1
|
Zhu X, Yang Y, Li Q, Li J, Du L, Zhou Y, Jin H, Song L, Chen Q, Ren B. An expanded odorant-binding protein mediates host cue detection in the parasitic wasp Baryscapus dioryctriae basis of the chromosome-level genome assembly analysis. BMC Biol 2024; 22:196. [PMID: 39256805 PMCID: PMC11389331 DOI: 10.1186/s12915-024-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Baryscapus dioryctriae (Chalcidodea: Eulophidae) is a parasitic wasp that parasitizes the pupae of many Pyralidae members and has been used as a biological control agent against Dioryctria pests of pinecones. RESULTS This B. dioryctriae assembly has a genome size of 485.5 Mb with a contig N50 of 2.17 Mb, and scaffolds were assembled onto six chromosomes using Hi-C analysis, significantly increasing the scaffold N50 to 91.17 Mb, with more than 96.13% of the assembled bases located on chromosomes, and an analysis revealed that 94.73% of the BUSCO gene set. A total of 54.82% (279.27 Mb) of the assembly was composed of repetitive sequences and 24,778 protein-coding genes were identified. Comparative genomic analysis demonstrated that the chemosensory perception, genetic material synthesis, and immune response pathways were primarily enriched in the expanded genes. Moreover, the functional characteristics of an odorant-binding protein (BdioOBP45) with ovipositor-biased expression identified from the expanded olfactory gene families were investigated by the fluorescence competitive binding and RNAi assays, revealing that BdioOBP45 primarily binds to the D. abietella-induced volatile compounds, suggesting that this expanded OBP is likely involved in locating female wasp hosts and highlighting a direction for future research. CONCLUSIONS Taken together, this work not only provides new genomic sequences for the Hymenoptera systematics, but also the high-quality chromosome-level genome of B. dioryctriae offers a valuable foundation for studying the molecular, evolutionary, and parasitic processes of parasitic wasps.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Yi Yang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Qiuyao Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Jing Li
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun, 130033, China
| | - Lin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Yanhan Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Hongbo Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China
| | - Liwen Song
- Research Institute of Forest Protection, Jilin Provincial Academy of Forestry Sciences, Changchun, 130033, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, 130024, China.
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China.
| |
Collapse
|
2
|
Adak T, Mahanty A, Jena S, Gadratagi BG, Patil N, Guru-Pirasanna-Pandi G, Annamalai M, Golive P, Rath PC. Volatolomics to Decrypt the Monophagous Nature of a Rice Pest, Scirpophaga Incertulas (Walker). J Chem Ecol 2024; 50:373-384. [PMID: 38637418 DOI: 10.1007/s10886-024-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Scirpophaga incertulas Walker (Lepidoptera: Crambidae, yellow stem borer, YSB) is a monophagous insect pest that causes significant yield loss in rice (Oryza staiva L.). Semiochemical based pest management is being sought as an alternate to chemical pesticides to reduce pesticide footprints. We hypothesized differential release of volatiles from host rice and two companion non-host weeds, Echinochloa colona and Echinochloa crus-galli could be responsible for oviposition and biology of YSB and these chemicals could be used for YSB management. Number of eggs laid, and number of larvae hatched were significantly higher in rice plant as compared to weeds. YSB could only form dead hearts in rice plants. YSB significantly preferred host-plant volatiles compared to the non-host plants both in choice and no-choice tests in an Y-tube olfactometer. 2-Hexenal, hexanal, 2,4-hexadienal, benzaldehyde, nonanal, methyl salicylate and decanal were found in the leaf volatolomes of both the host and non-host plants in HS-SPME-GC-MS (Headspace-Solid phase micro extraction-Gas chromatography-Mass spectrometer). Pentene-3-one, 2-pentyl furan, 2,4-heptadienal, 2-octenal, 2-octenol and menthol were present only in the non-host plants. Fourteen rice unique compounds were also detected. The built-in PCA (Principal Component Analysis) and PLS-DA (Partial least squares-discriminant analysis) analysis in the MS-DIAL tool showed that the volatiles emitted from TN1 formed a cluster distinct from Echinochloa spp. and 2-octenal was identified as a unique compound. Olfactometer bioassays using synthetic compounds showed that rice unique compounds, like xylene, hexanal served as attractants whereas non-host unique compounds, like 2-pentylfuran, 2-octenal acted as repellent. The results indicate that the rice unique compounds xylene, hexanal along with other volatile compounds could be responsible for higher preference of YSB towards rice plants. Similarly, the non-host unique compounds 2-pentylfuran, 2-octenal could possibly be responsible for lower preference and defence against YSB. These compounds could be utilised for devising traps for YSB monitoring and management.
Collapse
Affiliation(s)
- Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.
- Division of Crop Protection, National Rice Research Institute, Cuttack, 753006, India.
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Somanatha Jena
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Naveenkumar Patil
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | | | - Prasanthi Golive
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | |
Collapse
|
3
|
van Neerbos FAC, Dewitte P, Wäckers F, Wenseleers T, Jacquemyn H, Lievens B. Bacterial volatiles elicit differential olfactory responses in insect species from the same and different trophic levels. INSECT SCIENCE 2023; 30:1464-1480. [PMID: 36644938 DOI: 10.1111/1744-7917.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Insect communities consist of species from several trophic levels that have to forage for suitable resources among and within larger patches of nonresources. To locate their resources, insects use diverse stimuli, including olfactory, visual, acoustic, tactile and gustatory cues. While most research has focused on cues derived from plants and other insects, there is mounting evidence that insects also respond to volatile organic compounds (VOCs) emitted by microorganisms. However, to date little is known about how the olfactory response of insects within and across different trophic levels is affected by bacterial VOCs. In this study, we used Y-tube bioassays and chemical analysis of VOCs to assess how VOCs emitted by bacteria affect the olfactory response of insects of the same and different trophic levels. Experiments were performed using two aphid species (Amphorophora idaei Börner and Myzus persicae var. nicotianae Blackman), three primary parasitoid species (Aphidius colemani Viereck, A. ervi Haliday, and A. matricariae Viereck), and two hyperparasitoid species (Asaphes suspensus Nees and Dendrocerus aphidum Rondani). Olfactory responses were evaluated for three bacterial strains (Bacillus pumilus ST18.16/133, Curtobacterium sp. ST18.16/085, and Staphylococcus saprophyticus ST18.16/160) that were isolated from the habitat of the insects. Results revealed that insects from all trophic levels responded to bacterial volatiles, but olfactory responses varied between and within trophic levels. All bacteria produced the same set of volatile compounds, but often in different relative concentrations. For 11 of these volatiles we found contrasting correlations between their concentration and the behavior of the primary parasitoids and hyperparasitoids. Furthermore, olfactometer experiments on three of these compounds confirmed the contrasting olfactory responses of primary parasitoids and hyperparasitoids. The potential of these findings for the development of novel semiochemical-based strategies to improve biological aphid control has been discussed.
Collapse
Affiliation(s)
- Francine Antoinette Cornelus van Neerbos
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Peter Dewitte
- Laboratory of Socioecology and Social Evolution, Biology Department, KU Leuven, Leuven, Belgium
| | - Felix Wäckers
- Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Biology Department, KU Leuven, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Takabayashi J. Herbivory-Induced Plant Volatiles Mediate Multitrophic Relationships in Ecosystems. PLANT & CELL PHYSIOLOGY 2022; 63:1344-1355. [PMID: 35866611 DOI: 10.1093/pcp/pcac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Herbivory-induced plant volatiles (HIPVs) are involved in biotic interactions among plants as well as herbivorous and carnivorous arthropods. This review looks at the specificity in plant-carnivore communication mediated by specific blends of HIPVs as well as describes plant-herbivore and plant-plant communication mediated by specific HIPVs. Factors affecting the net benefits of HIPV production have also been examined. These specific means of communication results in high complexity in the 'interaction-information network', which should be explored further to elucidate the mechanism underlying the numerous species coexisting in ecosystems.
Collapse
Affiliation(s)
- Junji Takabayashi
- Center for Ecological Research, Kyoto University, 2-509-3, Hirano, Otsu, Shiga, 520-2113 Japan
| |
Collapse
|
5
|
Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle Bubas bison (Coleoptera: Scarabaeidae). Molecules 2022; 27:molecules27134152. [PMID: 35807397 PMCID: PMC9268081 DOI: 10.3390/molecules27134152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Volatile cues can play a significant role in the location and discrimination of food resources by insects. Dung beetles have been reported to discriminate among dung types produced by different species, thereby exhibiting behavioral preferences. However, the role of volatile organic compounds (VOCs) in dung localization and preference remains largely unexplored in dung beetles. Here we performed several studies: firstly, cage olfactometer bioassays were performed to evaluate the behavioral responses of Bubas bison (Coleoptera: Scarabaeidae) to VOCs emanating from fresh horse, sheep, and cattle dung; secondly, concurrent volatilome analysis was performed to characterize volatilomes of these dung types. Bubas bison adults exhibited greater attraction to horse dung and less attraction to cattle dung, and they preferred dung from horses fed a pasture-based diet over dung from those fed lucerne hay. Volatilomes of the corresponding dung samples from each livestock species contained a diverse group of alkanes, alkenes, alkynes, alcohols, aldehydes, ketones, esters, phenols, and sulfurous compounds, but the composition and abundance of annotated VOCs varied with dung type and livestock diet. The volatilome of horse dung was the most chemically diverse. Results from a third study evaluating electroantennogram response and supplementary olfactometry provided strong evidence that indole, butyric acid, butanone, p-cresol, skatole, and phenol, as well as toluene, are involved in the attraction of B. bison to dung, with a mixture of these components significantly more attractive than individual constituents.
Collapse
|
6
|
Zhou 周绍群 S, Jander G. Molecular ecology of plant volatiles in interactions with insect herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:449-462. [PMID: 34581787 DOI: 10.1093/jxb/erab413] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-derived volatile organic compounds (VOCs) play pivotal roles in interactions with insect herbivores. Individual VOCs can be directly toxic or deterrent, serve as signal molecules to attract natural enemies, and/or be perceived by distal plant tissues as a priming signal to prepare for expected herbivory. Environmental conditions, as well as the specific plant-insect interaction being investigated, strongly influence the observed functions of VOC blends. The complexity of plant-insect chemical communication via VOCs is further enriched by the sophisticated molecular perception mechanisms of insects, which can respond to one or more VOCs and thereby influence insect behavior in a manner that has yet to be fully elucidated. Despite numerous gaps in the current understanding of VOC-mediated plant-insect interactions, successful pest management strategies such as push-pull systems, synthetic odorant traps, and crop cultivars with modified VOC profiles have been developed to supplement chemical pesticide applications and enable more sustainable agricultural practices. Future studies in this field would benefit from examining the responses of both plants and insects in the same experiment to gain a more complete view of these interactive systems. Furthermore, a molecular evolutionary study of key genetic elements of the ecological interaction phenotypes could provide new insights into VOC-mediated plant communication with insect herbivores.
Collapse
Affiliation(s)
- Shaoqun Zhou 周绍群
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | |
Collapse
|
7
|
Effect of Drosophila suzukii on Blueberry VOCs: Chemical Cues for a Pupal Parasitoid, Trichopria anastrephae. J Chem Ecol 2021; 47:1014-1024. [PMID: 34273036 DOI: 10.1007/s10886-021-01294-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
Biocontrol agents such as parasitic wasps use long-range volatiles and host-associated cues from lower trophic levels to find their hosts. However, this chemical landscape may be altered by the invasion of exotic insect species. The spotted-wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), is a highly polyphagous fruit pest native to eastern Asia and recently arrived in South America. Our study aimed to characterize the effect of SWD attack on the volatile organic compounds (VOCs) of blueberries, a common host fruit, and to correlate these odor changes with the olfactory-mediated behavioral response of resident populations of Trichopria anastrephae parasitoids, here reported for the first time in Uruguay. Using fruit VOC chemical characterization followed by multivariate analyses of the odor blends of blueberries attacked by SWD, we showed that the development of SWD immature stages inside the fruit generates a different odor profile to that from control fruits (physically damaged and free of damage). These differences can be explained by the diversity, frequency, and amounts of fruit VOCs. The behavioral response of T. anastrephae in Y-tube bioassays showed that female wasps were significantly attracted to volatiles from SWD-attacked blueberries when tested against both clean air and undamaged blueberries. Therefore, T. anastrephae females can use chemical cues from SWD-infested fruits, which may lead to a successful location of their insect host. Since resident parasitoids are able to locate this novel potential host, biological control programs using local populations may be plausible as a strategy for control of SWD.
Collapse
|
8
|
Komatsuzaki S, Piyasaengthong N, Matsuyama S, Kainoh Y. Effect of Leaf Maturity on Host Habitat Location by the Egg-Larval Parasitoid Ascogaster reticulata. J Chem Ecol 2021; 47:294-302. [PMID: 33523390 DOI: 10.1007/s10886-021-01250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Adoxophyes honmai, a serious pest of tea plants, prefers to lay eggs on mature tea leaves rather than young leaves. Here, we examined a hypothesis that Ascogaster reticulata, an egg-larval parasitoid of A. honmai, increases the likelihood of encountering host egg masses by searching mature tea leaves when host-derived cues are not available. In a dual-choice bioassay using a four-arm olfactometer, A. reticulata preferred odor from intact, mature leaves versus young leaves. Based on volatile analysis with gas chromatography-mass spectrometry (GC-MS), we identified 5 and 10 compounds from mature and young leaf volatiles, respectively. The 5 components in the extract from intact mature leaves included (Z)-3-hexenyl acetate, (E)-β-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and methyl salicylate. When each individual compound, or quaternary and quintenary blends of them, ratios of which were adjusted to match those of mature leaf volatiles, were provided, parasitoids preferred the full mixture and the quaternary blend devoid of DMNT to the solvent control. Methyl salicylate, one of the components of preferred blends, was not detected among young leaf volatiles. We concluded that the volatile composition of tea leaves changes, depending on their maturity, and that this composition affects foraging behavior of the parasitoid, which is closely related to the host herbivore's oviposition preference.
Collapse
Affiliation(s)
- Suguru Komatsuzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Narisara Piyasaengthong
- Department of Zoology, Faculty of Science, Kasetsart University, Phahonyothin Rd., Bangkok, 10900, Thailand
| | - Shigeru Matsuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yooichi Kainoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
9
|
Liu D, Li W, An X, Ghasemzadeh S, Huang X, Chen J, Kou J, Sun P, Zhang Y. Engineering Nicotiana tabacum for the de novo biosynthesis of DMNT to regulate orientation behavior of the parasitoid wasps Microplitis mediator. PEST MANAGEMENT SCIENCE 2021; 77:502-509. [PMID: 32816401 DOI: 10.1002/ps.6047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND (E)-4,8-dimethylnona-1,3,7-triene (DMNT), one of the homoterpenes, is thought to contribute to plant indirect defense against insect herbivores. DMNT-enriched plants have great application potential to regulate insect behavior in the 'push & pull' strategy of pest management. However, de novo biosynthesis of DMNT in plants without a homoterpene metabolic pathway in their wild type is still not achieved, and the role of DMNT played in these plants and their interacted insects remains unclear. RESULTS Cytochrome P450s and terpene synthases involved in homoterpenes biosynthesis in cotton plants were employed to generate DMNT-releasing tobacco plants. Single GhTPS14 transgenic Nicotiana tabacum only emitted (E)-nerolidol, the precursor of DMNT. Transgenic tobaccos expressing single GhCYP82Ls were unable to produce DMNT or TMTT, while DMNT was detected when exogenous (E)-nerolidol was added. Compared to wild-type plants, only co-expression of GhCYP82Ls and GhTPS14 in transgenic tobaccos triggered the constitutive release of single-component DMNT. Furthermore, DMNT-emitting transgenic tobacco plants, whether infested with Helicoverpa armigera larvae or not, significantly incited orientation behavior of parasitoid wasps Microplitis mediator. CONCLUSION Wild type N. tabacum plants have no DMNT metabolic pathway. DMNT could be de novo biosynthesized via co-expression of GhCYP82Ls and GhTPS14. What is more, the parasitoid wasp M. mediator could be recruited by DMNT-releasing transgenic tobaccos, especially by H. armigera-infested transgenic tobaccos, suggesting the potential roles of engineered N. tabacum in regulating the behavioral preference of M. mediator.
Collapse
Affiliation(s)
- Danfeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Somayyeh Ghasemzadeh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- Institute of Agro-Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Junfeng Kou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peiyao Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang L, Lu G, Huang X, Guo H, Su X, Han L, Zhang Y, Qi Z, Xiao Y, Cheng H. Overexpression of the caryophyllene synthase gene GhTPS1 in cotton negatively affects multiple pests while attracting parasitoids. PEST MANAGEMENT SCIENCE 2020; 76:1722-1730. [PMID: 31762173 DOI: 10.1002/ps.5695] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Volatile terpenes can act as ecological signals to affect insect behavior. It has been proposed that the manipulation of terpenes in plants can help to control herbivore pests. In order to investigate the potential pest management function of (E)-β-caryophyllene in cotton plants, the (E)-β-caryophyllene synthase gene (GhTPS1) was inserted into Gossypium hirsutum variety R15 to generate overexpression lines. RESULTS Four GhTPS1-transgenic lines were generated, and GhTPS1 expression in transgenic L18 and L46 lines was 3-5-fold higher than in R15 plants. The transgenic L18 and L46 lines also emitted significantly more (E)-β-caryophyllene than R15. In laboratory bioassays, L18 and L46 plants reduced pests Apolygus lucorum, Aphis gossypii and Helicoverpa armigera, and attracted parasitoids Peristenus spretus and Aphidius gifuensis, but not Microplitis mediator. In open-field trials, L18 and L46 plants reduced A. lucorum, Adelphocoris suturalis and H. armigera, but had no significant effects on predators. CONCLUSION Our findings suggest that L18 and L46 plants reduce several major hemipteran and lepidopteran cotton pests, whereas, two parasitoids P. spretus and A. gifuensis, were attracted by L18 and L46 plants. This study shows that overexpressing GhTPS1 in cotton may help to improve pest management in cotton fields. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guoqing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzheng Huang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Qi
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|