1
|
Castellan I, Duménil C, Rehermann G, Eisenstecken D, Bianchi F, Robatscher P, Spitaler U, Favaro R, Schmidt S, Becher PG, Angeli S. Chemical and Electrophysiological Characterisation of Headspace Volatiles from Yeasts Attractive to Drosophila suzukii. J Chem Ecol 2024; 50:830-846. [PMID: 38691267 PMCID: PMC11543737 DOI: 10.1007/s10886-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Chemical control of Drosophila suzukii (Diptera: Drosophilidae) based on the use of insecticides is particularly challenging as the insect attacks ripening fruits shortly before harvest. An alternative strategy may rely on the use of yeasts as phagostimulants and baits, applied on canopy as attract-and-kill formulations. The aim of this research was to identify the most attractive among six yeast species for D. suzukii: Saccharomyces cerevisiae, Hanseniaspora uvarum, Clavispora santaluciae, Saccharomycopsis vini, Issatchenkia terricola, and Metschnikowia pulcherrima. The volatile profile of C. santaluciae was described for the first time. Behavioural experiments identified H. uvarum and S. vini as the most attractive yeasts. The characterization of yeast headspace volatiles using direct headspace (DHS) and solid-phase microextraction (SPME) revealed several strain-specific compounds. With DHS injection, 19 volatiles were characterised, while SPME revealed 71 compounds constituting the yeast headspace. Both analyses revealed terpenoids including β-ocimene, citronellol, (Z)-geraniol (nerol), and geranial as distinct constituents of S. vini. H. uvarum and S. vini were further investigated using closed-loop stripping analysis (CSLA) and electroantennography. Out of 14 compounds quantified by CSLA, ethyl acetate, isoamyl acetate, β-myrcene, benzaldehyde and linalool were detected by D. suzukii antennae and might generate the strong attractiveness of S. vini and H. uvarum. Our results highlight a strong attraction of D. suzukii to various yeasts associated with both the flies and their habitat and demonstrate how different sampling methods can impact the results of volatile compound characterization. It remains to be demonstrated whether the distinct attraction is based on special adaptations to certain yeasts and to what extent the metabolites causing attraction are interchangeable.
Collapse
Affiliation(s)
- Irene Castellan
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claire Duménil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guillermo Rehermann
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniela Eisenstecken
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Auer-Ora, Italy
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Auer-Ora, Italy
| | - Paul G Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
2
|
Dimitrov R, Gouliamova D, Guéorguiev B, Smith M, Groenewald M, Boekhout T. First DNA Barcoding Survey in Bulgaria Unveiled Huge Diversity of Yeasts in Insects. INSECTS 2024; 15:566. [PMID: 39194771 DOI: 10.3390/insects15080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
In this study, we conducted a comprehensive survey aimed at assessing the diversity of yeast species inhabiting the guts of various insect species collected mainly from two Bulgarian National Parks, namely, Rila, and Pirin. The insect specimens encompass a broad taxonomic spectrum, including representatives from Coleoptera, Orthoptera, Lepidoptera, Hymenoptera, Dermaptera, Isopoda, and Collembola. Yeast strains were identified with DNA barcoding using the ribosomal markers, specifically, the D1/D2 domains of the ribosomal large subunit (LSU) and the internal transcribed spacers regions ITS 1 + 2 (ITS). The analysis unveiled the presence of 89 ascomycetous and 18 basidiomycetous yeast isolates associated with the insect specimens. Furthermore, our study identified 18 hitherto unknown yeast species.
Collapse
Affiliation(s)
- Roumen Dimitrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, G. Bonchev 8, 1113 Sofia, Bulgaria
| | - Dilnora Gouliamova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Borislav Guéorguiev
- National Museum of Natural History, Bulgarian Academy of Sciences, bul. "Tsar Osvoboditel" 1, 1000 Sofia, Bulgaria
| | - Maudy Smith
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teun Boekhout
- The Yeast Foundation, 1015 JR Amsterdam, The Netherlands
- College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Pascacio-Villafán C, Cohen AC. How Rearing Systems for Various Species of Flies Benefit Humanity. INSECTS 2023; 14:553. [PMID: 37367369 DOI: 10.3390/insects14060553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Flies (Diptera) have played a prominent role in human history, and several fly species are reared at different scales and for different beneficial purposes worldwide. Here, we review the historical importance of fly rearing as a foundation for insect rearing science and technology and synthesize information on the uses and rearing diets of more than 50 fly species in the families Asilidae, Calliphoridae, Coelopidae, Drosophilidae, Ephydridae, Muscidae, Sarcophagidae, Stratiomyidae, Syrphidae, Tachinidae, Tephritidae, and Tipulidae. We report more than 10 uses and applications of reared flies to the well-being and progress of humanity. We focus on the fields of animal feed and human food products, pest control and pollination services, medical wound therapy treatments, criminal investigations, and on the development of several branches of biology using flies as model organisms. We highlight the relevance of laboratory-reared Drosophila melanogaster Meigen as a vehicle of great scientific discoveries that have shaped our understanding of many biological systems, including the genetic basis of heredity and of terrible diseases such as cancer. We point out key areas of fly-rearing research such as nutrition, physiology, anatomy/morphology, genetics, genetic pest management, cryopreservation, and ecology. We conclude that fly rearing is an activity with great benefits for human well-being and should be promoted for future advancement in diverse and innovative methods of improving existing and emerging problems to humanity.
Collapse
Affiliation(s)
- Carlos Pascacio-Villafán
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Xalapa 91073, Veracruz, Mexico
| | - Allen Carson Cohen
- Insect Rearing Education and Research, Department of Entomology & Plant Pathology, NC State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Villa SM, Chen JZ, Kwong Z, Acosta A, Vega NM, Gerardo NM. Specialized acquisition behaviors maintain reliable environmental transmission in an insect-microbial mutualism. Curr Biol 2023:S0960-9822(23)00724-8. [PMID: 37385254 DOI: 10.1016/j.cub.2023.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
Understanding how horizontally transmitted mutualisms are maintained is a major focus of symbiosis research.1,2,3,4 Unlike vertical transmission, hosts that rely on horizontal transmission produce symbiont-free offspring that must find and acquire their beneficial microbes from the environment. This transmission strategy is inherently risky since hosts may not obtain the right symbiont every generation. Despite these potential costs, horizontal transmission underlies stable mutualisms involving a large diversity of both plants and animals.5,6,7,8,9 One largely unexplored way horizontal transmission is maintained is for hosts to evolve sophisticated mechanisms to consistently find and acquire specific symbionts from the environment. Here, we examine this possibility in the squash bug Anasa tristis, an insect pest that requires bacterial symbionts in the genus Caballeronia10 for survival and development.11 We conduct a series of behavioral and transmission experiments that track strain-level transmission in vivo among individuals in real-time. We demonstrate that nymphs can accurately find feces from adult bugs in both the presence and absence of those adults. Once nymphs locate the feces, they deploy feeding behavior that results in nearly perfect symbiont acquisition success. We further demonstrate that nymphs can locate and feed on isolated, cultured symbionts in the absence of feces. Finally, we show this acquisition behavior is highly host specific. Taken together, our data describe not only the evolution of a reliable horizontal transmission strategy, but also a potential mechanism that drives patterns of species-specific microbial communities among closely related, sympatric host species.
Collapse
Affiliation(s)
- Scott M Villa
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA; Department of Biology, Davidson College, 209 Ridge Rd., Davidson, NC 28035, USA.
| | - Jason Z Chen
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Zeeyong Kwong
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Alice Acosta
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Vega
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Gerardo
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Baig F, Farnier K, Ishtiaq M, Cunningham JP. Volatiles produced by symbiotic yeasts improve trap catches of Carpophilus davidsoni (Coleoptera: Nitidulidae): an important pest of stone fruits in Australia. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:505-512. [PMID: 36881679 DOI: 10.1093/jee/toad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 05/30/2023]
Abstract
Carpophilus davidsoni (Dobson) is an important pest of Australian stone fruit. Current management practices for this beetle include the use of a trap that contains an attractant lure comprised of aggregation pheromones and a 'co-attractant' mixture of volatiles from fruit juice fermented using Baker's yeast, Saccharomyces cerevisiae (Hansen). We explored whether volatiles from yeasts Pichia kluyveri (Bedford) and Hanseniaspora guilliermondii (Pijper), which are closely associated with C. davidsoni in nature, might improve the effectiveness of the co-attractant. Field trials using live yeast cultures revealed that P. kluyveri trapped higher numbers of C. davidsoni compared to H. guilliermondii, and comparative GC-MS of volatile emissions of the two yeasts led to the selection of isoamyl acetate and 2-phenylethyl acetate for further investigation. In subsequent field trials, trap catches of C. davidsoni were significantly increased when 2-phenylethyl acetate was added to the co-attractant, compared to when isoamyl acetate was added, or both isoamyl acetate and 2-phenylethyl acetate. We also tested different concentrations of ethyl acetate in the co-attractant (the only ester in the original lure) and found contrasting results in cage bioassays and field trails. Our study demonstrates how exploring volatile emissions from microbes that are ecologically associated with insect pests can result in more potent lures for use in integrated pest management strategies. Results from laboratory bioassays screening volatile compounds should be treated with caution when making inferences regarding attraction under field conditions.
Collapse
Affiliation(s)
- Farrukh Baig
- Queensland University of Technology, Gardens Point, Brisbane, QLD 4001, Australia
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC 3083, Australia
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Kevin Farnier
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Muhammad Ishtiaq
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
7
|
Ren XM, Yang YS, Guo RX, Wang HR, Qi XW, Cao S, Lai YN, Zhang GJ, Niu C. Yeast mediates the interspecific interaction between introduced Bactrocera dorsalis and indigenous Bactrocera minax. PEST MANAGEMENT SCIENCE 2023; 79:428-436. [PMID: 36177948 DOI: 10.1002/ps.7211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Host plant-microbe associations mediate interspecific interactions amongst herbivorous insects. However, this theory has rarely been ecologically verified in tephritid fruit flies. Research on this subject can not only help predict tephritid species invasion and occurrence patterns, but also develop potential novel lures for the control of the tephritid fruit fly pests. Recently, we observed mixed infestation of Bactrocera minax and Bactrocera dorsalis larvae in citrus orchards, which prompted us to explore the underlying mechanism. RESULTS Following oviposition by B. minax, the yeast Pichia kluyveri translocated to and proliferated inside the citrus fruit. The level of d-limonene released from citrus fruits containing P. kluyveri was 27 times higher than that released from healthy fruits. Mature B. dorsalis females were attracted to d-limonene and oviposited into fruits previously infested by B. minax. Furthermore, the interspecific interaction between B. dorsalis and B. minax within the same fruit significantly decreased the number of surviving larvae and pupal weight in B. dorsalis, but its effect on B. minax was weaker. CONCLUSION In the studied interspecific interaction, B. minax occupies the dominant position, implying ecological significance for this species in terms of consolidating its own niche and inhibiting the invasion of exotic species. To our best knowledge, this is the first report from both ecological and physiological perspectives on a symbiotic yeast mediating the interaction between B. minax and B. dorsalis through altering fruit volatiles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue-Ming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi-Shi Yang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Ru-Xin Guo
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Ran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue-Wei Qi
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan-Nan Lai
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Gui-Jian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Amores GR, Zepeda-Ramos G, García-Fajardo LV, Hernández E, Guillén-Navarro K. The gut microbiome analysis of Anastrepha obliqua reveals inter-kingdom diversity: bacteria, fungi, and archaea. Arch Microbiol 2022; 204:579. [PMID: 36029340 DOI: 10.1007/s00203-022-03207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
The fruit fly Anastrepha obliqua is an economically important pest. The sterile insect technique to control it involves mass production and release of sterile flies to reduce the reproduction of the wild population. As noted in different Tephritidae, the performance of sterile males may be affected by the assimilation of nutrients under mass-rearing conditions. In the wild, the fly's life cycle suggests the acquisition of different organisms that could modulate its fitness and physiology. For A. obliqua, there is no information regarding microorganisms other than bacteria. This study analyzed bacteria, fungal, and archaea communities in the A. obliqua gut through denaturing gradient gel electrophoresis (DGGE) profiles of 16S (using a different set of primers for bacteria and archaea) and 18S ribosomal DNA markers. We found that wild flies presented higher microbial diversity related to fructose assimilation than laboratory species, suggesting that microorganisms have led to a specialized metabolism to process nutrients associated with an artificial diet. We identified species that have not been previously described in this fruit fly, especially actinobacteria and archaea, by employing different primer sets aimed at the same molecular marker but targeting diverse hypervariable regions of 16S rDNA. The possibility that Archaea affect fly fitness should not be ignored. This report on the intestinal microbial (bacteria, archaea, and fungi) composition of A. obliqua contributes to our understanding of the role of microorganisms in the development and physiology of the flies.
Collapse
Affiliation(s)
- G R Amores
- Laboratorio de Biotecnología Ambiental y Agroecológica, Grupo Académico de Biotecnología Ambiental, El Colegio de La Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico
| | - G Zepeda-Ramos
- Laboratorio de Biotecnología Ambiental y Agroecológica, Grupo Académico de Biotecnología Ambiental, El Colegio de La Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico
| | - L V García-Fajardo
- Laboratorio de Biotecnología Ambiental y Agroecológica, Grupo Académico de Biotecnología Ambiental, El Colegio de La Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico
| | - Emilio Hernández
- Programa Moscafrut DGSV-SENASICA-SAGARPA, Subdirección de Desarrollo de Métodos, Chiapas, Mexico
| | - K Guillén-Navarro
- Laboratorio de Biotecnología Ambiental y Agroecológica, Grupo Académico de Biotecnología Ambiental, El Colegio de La Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico.
| |
Collapse
|
9
|
Guo Q, Yao Z, Cai Z, Bai S, Zhang H. Gut fungal community and its probiotic effect on Bactrocera dorsalis. INSECT SCIENCE 2022; 29:1145-1158. [PMID: 34918476 DOI: 10.1111/1744-7917.12986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) is a destructive horticultural pest which causes considerable economic losses every year. A collection of microorganisms live within the B. dorsalis gut, and they are involved in its development, physiology, and behavior. However, knowledge regarding the composition and function of the gut mycobiota in B. dorsalis are still limited. Here, we comprehensively characterized the gut mycobiota in B. dorsalis across different developmental stages. High-throughput sequencing results showed a significant difference in fungal species abundance and diversity among different developmental stages of B. dorsalis. Quantitative polymerase chain reaction and culture-dependent methods showed that yeast species was the dominant group in the larval stage. We isolated 13 strains of yeast from the larval gut, and found that GF (germ-free) larvae mono-associated with strain Hanseniaspora uvarum developed faster than those mono-associated with other tested fungal strains. Supplementing the larval diet with H. uvarum fully rescued B. dorsalis development, shortened the larval developmental time, and increased adult wing lengths, as well as the body sizes and weights of both pupae and adults. Thus, our study highlights the close interactions between gut fungi, especially H. uvarum, and B. dorsalis. These findings can be applied to the sterile insect technique program to promote host development during mass insect rearing.
Collapse
Affiliation(s)
- Qiongyu Guo
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Bai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Mutualism between Gut-Borne Yeasts and Their Host, Thaumatotibia leucotreta, and Potential Usefulness in Pest Management. INSECTS 2022; 13:insects13030243. [PMID: 35323541 PMCID: PMC8954841 DOI: 10.3390/insects13030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Thaumatotibia leucotreta is endemic to southern Africa and is highly significant for various fruit industries, including the South African citrus industry, due to its classification as a phytosanitary pest. Mutualistic associations between C. pomonella, closely related to T. leucotreta, and yeasts have previously been described and reported to reduce larval mortality and enhance larval development. Here, we determined which yeast species occur naturally in the gut of T. leucotreta larvae and investigated whether any of the isolated yeast species affect their behaviour and development. Navel oranges infested with T. leucotreta larvae were collected from geographically distinct provinces in South Africa, and the larvae were processed for analysis of naturally occurring associated yeasts. Six yeast species were isolated and identified from the guts of these T. leucotreta larvae via PCR amplification and sequencing of the ITS region of rDNA and D1/D2 domain of large ribosomal subunit. Larval development and attraction assays were conducted, and T. leucotreta larvae that fed on Navel oranges inoculated with yeast had accelerated developmental periods and reduced mortality rates. Neonate T. leucotreta were also attracted to YPD broth cultures inoculated with yeast for feeding. Oviposition preference assays were conducted with adult T. leucotreta females. Navel oranges inoculated with yeast were shown to influence the oviposition preference of adult females. Yeasts harbour the potential for use in biocontrol, especially when combined with other well-established control methods. This study provides a platform for future research into incorporating yeast with current biological control agents as a novel option for controlling T. leucotreta in the field.
Collapse
|
11
|
Aluja M, Zamora-Briseño JA, Pérez-Brocal V, Altúzar-Molina A, Guillén L, Desgarennes D, Vázquez-Rosas-Landa M, Ibarra-Laclette E, Alonso-Sánchez AG, Moya A. Metagenomic Survey of the Highly Polyphagous Anastrepha ludens Developing in Ancestral and Exotic Hosts Reveals the Lack of a Stable Microbiota in Larvae and the Strong Influence of Metamorphosis on Adult Gut Microbiota. Front Microbiol 2021; 12:685937. [PMID: 34413837 PMCID: PMC8367737 DOI: 10.3389/fmicb.2021.685937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
We studied the microbiota of a highly polyphagous insect, Anastrepha ludens (Diptera: Tephritidae), developing in six of its hosts, including two ancestral (Casimiroa edulis and C. greggii), three exotic (Mangifera indica cv. Ataulfo, Prunus persica cv. Criollo, and Citrus x aurantium) and one occasional host (Capsicum pubescens cv. Manzano), that is only used when extreme drought conditions limit fruiting by the common hosts. One of the exotic hosts (“criollo” peach) is rife with polyphenols and the occasional host with capsaicinoids exerting high fitness costs on the larvae. We pursued the following questions: (1) How is the microbial composition of the larval food related to the composition of the larval and adult microbiota, and what does this tell us about transience and stability of this species’ gut microbiota? (2) How does metamorphosis affect the adult microbiota? We surveyed the microbiota of the pulp of each host fruit, as well as the gut microbiota of larvae and adult flies and found that the gut of A. ludens larvae lacks a stable microbiota, since it was invariably associated with the composition of the pulp microbiota of the host plant species studied and was also different from the microbiota of adult flies indicating that metamorphosis filters out much of the microbiota present in larvae. The microbiota of adult males and females was similar between them, independent of host plant and was dominated by bacteria within the Enterobacteriaceae. We found that in the case of the “toxic” occasional host C. pubescens the microbiota is enriched in potentially deleterious genera that were much less abundant in the other hosts. In contrast, the pulp of the ancestral host C. edulis is enriched in several bacterial groups that can be beneficial for larval development. We also report for the first time the presence of bacteria within the Arcobacteraceae family in the gut microbiota of A. ludens stemming from C. edulis. Based on our findings, we conclude that changes in the food-associated microbiota dictate major changes in the larval microbiota, suggesting that most larval gut microbiota is originated from the food.
Collapse
Affiliation(s)
- Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Vicente Pérez-Brocal
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Mirna Vázquez-Rosas-Landa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Alexandro G Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,Instituto de Biología Integrativa de Sistemas (I2Sysbio), Universidad de Valencia-CSIC, Valencia, Spain
| |
Collapse
|
12
|
Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae. Sci Rep 2020; 10:16550. [PMID: 33024226 PMCID: PMC7538879 DOI: 10.1038/s41598-020-73649-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bactrocera tryoni (Froggatt), the Queensland fruit fly (Qfly), is a highly polyphagous tephritid fly that is widespread in Eastern Australia. Qfly physiology is closely linked with its fungal associates, with particular relationship between Qfly nutrition and yeast or yeast-like fungi. Despite animal-associated fungi typically occurring in multi-species communities, Qfly studies have predominately involved the culture and characterisation of single fungal isolates. Further, only two studies have investigated the fungal communities associated with Qfly, and both have used culture-dependant techniques that overlook non-culturable fungi and hence under-represent, and provide a biased interpretation of, the overall fungal community. In order to explore a potentially hidden fungal diversity and complexity within the Qfly mycobiome, we used culture-independent, high-throughput Illumina sequencing techniques to comprehensively, and holistically characterized the fungal community of Qfly larvae and overcome the culture bias. We collected larvae from a range of fruit hosts along the east coast of Australia, and all had a mycobiome dominated by ascomycetes. The most abundant fungal taxa belonged to the genera Pichia (43%), Candida (20%), Hanseniaspora (10%), Zygosaccharomyces (11%) and Penicillium (7%). We also characterized the fungal communities of fruit hosts, and found a strong degree of overlap between larvae and fruit host communities, suggesting that these communities are intimately inter-connected. Our data suggests that larval fungal communities are acquired from surrounding fruit flesh. It is likely that the physiological benefits of Qfly exposure to fungal communities is primarily due to consumption of these fungi, not through syntrophy/symbiosis between fungi and insect ‘host’.
Collapse
|
13
|
Januário da Costa Neto D, Benevides de Morais P. The vectoring of Starmerella species and other yeasts by stingless bees in a Neotropical savanna. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Nguyen B, Than A, Dinh H, Morimoto J, Ponton F. Parental Microbiota Modulates Offspring Development, Body Mass and Fecundity in a Polyphagous Fruit Fly. Microorganisms 2020; 8:E1289. [PMID: 32846933 PMCID: PMC7563405 DOI: 10.3390/microorganisms8091289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The commensal microbiota is a key modulator of animal fitness, but little is known about the extent to which the parental microbiota influences fitness-related traits of future generations. We addressed this gap by manipulating the parental microbiota of a polyphagous fruit fly (Bactrocera tryoni) and measuring offspring developmental traits, body composition, and fecundity. We generated three parental microbiota treatments where parents had a microbiota that was non-manipulated (control), removed (axenic), or removed-and-reintroduced (reinoculation). We found that the percentage of egg hatching, of pupal production, and body weight of larvae and adult females were lower in offspring of axenic parents compared to that of non-axenic parents. The percentage of partially emerged adults was higher, and fecundity of adult females was lower in offspring of axenic parents relative to offspring of control and reinoculated parents. There was no significant effect of parental microbiota manipulation on offspring developmental time or lipid reserve. Our results reveal transgenerational effects of the parental commensal microbiota on different aspects of offspring life-history traits, thereby providing a better understanding of the long-lasting effects of host-microbe interactions.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Anh Than
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- Department of Entomology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| |
Collapse
|
15
|
Tasnin MS, Silva R, Merkel K, Clarke AR. Response of Male Queensland Fruit Fly (Diptera: Tephritidae) to Host Fruit Odors. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1888-1893. [PMID: 32409822 DOI: 10.1093/jee/toaa084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 06/11/2023]
Abstract
The surveillance and management of Dacini fruit fly pests are commonly split by fly gender: male trapping focuses on the dacine 'male-lures', whereas female trapping focuses on lures based on host-fruit volatiles. Although the males of several Dacini species have been reported to be attracted to host fruit volatiles, the option of using host-fruit traps for males has, to date, been ignored. Males of the cue-lure responsive fruit fly Bactrocera tryoni (Froggatt) have been recorded as responding to host-fruit volatile blends, but it is not known how frequently this happens, if it is age-dependent, or the strength of the response relative to cue-lure throughout the year. Here, we conducted an olfactometer experiment to test the lifetime (weeks 1-15) response of B. tryoni males to the odor of tomato, a known host of this fly, and compare catches of wild males to tomato-based traps and cue-lure traps in the field. Bactrocera tryoni males started to respond to tomato odor as they sexually matured (2 to 3 wk olds) and thereafter showed consistent olfactory response until advanced age (15 wk). In the field, wild males were captured by tomato-based traps throughout the year at a level not significantly different from cue-lure traps. The reason for the consistent B. tryoni male response to host fruit odor at this stage is not known, but it certainly occurs at a level greater than can be continued to be ignored for both basic and applied research.
Collapse
Affiliation(s)
- Mst Shahrima Tasnin
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Rehan Silva
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Katharina Merkel
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
16
|
Meriggi N, Di Paola M, Cavalieri D, Stefanini I. Saccharomyces cerevisiae - Insects Association: Impacts, Biogeography, and Extent. Front Microbiol 2020; 11:1629. [PMID: 32760380 PMCID: PMC7372139 DOI: 10.3389/fmicb.2020.01629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last few years, an increasing number of studies have reported the existence of an association between the budding yeast Saccharomyces cerevisiae and insects. The discovery of this relationship has called into question the hypothesis that S. cerevisiae is unable to survive in nature and that the presence of S. cerevisiae strains in natural specimens is the result of contamination from human-related environments. S. cerevisiae cells benefit from this association as they find in the insect intestine a shelter, but also a place where they can reproduce themselves through mating, the latter being an event otherwise rarely observed in natural environments. On the other hand, insects also take advantage in hosting S. cerevisiae as they rely on yeasts as nutriment to properly develop, to localize suitable food, and to enhance their immune system. Despite the relevance of this relationship on both yeast and insect ecology, we are still far from completely appreciating its extent and effects. It has been shown that other yeasts are able to colonize only one or a few insect species. Is it the same for S. cerevisiae cells or is this yeast able to associate with any insect? Similarly, is this association geographically or topographically limited in areas characterized by specific physical features? With this review, we recapitulate the nature of the S. cerevisiae-insect association, disclose its extent in terms of geographical distribution and species involved, and present YeastFinder, a cured online database providing a collection of information on this topic.
Collapse
Affiliation(s)
| | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | | | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Majumder R, Sutcliffe B, Taylor PW, Chapman TA. Microbiome of the Queensland Fruit Fly through Metamorphosis. Microorganisms 2020; 8:microorganisms8060795. [PMID: 32466500 PMCID: PMC7356580 DOI: 10.3390/microorganisms8060795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Bactrocera tryoni (Froggatt) (Queensland fruit fly, or “Qfly”) is a highly polyphagous tephritid fruit fly and a serious economic pest in Australia. Qfly biology is intimately linked to the bacteria and fungi of its microbiome. While there are numerous studies of the microbiome in larvae and adults, the transition of the microbiome through the pupal stage remains unknown. To address this knowledge gap, we used high-throughput Next-Generation Sequencing (NGS) to examine microbial communities at each developmental stage in the Qfly life cycle, targeting the bacterial 16S rRNA and fungal ITS regions. We found that microbial communities were similar at the larval and pupal stage and were also similar between adult males and females, yet there were marked differences between the larval and adult stages. Specific bacterial and fungal taxa are present in the larvae and adults (fed hydrolyzed yeast with sugar) which is likely related to differences in nutritional biology of these life stages. We observed a significant abundance of the Acetobacteraceae at the family level, both in the larval and pupal stages. Conversely, Enterobacteriaceae was highly abundant (>80%) only in the adults. The majority of fungal taxa present in Qfly were yeasts or yeast-like fungi. In addition to elucidating changes in the microbiome through developmental stages, this study characterizes the Qfly microbiome present at the establishment of laboratory colonies as they enter the domestication process.
Collapse
Affiliation(s)
- Rajib Majumder
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
- Correspondence:
| | - Brodie Sutcliffe
- Department of Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
| | - Toni A. Chapman
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| |
Collapse
|
18
|
Vitanović E, Aldrich JR, Boundy-Mills K, Čagalj M, Ebeler SE, Burrack H, Zalom FG. Olive Fruit Fly, Bactrocera oleae (Diptera: Tephritidae), Attraction to Volatile Compounds Produced by Host and Insect-Associated Yeast Strains. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:752-759. [PMID: 31879768 DOI: 10.1093/jee/toz341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 06/10/2023]
Abstract
The olive fruit fly, Bactrocera oleae (Rossi), is one of the most damaging insect pests of olives worldwide, requiring the use of insecticides for fruit protection in many orchards. Olive fruit flies are attracted to volatile composunds, including a female-produced pheromone, and host-plant and bacterial volatiles. Preliminary laboratory bioassays were conducted for olive fruit fly attraction to over 130 yeast strains from among 400 that were isolated from B. oleae adults and larvae or other insects, infested olives, and potential feeding sites. Kuraishia capsulata, Scheffersomyces ergatensis, Peterozyma xylosa, Wickerhamomyces subpelliculosus, and Lachancea thermotolerans appeared to attract B. oleae as well or better than did torula yeast pellets (Cyberlindnera jadinii; syn. Candida utilis). Volatile compounds emitted by these yeast strains were chemically identified, and included isobutanol, isoamyl alcohol, 2-phenethyl alcohol, isobutyl acetate, and 2-phenethyl acetate. The behavioral response of B. oleae adults to these volatile compounds at three concentrations was tested in a laboratory Y-tube olfactometer. The same volatile compounds were also tested in the field. Isoamyl alcohol was more attractive than the other compounds tested in both laboratory and field bioassays. Isobutanol was not attractive to B. oleae in either laboratory bioassay or field bioassay. Identifying yeast volatiles attractive to the olive fruit fly may lead to development of a more effective lure for detection, monitoring, and possibly control of B. oleae.
Collapse
Affiliation(s)
- Elda Vitanović
- Department of Entomology and Nematology, UC Davis, Davis, CA
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Jeffrey R Aldrich
- Department of Entomology and Nematology, UC Davis, Davis, CA
- Consulting LLC, Marcell, MN
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, Phaff Yeast Collection, UC Davis One Shields Avenue, Davis, CA
| | - Marin Čagalj
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Susan E Ebeler
- Department of Viticulture and Enology, UC Davis, Davis, CA
| | - Hannah Burrack
- Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Frank G Zalom
- Department of Entomology and Nematology, UC Davis, Davis, CA
| |
Collapse
|
19
|
Lukša J, Vepštaitė-Monstavičė I, Apšegaitė V, Blažytė-Čereškienė L, Stanevičienė R, Strazdaitė-Žielienė Ž, Ravoitytė B, Aleknavičius D, Būda V, Mozūraitis R, Servienė E. Fungal Microbiota of Sea Buckthorn Berries at Two Ripening Stages and Volatile Profiling of Potential Biocontrol Yeasts. Microorganisms 2020; 8:microorganisms8030456. [PMID: 32210172 PMCID: PMC7143951 DOI: 10.3390/microorganisms8030456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sea buckthorn, Hippophae rhamnoides L., has considerable potential for landscape reclamation, food, medicinal, and cosmetics industries. In this study, we analyzed fungal microorganism populations associated with carposphere of sea buckthorn harvested in Lithuania. An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to reveal the ripening-affected fungal community alterations on sea buckthorn berries. According to alpha and beta diversity analyses, depending on the ripening stage, sea buckthorn displayed significantly different fungal communities. Unripe berries were shown to be prevalent by Aureobasidium, Taphrina, and Cladosporium, while ripe berries were dominated by Aureobasidium and Metschnikowia. The selected yeast strains from unripe and mature berries were applied for volatile organic compounds identification by gas chromatography and mass spectrometry techniques. It was demonstrated that the patterns of volatiles of four yeast species tested were distinct from each other. The current study for the first time revealed the alterations of fungal microorganism communities colonizing the surface of sea buckthorn berries at different ripening stages. The novel information on specific volatile profiles of cultivable sea buckthorn-associated yeasts with a potential role in biocontrol is important for the development of the strategies for plant cultivation and disease management, as well as for the improvement of the quality and preservation of the postharvest berries. Management of the fungal microorganisms present on the surface of berries might be a powerful instrument for control of phytopathogenic and potentially antagonistic microorganisms affecting development and quality of the berries.
Collapse
Affiliation(s)
- Juliana Lukša
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Iglė Vepštaitė-Monstavičė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Živilė Strazdaitė-Žielienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Bazilė Ravoitytė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Vincas Būda
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
- Correspondence: ; Tel.: +370-5-272-93-63
| |
Collapse
|
20
|
Baig F, Farnier K, Piper AM, Speight R, Cunningham JP. Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species. J Chem Ecol 2020; 46:675-687. [DOI: 10.1007/s10886-020-01167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
|
21
|
Morimoto J, Nguyen B, Tabrizi ST, Lundbäck I, Taylor PW, Ponton F, Chapman TA. Commensal microbiota modulates larval foraging behaviour, development rate and pupal production in Bactrocera tryoni. BMC Microbiol 2019; 19:286. [PMID: 31870299 PMCID: PMC6929265 DOI: 10.1186/s12866-019-1648-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Backround Commensal microbes can promote survival and growth of developing insects, and have important fitness implications in adulthood. Insect larvae can acquire commensal microbes through two main routes: by vertical acquisition from maternal deposition of microbes on the eggshells and by horizontal acquisition from the environment where the larvae develop. To date, however, little is known about how microbes acquired through these different routes interact to shape insect development. In the present study, we investigated how vertically and horizontally acquired microbiota influence larval foraging behaviour, development time to pupation and pupal production in the Queensland fruit fly (‘Qfly’), Bactrocera tryoni. Results Both vertically and horizontally acquired microbiota were required to maximise pupal production in Qfly. Moreover, larvae exposed to both vertically and horizontally acquired microbiota pupated sooner than those exposed to no microbiota, or only to horizontally acquired microbiota. Larval foraging behaviour was also influenced by both vertically and horizontally acquired microbiota. Larvae from treatments exposed to neither vertically nor horizontally acquired microbiota spent more time overall on foraging patches than did larvae of other treatments, and most notably had greater preference for diets with extreme protein or sugar compositions. Conclusion The integrity of the microbiota early in life is important for larval foraging behaviour, development time to pupation, and pupal production in Qflies. These findings highlight the complexity of microbial relations in this species, and provide insights to the importance of exposure to microbial communities during laboratory- or mass-rearing of tephritid fruit flies.
Collapse
Affiliation(s)
- Juliano Morimoto
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia. .,Programa de Pós-Graduação em Ecologia e Conservação, Federal University of Paraná, Curitiba, 19031, CEP: 81531-990, Brazil.
| | - Binh Nguyen
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Shabnam T Tabrizi
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Ida Lundbäck
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Phillip W Taylor
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Toni A Chapman
- The Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Meneagle, NSW, 2568, Australia
| |
Collapse
|
22
|
Abstract
BACKGROUND The Sterile Insect Technique (SIT) is being applied for the management of economically important pest fruit flies (Diptera: Tephritidae) in a number of countries worldwide. The success and cost effectiveness of SIT depends upon the ability of mass-reared sterilized male insects to successfully copulate with conspecific wild fertile females when released in the field. METHODS We conducted a critical analysis of the literature about the tephritid gut microbiome including the advancement of methods for the identification and characterization of microbiota, particularly next generation sequencing, the impacts of irradiation (to induce sterility of flies) and fruit fly rearing, and the use of probiotics to manipulate the fruit fly gut microbiota. RESULTS Domestication, mass-rearing, irradiation and handling, as required in SIT, may change the structure of the fruit flies' gut microbial community compared to that of wild flies under field conditions. Gut microbiota of tephritids are important in their hosts' development, performance and physiology. Knowledge of how mass-rearing and associated changes of the microbial community impact the functional role of the bacteria and host biology is limited. Probiotics offer potential to encourage a gut microbial community that limits pathogens, and improves the quality of fruit flies. CONCLUSIONS Advances in technologies used to identify and characterize the gut microbiota will continue to expand our understanding of tephritid gut microbial diversity and community composition. Knowledge about the functions of gut microbes will increase through the use of gnotobiotic models, genome sequencing, metagenomics, metatranscriptomics, metabolomics and metaproteomics. The use of probiotics, or manipulation of the gut microbiota, offers significant opportunities to enhance the production of high quality, performing fruit flies in operational SIT programs.
Collapse
|
23
|
Mozūraitis R, Aleknavičius D, Vepštaitė-Monstavičė I, Stanevičienė R, Emami SN, Apšegaitė V, Radžiutė S, Blažytė-Čereškienė L, Servienė E, Būda V. Hippophae rhamnoides berry related Pichia kudriavzevii yeast volatiles modify behaviour of Rhagoletis batava flies. J Adv Res 2019; 21:71-77. [PMID: 32071775 PMCID: PMC7015468 DOI: 10.1016/j.jare.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Pichia kudriavzevii yeasts were isolated from ripe Hippophae rhamnoides berries. Thirty-five yeast volatiles were identified from the headspace of P. kudriavzevii. Esters and alcohols contributed by 32% and 66% to the total blend amount. Ten of those volatiles elicited antenna responses of Rhagoletis batava flies. Mixture of synthetic olfactory active compounds attracted R. batava males and females.
Olfactory cues have a large impact on insect behaviour and fitness consequently showing potential in pest management. Yeast released volatiles are used by insects as olfactory cues for finding feeding and oviposition sites. The yeast strain SB-16-15 was isolated from spontaneous fermentation of Hippophae rhamnoides berries and identified as Pichia kudriavzevii. Thirty-nine volatiles were sampled from the headspace of P. kudriavzevii yeasts by solid phase micro extraction and identified by gas chromatography and mass spectrometry techniques. Ten of those volatiles elicited antennal responses of Rhagoletis batava flies, one of the most serious pest of H. rhamnoides berries. In the two-choice experiments, R. batava flies preferred the mixture composed of nine synthetic compounds analogous to electroanntenographic active volatiles released by the yeasts compare to the solvent control. Female flies were significantly attracted to the mixture at the concentration 0.1 µL mL−1 and showed no preference to the mixture at the concentration 1 µL mL−1 versus control while males reacted positively to the synthetic blend at the concentration 1 µL mL−1. Herein, for the first time, behaviour modifying effect of H. rhamnoides berry related yeast volatiles was shown suggesting these semiochemicals have potential in use for monitoring R. batava flies.
Collapse
Affiliation(s)
- Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Iglė Vepštaitė-Monstavičė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Seyedeh Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE 106 91 Stockholm, Sweden
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Vincas Būda
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
24
|
Murgier J, Everaerts C, Farine JP, Ferveur JF. Live yeast in juvenile diet induces species-specific effects on Drosophila adult behaviour and fitness. Sci Rep 2019; 9:8873. [PMID: 31222019 PMCID: PMC6586853 DOI: 10.1038/s41598-019-45140-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
The presence and the amount of specific yeasts in the diet of saprophagous insects such as Drosophila can affect their development and fitness. However, the impact of different yeast species in the juvenile diet has rarely been investigated. Here, we measured the behavioural and fitness effects of three live yeasts (Saccharomyces cerevisiae = SC; Hanseniaspora uvarum = HU; Metschnikowia pulcherrima = MP) added to the diet of Drosophila melanogaster larvae. Beside these live yeast species naturally found in natural Drosophila populations or in their food sources, we tested the inactivated "drySC" yeast widely used in Drosophila research laboratories. All flies were transferred to drySC medium immediately after adult emergence, and several life traits and behaviours were measured. These four yeast diets had different effects on pre-imaginal development: HU-rich diet tended to shorten the "egg-to-pupa" period of development while MP-rich diet induced higher larval lethality compared to other diets. Pre- and postzygotic reproduction-related characters (copulatory ability, fecundity, cuticular pheromones) varied according to juvenile diet and sex. Juvenile diet also changed adult food choice preference and longevity. These results indicate that specific yeast species present in natural food sources and ingested by larvae can affect their adult characters crucial for fitness.
Collapse
Affiliation(s)
- Juliette Murgier
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Claude Everaerts
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-Pierre Farine
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-François Ferveur
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
25
|
Social and nutritional factors shape larval aggregation, foraging, and body mass in a polyphagous fly. Sci Rep 2018; 8:14750. [PMID: 30282991 PMCID: PMC6170467 DOI: 10.1038/s41598-018-32930-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
The majority of insect species have a clearly defined larval stage during development. Larval nutrition is crucial for individuals’ growth and development, and larval foraging success often depends on both resource availability and competition for those resources. To date, however, little is known about how these factors interact to shape larval development and behaviour. Here we manipulated the density of larvae of the polyphagous fruit fly pest Bactrocera tryoni (‘Queensland fruit fly’), and the diet concentration of patches in a foraging arena to address this gap. Using advanced statistical methods of machine learning and linear regression models, we showed that high larval density results in overall high larval aggregation across all diets except in extreme diet dilutions. Larval aggregation was positively associated with larval body mass across all diet concentrations except in extreme diet dilutions where this relationship was reversed. Over time, larvae in low-density arenas also tended to aggregate while those in high-density arenas tended to disperse, an effect that was observed for all diet concentrations. Furthermore, larvae in high-density arenas displayed significant avoidance of low concentration diets – a behaviour that was not observed amongst larvae in low-density arenas. Thus, aggregation can help, rather than hinder, larval growth in high-density environments, and larvae may be better able to explore available nutrition when at high-density than when at low-density.
Collapse
|
26
|
Deutscher AT, Burke CM, Darling AE, Riegler M, Reynolds OL, Chapman TA. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. MICROBIOME 2018; 6:85. [PMID: 29729663 PMCID: PMC5935925 DOI: 10.1186/s40168-018-0463-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/19/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets). RESULTS Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains. CONCLUSIONS Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT.
Collapse
Affiliation(s)
- Ania T. Deutscher
- Present Address: Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW Australia
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW Australia
| | - Catherine M. Burke
- School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Aaron E. Darling
- The ithree institute, University of Technology Sydney, Sydney, NSW Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW Australia
| | - Olivia L. Reynolds
- Present Address: Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW Australia
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Menangle, NSW Australia
| | - Toni A. Chapman
- Present Address: Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW Australia
| |
Collapse
|
27
|
Knudsen GK, Norli HR, Tasin M. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth. FRONTIERS IN PLANT SCIENCE 2017; 8:2206. [PMID: 29312430 PMCID: PMC5744616 DOI: 10.3389/fpls.2017.02206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system.
Collapse
Affiliation(s)
- Geir K Knudsen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Oslo, Norway
| | - Hans R Norli
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Oslo, Norway
| | - Marco Tasin
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Oslo, Norway
- Integrated Plant Protection, Department of Plant Protection Biology, Swedish University of Agricultural Science, Alnarp, Sweden
| |
Collapse
|