMC9696388 DOI: 10.3390/vetsci9110637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 09/16/2024] Open
Abstract
Vaginal myiasis is one of the most serious parasitic diseases in Bactrian camels. At present, there are no reports on biological control measures of the disease. In this paper, the metabolomic analysis of vaginal secretions from susceptible and non-susceptible camels was performed by ACQUITY UPLC H-Class Ultra Performance Liquid Chromatograph. The results matched in 140 vaginal compounds. Methylheptenone, 1-octen-3-ol, and propyl butyrate and their mixtures were selected for gas chromatography-electroantennography (GC-EAD), electroantennography (EAG), behavioral experiments and trapping experiments of Wohlfahrtia magnifica (W. magnifica). Results showed that the W. magnifica had EAG responses to the three compounds, respectively. The EAG responses of female flies to different concentrations of methylheptenone were significantly different, but to the others had no significant difference, and there was no significant difference in the same compounds between the different sexes. Behavioral and trapping experiments showed that methylheptenone and 1-octen-3-ol have significant attraction to W. magnifica, but there was no significant difference to propyl butyrate. When methylheptenone and 1-octen-3-ol were mixed in different proportions, it was found that a mixture at the ratio of 1:1 and 0.5:1 had extremely significant and significant attraction, respectively, to both male and female W. magnifica. The study showed that, except for propyl butyrate, the higher the concentrations of the other two compounds, the stronger the attractivity to the W. magnifica, and a mixture at the ratio of 1:1 could enhance the attractivity to the W. magnifica.
Collapse
Affiliation(s)
- Jiaqi Xue
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Dongdong Ai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| | - Xiangjun Xu
- Alxa Left Banner Bayannorogon Comprehensive Administrative Law Enforcement Bureau, Bayannorogon 750300, China
| | - Changmei Wang
- Supply and Marketing Cooperative Union, Ejina Banner, Alxa League, Dalaihub 735400, China
| | - Xinji Jiang
- Alxa Left Banner Centre of Animal Disease Prevention and Control, Alxa League, Bayanhot 750300, China
| | - Tana Han
- Comprehensive security and Technology Promotion Center of Dalaihub Town, Ejina Banner, Alxa League 735400, China
| | - Demtu Er
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
| |
Collapse
|
7
|
Odorant-receptor-mediated regulation of chemosensory gene expression in the malaria mosquito Anopheles gambiae. Cell Rep 2022; 38:110494. [PMID: 35263579 PMCID: PMC8957105 DOI: 10.1016/j.celrep.2022.110494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Mosquitoes locate and approach humans based on the activity of odorant receptors (ORs) expressed on olfactory receptor neurons (ORNs). Olfactogenetic experiments in Anopheles gambiae mosquitoes revealed that the ectopic expression of an AgOR (AgOR2) in ORNs dampened the activity of the expressing neuron. This contrasts with studies in Drosophila melanogaster in which the ectopic expression of non-native ORs in ORNs confers ectopic neuronal responses without interfering with native olfactory physiology. RNA-seq analyses comparing wild-type antennae to those ectopically expressing AgOR2 in ORNs indicated that nearly all AgOR transcripts were significantly downregulated (except for AgOR2). Additional experiments suggest that AgOR2 protein rather than mRNA mediates this downregulation. Using in situ hybridization, we find that AgOR gene choice is active into adulthood and that AgOR2 expression inhibits AgORs from turning on at this late stage. Our study shows that the ORNs of Anopheles mosquitoes (in contrast to Drosophila) are sensitive to a currently unexplored mechanism of AgOR regulation. Maguire et al. discover that the ectopic expression of an olfactory receptor can downregulate the transcription of endogenous odorant receptors in mosquito olfactory neurons. The onset of mosquito odorant-receptor expression by an olfactory neuron continues into adult stages, and is particularly sensitive to exogenous olfactory reception expression.
Collapse
|
8
|
Tenywa FSC, Musa JJ, Musiba RM, Swai JK, Mpelepele AB, Okumu FO, Maia MF. Evaluation of an ivermectin-based attractive targeted sugar bait (ATSB) against Aedes aegypti in Tanzania. Wellcome Open Res 2022; 7:4. [PMID: 37409221 PMCID: PMC10318376 DOI: 10.12688/wellcomeopenres.17442.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 10/02/2023] Open
Abstract
Background The control of vector borne arboviral diseases such as Dengue is mainly achieved by reducing human-vector contact and controlling the vectors through source reduction and environmental management. These measures are constrained by labour intensity, insecticide resistance and pro-active community participation. The current study intended to develop and test an ivermectin-based attractive-targeted sugar bait (ATSB) against Aedes aegypti. Methods The 48hour lethal concentration (LC90) of ivermectin against Ae. aegypti was determined through serial dilution experiment where five 30cm x 30cm x 30cm cages were set; into each, a 10% sugar solution treated with ivermectin were introduced. 40 Ae. aegypti were released into each cage and observed for mortality after 4, 8, 24 and 48 hours. The ivermectin-based ATSB was evaluated in a semi field system where ATSB and attractive sugar bait (ASB) were deployed into each compartment of the semi field and 100 female Ae. aegypti were released every day and recaptured the next day through human land catch and Bio-gent sentinel trap. The developed and semi-field tested ATSB was further tested in the field by deploying them in garages. Results The ivermectin 48hr LC90 of male and female Ae. aegypti was found to be 0.03% w/v. In the semi field system, the ATSB significantly reduced a free-flying population of Ae. aegypti within 24 hours (incidence rate ratio (IRR) = 0.62; [95% confidence interval (95%CI); 0.54-0.70] and p-value < 0.001). However, in the field, the ATSBs required the addition of yeast as a carbon dioxide source to efficiently attract Ae. aegypti mosquitoes to feed. Conclusion Ivermectin is an active ingredient that can be used in an ATSB for Ae. aegypti depopulation. However, further research is needed to improve the developed and tested ATSB to compete with natural sources of sugar in a natural environment.
Collapse
Affiliation(s)
- Frank Sandra Chelestino Tenywa
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Bagamoyo, Pwani, 0000, Tanzania
- Vector Biology, Swiss Tropical and Public Health Institute, Basel, Basel, CH-4002, Switzerland
- Science, University of Basel, Basel, Basel, CH-4002, Switzerland
| | - Jeremiah John Musa
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Bagamoyo, Pwani, 0000, Tanzania
| | - Revocatus Musyangi Musiba
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Bagamoyo, Pwani, 0000, Tanzania
| | - Johnson Kyeba Swai
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Bagamoyo, Pwani, 0000, Tanzania
- Vector Biology, Swiss Tropical and Public Health Institute, Basel, Basel, CH-4002, Switzerland
- Science, University of Basel, Basel, Basel, CH-4002, Switzerland
| | - Ahmad Bakar Mpelepele
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Bagamoyo, Pwani, 0000, Tanzania
| | - Fredros Okech Okumu
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Bagamoyo, Pwani, 0000, Tanzania
- Vector Biology, Swiss Tropical and Public Health Institute, Basel, Basel, CH-4002, Switzerland
- Science, University of Basel, Basel, Basel, CH-4002, Switzerland
- Faculty of Health Science, School of Public Health, University of the Witwatersrand, Johannesburg, Johannesburg, 0000, South Africa
| | - Marta Ferreira Maia
- Wellcome Trust Research Program, Kenya Medical Research Institute(Kemri ), Kilifi, Mombasa, 0000, Kenya
- Medicine, Centre for Global Health and Tropical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
9
|
Mendonça-Gomes JM, Charlie-Silva I, Guimarães ATB, Estrela FN, Calmon MF, Miceli RN, Sanches PRS, Bittar C, Rahal P, Cilli EM, Ahmed MAI, Vogel CFA, Malafaia G. Shedding light on toxicity of SARS-CoV-2 peptides in aquatic biota: A study involving neotropical mosquito larvae (Diptera: Culicidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117818. [PMID: 34333265 PMCID: PMC8291650 DOI: 10.1016/j.envpol.2021.117818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
Knowledge about how the COVID-19 pandemic can affect aquatic wildlife is still extremely limited, and no effect of SARS-CoV-2 or its structural constituents on invertebrate models has been reported so far. Thus, we investigated the presence of the 2019-new coronavirus in different urban wastewater samples and, later, evaluated the behavioral and biochemical effects of the exposure of Culex quinquefasciatus larvae to two SARS-CoV-2 spike protein peptides (PSPD-2002 and PSPD-2003) synthesized in our laboratory. Initially, our results show the contamination of wastewater by the new coronavirus, via RT-qPCR on the viral N1 gene. On the other hand, our study shows that short-term exposure (48 h) to a low concentration (40 μg/L) of the synthesized peptides induced changes in the locomotor and the olfactory-driven behavior of the C. quinquefascitus larvae, which were associated with increased production of ROS and AChE activity (cholinesterase effect). To our knowledge, this is the first study that reports the indirect effects of the COVID-19 pandemic on the larval phase of a freshwater invertebrate species. The results raise concerns at the ecological level where the observed biological effects may lead to drastic consequences.
Collapse
Affiliation(s)
| | - Ives Charlie-Silva
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo; São Paulo, SP, Brazil
| | | | - Fernanda Neves Estrela
- Programa de Pós-Graduação Em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano; Urutaí, GO, Brazil
| | - Marilia Freitas Calmon
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"; São José do Rio Preto, SP, Brazil
| | - Rafael Nava Miceli
- SeMAE - Serviço Municipal Autonômo de Água e Esgoto, São José do Rio Preto; São Paulo, SP, Brazil
| | - Paulo R S Sanches
- Instituto de Química, Universidade Estadual Paulista; Araraquara, SP, Brazil
| | - Cíntia Bittar
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"; São José do Rio Preto, SP, Brazil
| | - Paula Rahal
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"; São José do Rio Preto, SP, Brazil
| | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista; Araraquara, SP, Brazil
| | | | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA, 95616, USA
| | - Guilherme Malafaia
- Programa de Pós-Graduação Em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano; Urutaí, GO, Brazil; Programa de Pós-Graduação Em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil; Programa de Pós-Graduação Em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlância, Uberlândia, MG, Brazil.
| |
Collapse
|
10
|
Li LL, Xu JW, Yao WC, Yang HH, Dewer Y, Zhang F, Zhu XY, Zhang YN. Chemosensory genes in the head of Spodoptera litura larvae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:454-463. [PMID: 33632348 DOI: 10.1017/s0007485321000109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes-SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242-were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.
Collapse
Affiliation(s)
- Lu-Lu Li
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Hui-Hui Yang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618Giza, Egypt
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan250014, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei235000, China
| |
Collapse
|
11
|
Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster. PLoS Genet 2021; 17:e1009677. [PMID: 34237075 PMCID: PMC8291717 DOI: 10.1371/journal.pgen.1009677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/20/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-β-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum. Pyrethrum extract began to be used as an insect repellent against biting arthropods and blood-sucking mosquitoes since ancient times. However, the mechanisms underlying pyrethrum repellency remains unknown. In this study, we took advantage of Drosophila melanogaster as a model insect system for olfaction studies and conducted a series of electrophysiological, molecular genetic and behavioral experiments to understand the mechanism of pyrethrum repellency in D. melanogaster. We discovered that pyrethrum repels D. melanogaster by activating multiple odorant receptors (Ors). Apparently simultaneous activation of these Ors by various components in pyrethrum extract makes pyrethrum one of the most potent and the longest used insect repellents in the human history.
Collapse
|
12
|
Zhou G, Yu L, Wang X, Zhong D, Lee MC, Kibret S, Yan G. Behavioral response of insecticide-resistant mosquitoes against spatial repellent: A modified self-propelled particle model simulation. PLoS One 2020; 15:e0244447. [PMID: 33373422 PMCID: PMC7771694 DOI: 10.1371/journal.pone.0244447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
Rapidly increasing pyrethroid insecticide resistance and changes in vector biting and resting behavior pose serious challenges in malaria control. Mosquito repellents, especially spatial repellents, have received much attention from industry. We attempted to simulate interactions between mosquitoes and repellents using a machine learning method, the Self-Propelled Particle (SPP) model, which we modified to include attractiveness/repellency effects. We simulated a random walk scenario and scenarios with insecticide susceptible/resistant mosquitoes against repellent alone and against repellent plus attractant (to mimic a human host). Simulation results indicated that without attractant/repellent, mosquitoes would fly anywhere in the cage at random. With attractant, all mosquitoes were attracted to the source of the odor by the end. With repellent, all insecticide-susceptible mosquitoes eventually moved to the corner of the cage farthest from the repellent release point, whereas, a high proportion of highly resistant mosquitoes might reach the attractant release point (the human) earlier in the simulation. At fixed concentration, a high proportion of mosquitoes could be able to reach the host when the relative repellency efficacy (compare to attractant efficacy) was <1, whereas, no mosquitoes reached the host when the relative repellency efficacy was > 1. This result implies that repellent may not be sufficient against highly physiologically insecticide resistant mosquitoes, since very high concentrations of repellent are neither practically feasible nor cost-effective.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Leonard Yu
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Xiaoming Wang
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Ming-chieh Lee
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Solomon Kibret
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California, United States of America
| |
Collapse
|
13
|
Olafson PU, Saski CA. Chemosensory-Related Gene Family Members of the Horn Fly, Haematobia irritans irritans (Diptera: Muscidae), Identified by Transcriptome Analysis. INSECTS 2020; 11:E816. [PMID: 33228086 PMCID: PMC7699325 DOI: 10.3390/insects11110816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Horn flies are one of the most significant economic pests of cattle in the United States and worldwide. Chemical control methods have been routinely utilized to reduce populations of this pest, but the steady development of insecticide resistance has prompted evaluation of alternative control strategies. Behavior modifying compounds from natural products have shown some success in impacting horn fly populations, and a more thorough understanding of the horn fly chemosensory system would enable improvements in the development of species-specific compounds. Using an RNA-seq approach, we assembled a transcriptome representing genes expressed in adult female and male horn fly head appendages (antennae, maxillary palps, and proboscides) and adult fly bodies from which heads were removed. Differential gene expression analysis identified chemosensory gene family members that were enriched in head appendage tissues compared with headless bodies. Candidate members included 43 odorant binding proteins (OBP) and 5 chemosensory binding proteins (CSP), as well as 44 odorant receptors (OR), 27 gustatory receptors (GR), and 34 ionotropic receptors (IR). Sex-biased expression of these genes was not observed. These findings provide a resource to enable future studies targeting horn fly chemosensation as part of an integrated strategy to control this blood-feeding pest.
Collapse
Affiliation(s)
- Pia Untalan Olafson
- Knipling-Bushland US Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX 78028, USA
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
14
|
Zhu XY, Xu JW, Li LL, Wang DY, Zhang ML, Yu NN, Purba ER, Zhang F, Li XM, Zhang YN, Mang DZ. Analysis of chemosensory genes in Semiothisa cinerearia reveals sex-specific contributions for type-II sex pheromone chemosensation. Genomics 2020; 112:3846-3855. [DOI: 10.1016/j.ygeno.2020.06.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/01/2022]
|
15
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21737. [PMID: 32926465 DOI: 10.1002/arch.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein-protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.
Collapse
Affiliation(s)
- Shanghong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Gomulski LM, Manni M, Carraretto D, Nolan T, Lawson D, Ribeiro JM, Malacrida AR, Gasperi G. Transcriptional variation of sensory-related genes in natural populations of Aedes albopictus. BMC Genomics 2020; 21:547. [PMID: 32767966 PMCID: PMC7430840 DOI: 10.1186/s12864-020-06956-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The Asian tiger mosquito, Aedes albopictus, is a highly dangerous invasive vector of numerous medically important arboviruses including dengue, chikungunya and Zika. In four decades it has spread from tropical Southeast Asia to many parts of the world in both tropical and temperate climes. The rapid invasion process of this mosquito is supported by its high ecological and genetic plasticity across different life history traits. Our aim was to investigate whether wild populations, both native and adventive, also display transcriptional genetic variability for functions that may impact their biology, behaviour and ability to transmit arboviruses, such as sensory perception. RESULTS Antennal transcriptome data were derived from mosquitoes from a native population from Ban Rai, Thailand and from three adventive Mediterranean populations: Athens, Greece and Arco and Trento from Italy. Clear inter-population differential transcriptional activity was observed in different gene categories related to sound perception, olfaction and viral infection. The greatest differences were detected between the native Thai and the Mediterranean populations. The two Italian populations were the most similar. Nearly one million quality filtered SNP loci were identified. CONCLUSION The ability to express this great inter-population transcriptional variability highlights, at the functional level, the remarkable genetic flexibility of this mosquito species. We can hypothesize that the differential expression of genes, including those involved in sensory perception, in different populations may enable Ae. albopictus to exploit different environments and hosts, thus contributing to its status as a global vector of arboviruses of public health importance. The large number of SNP loci present in these transcripts represents a useful addition to the arsenal of high-resolution molecular markers and a resource that can be used to detect selective pressure and adaptive changes that may have occurred during the colonization process.
Collapse
Affiliation(s)
- Ludvik M Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - José M Ribeiro
- NIAID, Laboratory of Malaria and Vector Research, NIH, Rockville, MD, 20852, USA
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
17
|
Aponso M, Patti A, Bennett LE. Dose-related effects of inhaled essential oils on behavioural measures of anxiety and depression and biomarkers of oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112469. [PMID: 31843574 DOI: 10.1016/j.jep.2019.112469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EOs) are extracts of organic, volatile metabolites of plants that are typically oily liquids at ambient temperatures. Inhalation of EOs can regulate brain health and functions associated with mood and neurodegeneration, reflecting their bioavailability to brain. The aim was to identify physicochemical properties that influenced EO volatility and pathways of brain uptake by inhalation. MATERIALS AND METHODS Dose-dependency of effects, determined as: total EO intake (μg/g bodyweight-BW), and rate of EO intake (μg/hr/g-BW), was determined by meta-analysis of data from animal studies (10 studies, 12 EOs), measuring effects on anxiety, depression and selected biomarkers of oxidative stress and inflammation (OSI). RESULTS Results demonstrated benefits on animal behavior at EO intakes of 1-100 μg/g BW and 1-10 μg/hr/g BW (Elevated Plus Maze and Forced Swimming tests) and <100 μg/g BW and 10-100 g/hr/g BW (Marble Burying). EOs regulated OSI biomarkers at intakes of 10-100 μg/g BW and 1-10 μg/h/g BW, and a dose-dependent elevation of dopamine at >1000 μg/g BW and 100-1000 μg/hr/g BW. CONCLUSION The results support that EO 'aromatherapy' can promote dose-dependent regulation of anxiety, depression and OSI and that efficacy requires optimization of dose.
Collapse
Affiliation(s)
- Minoli Aponso
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Antonio Patti
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Louise E Bennett
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
18
|
Xu P, Wang Y, Akami M, Niu CY. Identification of olfactory genes and functional analysis of BminCSP and BminOBP21 in Bactrocera minax. PLoS One 2019; 14:e0222193. [PMID: 31509572 PMCID: PMC6739056 DOI: 10.1371/journal.pone.0222193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/24/2019] [Indexed: 12/20/2022] Open
Abstract
Insects possess highly developed olfactory systems which play pivotal roles in its ecological adaptations, host plant location, and oviposition behavior. Bactrocera minax is an oligophagous tephritid insect whose host selection, and oviposition behavior largely depend on the perception of chemical cues. However, there have been very few reports on molecular components related to the olfactory system of B. minax. Therefore, the transcriptome of B. minax were sequenced in this study, with 1 candidate chemosensory protein (CSP), 21 candidate odorant binding proteins (OBPs), 53 candidate odorant receptors (ORs), 29 candidate ionotropic receptors (IRs) and 4 candidate sensory neuron membrane proteins (SNMPs) being identified. After that, we sequenced the candidate olfactory genes and performed phylogenetic analysis. qRT-PCR was used to express and characterize 9 genes in olfactory and non-olfactory tissues. Compared with GFP-injected fly (control), dsOBP21-treated B. minax and dsCSP-treated B. minax had lower electrophysiological response to D-limonene (attractant), suggesting the potential involvement of BminOBP21 and BminCSP genes in olfactory perceptions of the fly. Our study establishes the molecular basis of olfaction, tributary for further functional analyses of chemosensory processes in B. minax.
Collapse
Affiliation(s)
- Penghui Xu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaohui Wang
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
19
|
Senthilkumar R, Srinivasan R. Sex-specific spatial and temporal gene expressions of Pheromone biosynthesis activating neuropeptide (PBAN) and binding proteins (PBP/OBP) in Spoladea recurvalis. Sci Rep 2019; 9:3515. [PMID: 30837549 PMCID: PMC6401106 DOI: 10.1038/s41598-019-39822-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022] Open
Abstract
Spoladea recurvalis is one of the most destructive insect pests of amaranth, a leafy vegetable in both Asia and Africa. The present study characterized the pheromone biosynthesis-activating neuropeptide (DH-PBAN) and pheromone/odorant binding proteins in S. recurvalis. The open reading frame of 600 base pairs encodes a 200-amino acid protein possessing five neuropeptide motifs (DH, PBAN, α-, β-, and γ- subesophageal ganglion neuropeptides) and shares a characteristic conserved C-terminal pentapeptide fragment FXPRL. The full-length genome of Spre-DH-PBAN was 4,295 bp in length and comprised of six exons interspersed by five introns. Sequence homology and phylogenetic analysis of Spre-DH-PBAN have high similarity to its homologs in Crambidae of Lepidopteran order. We quantitatively measured the relative expression level (qRT_PCR) of Spre-DH-PBAN gene, the binding proteins such as odorant binding proteins (OBPs) and pheromone binding protein (PBPs) at different developmental stages. The results confirmed their role in recognition and chemoreception of sex pheromone components, and they were distinct, tissue- and sex-specific. This is the first report on the molecular analysis of PBAN gene and binding proteins, which can improve the understanding of molecular mechanisms of growth, development, and reproductive behavior of S. recurvalis, and may become effective targets for controlling this insect.
Collapse
|
20
|
Zhang YN, Du LX, Xu JW, Wang B, Zhang XQ, Yan Q, Wang G. Functional characterization of four sex pheromone receptors in the newly discovered maize pest Athetis lepigone. JOURNAL OF INSECT PHYSIOLOGY 2019; 113:59-66. [PMID: 30193842 DOI: 10.1016/j.jinsphys.2018.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Chemoreception systems play a crucial role in regulating key behavioral activities of insects, such as mating, oviposition, and foraging. Odorant receptors (ORs) trigger the transduction of chemical signals into electric signals, and are involved in the corresponding responses associated with odorant guidance behaviors. Pheromone receptors (PRs) of male adult insects are generally thought to function in the recognition of female sex pheromones, and are also important molecular targets for the development of behavioral inhibitors and insecticides. In this study, we successfully expressed and functionally analyzed four AlepPRs of Athetis lepigone in Xenopus oocytes using the two-electrode voltage-clamp method. The results demonstrated that AlepOR3 responded exclusively to the sex pheromone compound of A. lepigone, (Z)-7-dodecenyl acetate (Z7-12:Ac) (EC50 = 8.830 × 10-6 M), while AlepOR4 responded to all five compounds [(Z7-12:Ac, (Z)-8-dodecenyl acetate (Z8-12:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), (Z,E)-9,11-tetradecadienyl acetate (Z9,E11-14:Ac), and (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:Ac)] and had a higher response to Z9-14:Ac (EC50 = 2.243 × 10-5 M) than to Z7-12:Ac. However, AlepOR6 displayed a significantly higher response to a non-pheromone of A. lepigone, Z9,E12-14:Ac (EC50 = 7.145 × 10-6 M), than to the other four compounds. AlepOR5 displayed no responses to any of the pheromone compounds of A. lepigone, but responded exclusively to (Z)-11-hexadecenyl acetate (Z11-16:Ac) (EC50 = 7.870 × 10-6 M), a sex pheromone compound of other Noctuidae species. These findings can help explore the molecular mechanisms of sex pheromone recognition in A. lepigone and other moths, and develop broad-spectrum behavioral inhibitors and insecticides against different maize moths in future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Li-Xiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Qing Zhang
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|