1
|
Xie Y, Cao C, Huang D, Gong Y, Wang B. Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1492424. [PMID: 39902199 PMCID: PMC11788416 DOI: 10.3389/fpls.2024.1492424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
The quality of fresh tea leaves is crucial to the final product, and maintaining microbial stability in tea plantations is essential for optimal plant growth. Unique microbial communities play a critical role in shaping tea flavor and enhancing plant resilience against biotic stressors. Tea production is frequently challenged by pests and diseases, which can compromise both yield and quality. While biotic stress generally has detrimental effects on plants, it also activates defense metabolic pathways, leading to shifts in microbial communities. Microbial biocontrol agents (MBCAs), including entomopathogenic and antagonistic microorganisms, present a promising alternative to synthetic pesticides for mitigating these stresses. In addition to controlling pests and diseases, MBCAs can influence the composition of tea plant microbial communities, potentially enhancing plant health and resilience. However, despite significant advances in laboratory research, the field-level impacts of MBCAs on tea plant microecology remain insufficiently explored. This review provides insights into the interactions among tea plants, insects, and microorganisms, offering strategies to improve pest and disease management in tea plantations.
Collapse
Affiliation(s)
- Yixin Xie
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Beibei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
2
|
Wang W, Zhou X, Hu Q, Wang Q, Zhou Y, Yu J, Ge S, Zhang L, Guo H, Tang M, Li X. Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L. PLANTS (BASEL, SWITZERLAND) 2025; 14:260. [PMID: 39861613 PMCID: PMC11768230 DOI: 10.3390/plants14020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Tambocerus elongatus (Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of Camellia sinensis, significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to T. elongatus. This study aims to explore the responses of tea trees to different levels of T. elongatus infestation. We first focused on the primary metabolism and found that the amino acid levels decreased significantly with increasing T. elongatus infestation, while sugar accumulation showed an opposite trend. Moreover, secondary metabolite analysis showed a significant increase in flavonoid compounds and lignin content after T. elongatus infestation. Metabolomics analysis of the flavonoid compounds revealed a decrease in the proanthocyanidin level and an increase in anthocyanidin glycosides (anthocyanins and their derivatives) after T. elongatus infestation. T. elongatus infestation also caused a decrease in the abundance of non-ester catechins and an increase in the abundance of ester catechins. Furthermore, the gene expression analysis revealed that transcripts of genes involved in flavonoid biosynthesis, such as CsCHI, CsF3H, CsF3'H, CsFNS, CsFLS, and CsUFGT, were down-regulated, while genes involved in the lignin pathway were up-regulated by insect infestation, suggesting that lignin probably plays a pivotal role in tea plant response to T. elongatus infestation. Analysis of the expression of related genes indicates that the jasmonate (JA) pathway primarily responds to leafhopper damage. These findings suggest that the lignin pathway and JA play a preferential role in tea plant response to T. elongatus. Furthermore, the production of saccharides and the accumulation of anthocyanin glycosides in the flavonoid metabolic pathway are critical during this stress response. Further exploration of the roles of anthocyanin glycosides and lignin in tea tree resistance could provide a theoretical basis for understanding the defense mechanism of tea trees against T. elongatus damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huawei Guo
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China (X.Z.); (X.L.)
| | - Meijun Tang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China (X.Z.); (X.L.)
| | | |
Collapse
|
3
|
Yu H, Li D, Tang S, Cheng H, Miao P, Zhou C, Wan X, Dong Q, Zhao Y, Liu Z, Zhou L, Pan C. Balancing Growth and Defense: Nanoselenium and Melatonin in Tea ( Camellia sinensis) Protection against Glufosinate. ACS NANO 2024; 18:32145-32161. [PMID: 39523542 DOI: 10.1021/acsnano.4c11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Current crop stress resistance research suggests that the prominent stimulants nanoselenium (NSe) and melatonin (MT) might improve tea safety, quality, and stress resistance induced by the widely used nonselective herbicide glufosinate (GLU). Their biofortification effects on tea growth, antioxidant activity, and secondary metabolism pathways response to GLU remain unclear. Here, NSe, MT, and their combination NSe-MT effectively reduced 26.6-50.9% GLU and its metabolites in tea seedlings, balanced the photosystem, enhanced antioxidant defenses, and optimized reactive oxygen species scavenging mechanisms. Further, GLU-induced inhibition of glutamine synthetase (11.2-34.0%), ammonium toxicity (55.0-64.7%), and nitrogen metabolism disorders were alleviated. Stimulants exhibited different preferences in the accumulation of l-theanine (8.4-47%), gamma-aminobutyric acid (10.3-41.7%), and catechins (13.1-73.1%, excluding ECG), thereby influencing tea quality. Transcriptomic and metabolomic analyses validated that NSe-MT had a more pronounced impact on tender tea leaves than individual stimulant treatments. All stimulants reduced GLU-induced excessive jasmonic acid (29.8-50.5%) production and signaling responses, revealing their significance in crop physiological activities under herbicide or nitrogen stress. The reduction in aromatic amino acids helped mitigate GLU's interference with phenylpropanoid biosynthesis, leading to inhibited lignin production but enhanced nutritional flavonoid levels, such as catechins. NSe and NSe-MT demonstrated promising potential as herbicide safeners. These findings provided insights into GLU detoxification mechanisms in other nontarget crops as well.
Collapse
Affiliation(s)
- Huan Yu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, China
| | - Song Tang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Haiyan Cheng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peijuan Miao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chunran Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoying Wan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qinyong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yingjie Zhao
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Canping Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Chen H, Qiao D, Tao L, Huang S, Xie H, Huang K, Liu S, Zhu J, Wei C. CsUGT95B11 glycosylates quercetin to enhance resistance of tea plant (Camellia sinensis) to Ectropis grisescens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109256. [PMID: 39515000 DOI: 10.1016/j.plaphy.2024.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Herbivore attack is a major type of biotic stress that greatly affects the development and quality of tea plant [Camellia sinensis (L) O. Kuntze]. Tea plant produces many glycosylated compounds that enhance resistance to herbivores. An example is quercetin, one of the major flavonols of tea plants, which was glycosylated to involve responses to various environmental stresses. However, not much is known about the biosynthesis of glycosylated quercetin derivatives in tea plant in response to herbivorous attack. Here, we found that E. grisescens attack significantly increased the contents of quercetin 3-O-glucoside and quercetin 7-O-glucoside in tea leaves, and exogenous application of these two compounds improved the E. grisescens resistance of tea plant. Integrated transcriptome and phylogenetic analyses identified CsUGT95B11 gene, encoding a quercetin glycosyltransferase, which was upregulated in response to E. grisescens attack. Enzymatic assays showed that CsUGT95B11 preferentially glycosylated quercetin to produce quercetin 7-O-glucoside with a kcat·Km-1 value of 9655.52 M-1 s-1. Subcellular localization analysis indicated that CsUGT95B11 was dispersed in the cytoplasm of Nicotiana benthamiana leaves and Arabidopsis protoplast. Suppression of CsUGT95B11 reduced the quercetin glucoside content of tea leaves and impaired resistance of tea plant to E. grisescens. These results indicate that CsUGT95B11 is a quercetin glycosyltransferase that enhances resistance of tea plant to E. grisescens, providing insights into the mechanism of flavonol glycosylation regulating interactions between plants and herbivores.
Collapse
Affiliation(s)
- Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Dahe Qiao
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Songyan Huang
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/ Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Anhui Agricultural University, West 130 Changjiang Road, Anhui, 230036, China.
| |
Collapse
|
5
|
Martínez-Márquez A, Selles-Marchart S, Nájera H, Morante-Carriel J, Martínez-Esteso MJ, Bru-Martínez R. Biosynthesis of Piceatannol from Resveratrol in Grapevine Can Be Mediated by Cresolase-Dependent Ortho-Hydroxylation Activity of Polyphenol Oxidase. PLANTS (BASEL, SWITZERLAND) 2024; 13:2602. [PMID: 39339576 PMCID: PMC11434850 DOI: 10.3390/plants13182602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Piceatannol is a naturally occurring hydroxylated analogue of the stilbene phytoalexin resveratrol that can be found in grape fruit and derived products. Piceatannol has aroused great interest as it has been shown to surpass some human health-beneficial properties of resveratrol including antioxidant activity, several pharmacological activities and also bioavailability. The plant biosynthetic pathway of piceatannol is still poorly understood, which is a bottleneck for the development of both plant defence and bioproduction strategies. Cell cultures of Vitis vinifera cv. Gamay, when elicited with dimethyl-β-cyclodextrin (MBCD) and methyl jasmonate (MeJA), lead to large increases in the accumulation of resveratrol, and after 120 h of elicitation, piceatannol is also detected due to the regiospecific hydroxylation of resveratrol. Therefore, an ortho-hydroxylase must participate in the biosynthesis of piceatannol. Herein, three possible types of resveratrol hydroxylation enzymatic reactions have been tested, specifically, a reaction catalyzed by an NADPH-dependent cytochrome, P450 hydroxylase, a 2-oxoglutarate-dependent dioxygenase and ortho-hydroxylation, similar to polyphenol oxidase (PPO) cresolase activity. Compared with P450 hydoxylase and the dioxygenase activities, PPO displayed the highest specific activity detected either in the crude extract, the particulate or the soluble fraction obtained from cell cultures elicited with MBCD and MeJA for 120 h. The overall yield of PPO activity present in the crude extract (107.42 EU) was distributed mostly in the soluble fraction (66.15 EU) rather than in the particulate fraction (3.71 EU). Thus, partial purification of the soluble fraction by precipitation with ammonium sulphate, dialysis and ion exchange chromatography was carried out. The soluble fraction precipitated with 80% ammonium sulphate and the chromatographic fractions also showed high levels of PPO activity, and the presence of the PPO protein was confirmed by Western blot and LC-MS/MS. In addition, a kinetic characterization of the cresolase activity of partially purified PPO was carried out for the resveratrol substrate, including Vmax and Km parameters. The Km value was 118.35 ± 49.84 µM, and the Vmax value was 2.18 ± 0.46 µmol min-1 mg-1.
Collapse
Affiliation(s)
- Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Selles-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Maria J. Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
6
|
Jing T, Du W, Qian X, Wang K, Luo L, Zhang X, Deng Y, Li B, Gao T, Zhang M, Guo D, Jiang H, Liu Y, Schwab W, Sun X, Song C. UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding. PLANT, CELL & ENVIRONMENT 2024; 47:682-697. [PMID: 37882446 DOI: 10.1111/pce.14751] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.
Collapse
Affiliation(s)
- Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaona Qian
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Kai Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Lanxin Luo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueying Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanni Deng
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Bo Li
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Hao Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuantao Liu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
7
|
Zhang J, Yu Y, Qian X, Zhang X, Li X, Sun X. Recent Advances in the Specialized Metabolites Mediating Resistance to Insect Pests and Pathogens in Tea Plants ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2024; 13:323. [PMID: 38276780 PMCID: PMC10818678 DOI: 10.3390/plants13020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Tea is the second most popular nonalcoholic beverage consumed in the world, made from the buds and young leaves of the tea plants (Camellia sinensis). Tea trees, perennial evergreen plants, contain abundant specialized metabolites and suffer from severe herbivore and pathogen attacks in nature. Thus, there has been considerable attention focusing on investigating the precise function of specialized metabolites in plant resistance against pests and diseases. In this review, firstly, the responses of specialized metabolites (including phytohormones, volatile compounds, flavonoids, caffeine, and L-theanine) to different attacks by pests and pathogens were compared. Secondly, research progress on the defensive functions and action modes of specialized metabolites, along with the intrinsic molecular mechanisms in tea plants, was summarized. Finally, the critical questions about specialized metabolites were proposed for better future research on phytohormone-dependent biosynthesis, the characteristics of defense responses to different stresses, and molecular mechanisms. This review provides an update on the biological functions of specialized metabolites of tea plants in defense against two pests and two pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (Y.Y.); (X.Q.); (X.Z.); (X.L.)
| |
Collapse
|
8
|
Zhang X, Yu Y, Zhang J, Qian X, Li X, Sun X. Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses. Int J Mol Sci 2024; 25:1079. [PMID: 38256153 PMCID: PMC10816084 DOI: 10.3390/ijms25021079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Tea plants have to adapt to frequently challenging environments due to their sessile lifestyle and perennial evergreen nature. Jasmonates regulate not only tea plants' responses to biotic stresses, including herbivore attack and pathogen infection, but also tolerance to abiotic stresses, such as extreme weather conditions and osmotic stress. In this review, we summarize recent progress about jasmonaic acid (JA) biosynthesis and signaling pathways, as well as the underlying mechanisms mediated by jasmontes in tea plants in responses to biotic stresses and abiotic stresses. This review provides a reference for future research on the JA signaling pathway in terms of its regulation against various stresses of tea plants. Due to the lack of a genetic transformation system, the JA pathway of tea plants is still in the preliminary stages. It is necessary to perform further efforts to identify new components involved in the JA regulatory pathway through the combination of genetic and biochemical methods.
Collapse
Affiliation(s)
- Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yongchen Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaona Qian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
9
|
Velmurugan S, Ashajyothi M, Charishma K, Kumar S, Balamurugan A, Javed M, Karwa S, Prakash G, Subramanian S, Gogoi R, Eke P, Kumar A. Enhancing defense against rice blast disease: Unveiling the role of leaf endophytic firmicutes in antifungal antibiosis and induced systemic resistance. Microb Pathog 2023; 184:106326. [PMID: 37648175 DOI: 10.1016/j.micpath.2023.106326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Rice remains the primary staple for more than half of the world's population, yet its cultivation faces numerous challenges, including both biotic and abiotic stresses. One significant obstacle is the prevalence of rice blast disease, which substantially diminishes productivity and increases cultivation costs due to frequent fungicide applications. Consequently, the presence of fungicide residues in rice raises concerns about compliance with international maximum residue limits (MRLs). While host resistance has proven effective, it often remains vulnerable to new variants of the Magnaporthe oryzae pathogen. Therefore, there is a critical need to explore innovative management strategies that can complement or enhance existing methods. An unexplored avenue involves harnessing endophytic bacterial communities. To this end, the present study investigates the potential of eleven endophytic Bacillus spp. in suppressing Pyricularia oryzae, promoting plant growth, and eliciting a defense response through phyllobacterization. The results indicate that the secreted metabolome and volatilome of seven tested isolates demonstrate inhibitory effects against P.oryzae, ranging from a minimum of 40% to a maximum of 70%. Bacillus siamensis L34, B. amyloliquefaciens RA37, B. velezensis L12, and B. subtilis B18 produce antifungal antibiotics targeting P.oryzae. Additionally, B. subtilis S4 and B. subtilis S6 emerge as excellent inducers of systemic resistance against blast disease, as evidenced by elevated activity of biochemical defense enzymes such as peroxidase, polyphenol oxidase, and total phenol content. However, a balance between primary metabolic activity (e.g., chlorophyll content, chlorophyll fluorescence, and photosynthetic rate) and defense activity is observed. Furthermore, specific endophytic Bacillus spp. significantly stimulates defense-related genes, including OsPAD4, OsFMO1, and OsEDS1. These findings underscore the multifaceted potential of endophytic Bacillus in managing blast disease through antibiosis and induced systemic resistance. In conclusion, this study highlights the promising role of endophytic Bacillus spp. as a viable option for blast disease management. Their ability to inhibit the pathogen and induce systemic resistance makes them a valuable addition to the existing strategies. However, it is crucial to consider the trade-off between primary metabolic activity and defense response when implementing these bacteria-based approaches.
Collapse
Affiliation(s)
| | | | | | - Shanu Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Mohammed Javed
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sourabh Karwa
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Subramanian
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Robin Gogoi
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pierre Eke
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
10
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
11
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
12
|
Sui X, Meng Z, Dong T, Fan X, Wang Q. Enzymatic browning and polyphenol oxidase control strategies. Curr Opin Biotechnol 2023; 81:102921. [PMID: 36965297 DOI: 10.1016/j.copbio.2023.102921] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/27/2023]
Abstract
Significant amounts of fresh and fresh-cut fruits and vegetables are wasted every year due to enzymatic browning. Polyphenol oxidase (PPO) is the key enzyme involved in the enzymatic browning. In the past decades, various methods have been developed to inhibit browning of various fresh produce items. However, for most fresh horticultural produce, ideal measures accepted by industries and consumers are still scarce. This review provides up-to-date knowledge of browning control technologies, including physical methods, chemical methods such as natural inhibitors, molecular biotechnology, and nanotechnology. In addition, we propose some ideas to improve the efficacies of these strategies with fewer side effects. To better inhibit tissue browning, new research directions are also discussed, for example, regulation of PPO substrate techniques.
Collapse
Affiliation(s)
- Xu Sui
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China
| | - Zan Meng
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China
| | - Tiantian Dong
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China
| | - Xuetong Fan
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, PA 19454, USA.
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018 Shandong, China; Postharvest Lab., National Engineering Research Center of Apple, China.
| |
Collapse
|
13
|
Zhu Q, Liu L, Lu X, Du X, Xiang P, Cheng B, Tan M, Huang J, Wu L, Kong W, Shi Y, Wu L, Lin J. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1149182. [PMID: 37035086 PMCID: PMC10076774 DOI: 10.3389/fpls.2023.1149182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
As the main flavor components of tea, the contents of epigallocatechin-3-gallate (EGCG), theanine and caffeine are regulated by ambient temperature. However, whether the biosynthesis of EGCG, theanine and caffeine in response to temperature is regulated by endogenous hormones and its mechanism is still unclear. In this study, tea cuttings cultivated in the phytotron which treated at different temperatures 15℃, 20℃, 25℃ and 30℃, respectively. The UPLC and ESI-HPLC-MS/MS were used to determine the contents of EGCG, theanine, caffeine and the contents of phytohormones in one leaf and a bud. The results showed that indoleacetic acid (IAA), gibberellin 1(GA1) and gibberellin 3 (GA3) were significantly correlated with the content of EGCG; Jasmonic acid (JA), jasmonate-isoleucine (JA-Ile) and methyl jasmonate (MeJA) were strongly correlated with theanine content; IAA, GA1 and gibberellin 4 (GA4) were significantly correlated with caffeine content at different temperatures. In order to explore the internal intricate relationships between the biosynthesis of these three main taste components, endogenous hormones, and structural genes in tea plants, we used multi-omics and multidimensional correlation analysis to speculate the regulatory mechanisms: IAA, GA1 and GA3 up-regulated the expressions of chalcone synthase (CsCHS) and trans-cinnamate 4-monooxygenase (CsC4H) mediated by the signal transduction factors auxin-responsive protein IAA (CsIAA) and DELLA protein (CsDELLA), respectively, which promoted the biosynthesis of EGCG; IAA, GA3 and GA1 up-regulated the expression of CsCHS and anthocyanidin synthase (CsANS) mediated by CsIAA and CsDELLA, respectively, via the transcription factor WRKY DNA-binding protein (CsWRKY), and promoted the biosynthesis of EGCG; JA, JA-Ile and MeJA jointly up-regulated the expression of carbonic anhydrase (CsCA) and down-regulated the expression of glutamate decarboxylase (CsgadB) mediated by the signal transduction factors jasmonate ZIM domain-containing protein (CsJAZ), and promoted the biosynthesis of theanine; JA, JA-Ile and MeJA also jointly inhibited the expression of CsgadB mediated by CsJAZ via the transcription factor CsWRKY and AP2 family protein (CsAP2), which promoted the biosynthesis of theanine; IAA inhibited the expression of adenylosuccinate synthase (CspurA) mediated by CsIAA via the transcription factor CsWRKY; GA1 and gibberellin 4 (GA4) inhibited the expression of CspurA mediated by CsDELLA through the transcription factor CsWRKY, which promoted the biosynthesis of caffeine. In conclusion, we revealed the underlying mechanism of the biosynthesis of the main taste components in tea plant in response to temperature was mediated by hormone signal transduction factors, which provided novel insights into improving the quality of tea.
Collapse
Affiliation(s)
- Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijia Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Du
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Xiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijiao Wu
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen, China
| | - Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Sciences, Wuyi University, Wuyishan, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Luo Z, Zhu X, Li H, Jian Y, Li W, Li H, Huang C, Wang R, Xiao L. Air-assisted liquid-liquid microextraction and enantioselective gas chromatography-tandem mass spectrometry quantification of methyl jasmonate stereoisomers in tea (Camellia sinensis L.). REPRODUCTION AND BREEDING 2023. [DOI: 10.1016/j.repbre.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Wang L, Wang W, Shan J, Li C, Suo H, Liu J, An K, Li X, Xiong X. A Genome-Wide View of the Transcriptome Dynamics of Fresh-Cut Potato Tubers. Genes (Basel) 2023; 14:genes14010181. [PMID: 36672922 PMCID: PMC9859442 DOI: 10.3390/genes14010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food. To reveal the physiological changes in fresh-cut potato tubers at the molecular level, a transcriptome analysis of potato tubers after cutting was carried out. A total of 10,872, 10,449, and 11,880 differentially expressed genes (DEGs) were identified at 4 h, 12 h and 24 h after cutting, respectively. More than 87.5% of these DEGs were classified into the categories of biological process (BP) and molecular function (MF) based on Gene Ontology (GO) analysis. There was a difference in the response to cutting at different stages after the cutting of potato tubers. The genes related to the phenol and fatty biosynthesis pathways, which are responsible for enzymatic browning and wound healing in potato tubers, were significantly enriched at 0-24 h after cutting. Most genes related to the enzymatic browning of potato tubers were up-regulated in response to cut-wounding. Plant hormone biosynthesis, signal molecular biosynthesis and transduction-related genes, such as gibberelin (GA), cytokinin (CK), ethylene (ET), auxin (IAA), jasmonic acid (JA), salicylic (SA), and Respiratory burst oxidase (Rboh) significantly changed at the early stage after cutting. In addition, the transcription factors involved in the wound response were the most abundant at the early stage after cutting. The transcription factor with the greatest response to injury was MYB, followed by AP2-EREBP, C3H and WRKY. This study revealed the physiological changes at the molecular level of fresh-cut potato tubers after cutting. This information is needed for developing a better approach to enhancing the postharvest shelf life of fresh processed potato and the breeding of potato plants that are resistant to enzymatic browning.
Collapse
Affiliation(s)
- Li Wang
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wanxing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianwei Shan
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chengchen Li
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haicui Suo
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jitao Liu
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kang An
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaobo Li
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (X.L.); (X.X.)
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: (X.L.); (X.X.)
| |
Collapse
|
16
|
Han Z, Zhang C, Zhang H, Duan Y, Zou Z, Zhou L, Zhu X, Fang W, Ma Y. CsMYB Transcription Factors Participate in Jasmonic Acid Signal Transduction in Response to Cold Stress in Tea Plant ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212869. [PMID: 36365324 PMCID: PMC9654479 DOI: 10.3390/plants11212869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 05/31/2023]
Abstract
Low-temperature stress is an increasing problem for the cultivation of tea (Camellia sinensis), with adverse effects on plant growth and development and subsequent negative impacts on the tea industry. Methyl jasmonate (MeJA), as a plant inducer, can improve the cold-stress tolerance in tea plants. R2R3-MYB transcription factors (TFs) are considered potentially important regulators in the resistance to cold stress in plants. However, the molecular mechanisms, by which MYB TFs via the jasmonic acid pathway respond to cold stress in the tea plant, remain unknown. In this study, physiological and biochemical assays showed that exogenous MeJA application could effectively promote ROS scavenging in the tea plant under cold stress, maintaining the stability of the cell membrane. Sixteen R2R3-MYB TFs genes were identified from the tea plant genome database. Quantitative RT-PCR analysis showed that three CsMYB genes were strongly induced under a combination of MeJA and cold-stress treatment. Subcellular localization assays suggest CsMYB45, CsMYB46, and CsMYB105 localized in the nucleus. Exogenous MeJA treatment enhanced the overexpression of CsMYB45, CsMYB46, and CsMYB105 in E. coli and improved the growth and survival rates of recombinant cells compared to an empty vector under cold stress. Yeast two-hybrid and bimolecular fluorescence complementation experiments confirmed that CsMYB46 and CsMYB105 interacted with CsJAZ3, CsJAZ10, and CsJAZ11 in the nucleus. Taken together, these results highlight that CsMYB45, CsMYB46, and CsMYB105 are not only key components in the cold-stress signal response pathway but also may serve as points of confluence for cold stress and JA signaling pathways. Furthermore, our findings provide new insight into how MYB TFs influence cold tolerance via the jasmonic acid pathway in tea and provide candidate genes for future functional studies and breeding.
Collapse
Affiliation(s)
- Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongwei Zou
- Department of Biology, Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Lin Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Ahammed GJ, Li X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:390-400. [PMID: 35785551 DOI: 10.1016/j.plaphy.2022.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Tea is the most frequently consumed natural beverage across the world produced with the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) O. Kuntze. The expanding global appeal of tea is partly attributed to its health-promoting benefits such as anti-inflammation, anti-cancer, anti-allergy, anti-hypertension, anti-obesity, and anti- SARS-CoV-2 activity. The many advantages of healthy tea intake are linked to its bioactive substances such as tea polyphenols, flavonoids (catechins), amino acids (theanine), alkaloids (caffeine), anthocyanins, proanthocyanidins, etc. that are produced through secondary metabolic pathways. Phytohormones regulate secondary metabolite biosynthesis in a variety of plants, including tea. There is a strong hormonal response in the biosynthesis of polyphenols, catechins, theanine and caffeine in tea under control and perturbed environmental conditions. In addition to the impact of preharvest plant hormone manipulation on green tea quality, changes in hormones of postharvest tea also regulate quality-related metabolites in tea. In this review, we discuss the health benefits of major tea constituents and the role of various plant hormones in improving the endogenous levels of these compounds for human health benefits. The fact that the ratio of tea polyphenols to amino acids and the concentrations of tea components are changed by environmental conditions, most notably by climate change-associated variables, the selection and usage of optimal hormone combinations may aid in sustaining tea quality, and thus can be beneficial to both consumers and producers.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
18
|
Jiao L, Bian L, Luo Z, Li Z, Xiu C, Fu N, Cai X, Chen Z. Enhanced volatile emissions and anti-herbivore functions mediated by the synergism between jasmonic acid and salicylic acid pathways in tea plants. HORTICULTURE RESEARCH 2022; 9:uhac144. [PMID: 36101895 PMCID: PMC9463459 DOI: 10.1093/hr/uhac144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The interaction between jasmonic acid (JA) and salicylic acid (SA) pathways, which affects plant stress resistance, is mainly considered to be antagonistic. Using an established theoretical model, we investigated how tea plant (Camellia sinensis) volatiles induced by exogenous elicitors of the JA and SA pathways are affected by the sequence of elicitor application, elicitor identity, and the applied concentrations. We also examined the effects of the volatiles mediated by the JA-SA synergistic interaction on the behaviors of a tea leaf-chewing herbivore (Ectropis grisescens) and its parasitic wasp (Apanteles sp.). The JA and SA pathway interactions were almost always reciprocally synergistic when the two pathways were elicited at different times, except at high JA elicitor concentrations. However, the JA pathway antagonized the SA pathway when they were elicited simultaneously. The elicitor identity affected the degree of JA-SA interaction. The volatiles induced by the JA pathway in the JA-SA reciprocal synergism treatments included up to 11 additional compounds and the total amount of volatiles was up to 7.9-fold higher. Similarly, the amount of emitted volatiles induced by the SA pathway in the reciprocal synergism treatments increased by up to 4.2-fold. Compared with the volatiles induced by either pathway, the enriched volatiles induced by the JA-SA reciprocal synergism similarly repelled E. grisescens, but attracted Apanteles sp. more strongly. Thus, non-simultaneous activation is important for optimizing the JA-SA reciprocal synergism. This reciprocal synergism enables plants to induce multifarious responses, leading to increased biotic stress resistance.
Collapse
Affiliation(s)
- Long Jiao
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zongxiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zhaoqun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Chunli Xiu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Nanxia Fu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | | | | |
Collapse
|
19
|
Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. J Fungi (Basel) 2022; 8:jof8050422. [PMID: 35628678 PMCID: PMC9146357 DOI: 10.3390/jof8050422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutual symbiotic associations with most terrestrial plants and improve the resistance of host plants against pathogens. However, the bioprotection provided by AM fungi can depend on the host–fungus combinations. In this study, we unraveled the effects of pre-inoculation with AM fungus Rhizophagus irregularis on plant resistance against the hemibiotrophic fungal pathogen Fusarium oxysporum in jasmonate (JA) biosynthesis mutant tomato, suppressor of prosystemin-mediated responses8 (spr8) and the wild type Castlemart (CM). Results showed that R. irregularis colonization in CM plants significantly decreased the disease index, which was not observed in spr8 plants, suggesting that the disease protection of AM fungi was a plant-genotype-specific trait. Inoculation with R. irregularis significantly increased the shoot dry weight of CM plants when infected with F. oxysporum, with increased plant P content and net photosynthetic rate. Induced expression of the JA synthesis genes, including allene oxide cyclase gene (AOC) and lipoxygenase D gene (LOXD), and increased activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were recorded in mycorrhizal CM plants infected with F. oxysporum, but not in spr8 plants. Thus, mycorrhiza-induced resistance (MIR) to fungal pathogen in tomato was highly relevant to the JA signaling pathway.
Collapse
|
20
|
Zhang X, Ran W, Li X, Zhang J, Ye M, Lin S, Liu M, Sun X. Exogenous Application of Gallic Acid Induces the Direct Defense of Tea Plant Against Ectropis obliqua Caterpillars. FRONTIERS IN PLANT SCIENCE 2022; 13:833489. [PMID: 35211143 PMCID: PMC8861190 DOI: 10.3389/fpls.2022.833489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/02/2023]
Abstract
Gallic acid (GA), an important polyphenolic compound in the plant, is a well-known antioxidant, antihyperglycemic, and anti-lipid peroxidative agent. Recently, GA treatment exhibited ameliorative effects on plants in response to some abiotic stresses. However, the elicitation effect of GA on plant defense against herbivorous insects has not yet been reported. In this study, we found that the exogenous application of GA induced the direct defense of tea plant (Camellia sinensis) against tea geometrid (Ectropis obliqua) larvae, through activating jasmonic acid (JA) signaling and phenylpropanoid pathways. These signaling cascades resulted in the efficient induction of several defensive compounds. Among them, astragalin, naringenin, and epigallocatechin-3-gallate were the three of the most active anti-feeding compounds. However, the exogenous GA treatment did not affect the preference of E. obliqua female moths and larval parasitoid Apanteles sp. Our study suggests that GA may serve as an elicitor that triggers a direct defense response against tea geometrid larvae in tea plants. This study will help to deepen the understanding of the interaction between plants and phytophagous insects and also provide theoretical and technical guidance for the development of plant defense elicitors.
Collapse
Affiliation(s)
- Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wei Ran
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Meng Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Songbo Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Miaomiao Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
21
|
Li X, Zhang J, Lin S, Xing Y, Zhang X, Ye M, Chang Y, Guo H, Sun X. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. PLANT, CELL & ENVIRONMENT 2022; 45:496-511. [PMID: 34719788 DOI: 10.1111/pce.14216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The tea plant, Camellia sinensis (L.) O. Kuntze, is an economically important, perennial woody plant rich in catechins. Although catechins have been reported to play an important role in plant defences against microbes, their roles in the defence of tea plants against herbivores remain unknown. In this study, we allowed the larvae of Ectropis grisescens, a leaf-feeding pest, to feed on the plants, and alternatively, we wounded the plants and then treated them with E. grisescens oral secretions (WOS). Both approaches triggered jasmonic acid-, ethylene- and auxin-mediated signalling pathways; as a result, plants accumulated three catechin compounds: (+)-catechin, epicatechin and epigallocatechin. Not only was the mass of E. grisescens larvae fed on plants previously infested with E. grisescens or treated with WOS significantly lower than that of larvae fed on controls, but also artificial diet supplemented with epicatechin, (+)-catechin or epigallocatechin gallate reduced larval growth rates. In addition, the exogenous application of jasmonic acid, ethylene or auxin induced the biosynthesis of the three catechins, which, in turn, enhanced the resistance of tea plants to E. grisescens, leading to the coordination of the three signalling pathways. Our results suggest that the three catechins play an important role in the defences of tea plants against E. grisescens.
Collapse
Affiliation(s)
- Xiwang Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Songbo Lin
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuxian Xing
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Meng Ye
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yali Chang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Huawei Guo
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xiaoling Sun
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
22
|
Lin S, Ye M, Li X, Xing Y, Liu M, Zhang J, Sun X. A novel inhibitor of the JA signaling pathway represses herbivore resistance in tea plants. HORTICULTURE RESEARCH 2022; 9:uhab038. [PMID: 35043181 PMCID: PMC8945283 DOI: 10.1093/hr/uhab038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/24/2021] [Indexed: 06/01/2023]
Abstract
The jasmonic acid (JA) signaling pathway plays a vital role in mediating plant resistance to herbivores. Tea plant (Camellia sinensis) is one of the most important woody cash crops in the world. Due to the lack of genetic transformation systems for tea plants, how the JA signaling pathway works in tea plants has not yet been determined. Now, with the development of cross-disciplines, chemical biology provides new means for analysing the JA signaling pathway. In the present study, the small molecule isoquinoline compound ZINC71820901 (lyn3) was obtained from the ZINC molecular library through virtual screening based on the structure of the crystal COI1-JAZ1 co-receptor and was found to act as an inhibitor of the JA signaling pathway both in Arabidopsis and tea plants. Our results revealed that lyn3 repressed tea plant resistance to Ectropis grisescens mainly by decreasing the accumulation of (-)-epicatechin (EC) and (-)-epigallocatechin (EGC) via repression of the JA signaling pathway, which functioned in the different modulation manner to the already known inhibitor SHAM. As a novel inhibitor of JA signaling pathway, lyn3 provides a specific option for further research on the JA pathway.
Collapse
Affiliation(s)
- Songbo Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs,
No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
| | - Meng Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs,
No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs,
No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
| | - Yuxian Xing
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs,
No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
| | - Miaomiao Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs,
No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs,
No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs,
No. 9 South Meiling Road, Hangzhou 310008, Zhejiang, China
| |
Collapse
|
23
|
Zhu C, Wang W, Chen Y, Zhao Y, Zhang S, Shi F, Khalil-Ur-Rehman M, Nieuwenhuizen NJ. Transcriptomics and Antioxidant Analysis of Two Chinese Chestnut ( Castanea mollissima BL.) Varieties Provides New Insights Into the Mechanisms of Resistance to Gall Wasp Dryocosmus kuriphilus Infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:874434. [PMID: 35498685 PMCID: PMC9051522 DOI: 10.3389/fpls.2022.874434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 05/08/2023]
Abstract
Chinese chestnut is a popular fruit tree with a high nutritional value of its nuts, which can suffer from infestation by the chestnut gall wasp Dryocosmus kuriphilus (GWDK) that results in gall formation and resultant loss of production and profitability. The physiological and molecular mechanisms of GWDK resistance found in certain genotypes currently remains elusive. To gain new insights into this phenomenon, a series of RNA-Seq integrated with metabolomic profiling experiments were executed to investigate the chemical and transcriptional differences in response to GWDK infestation in two contrasting chestnut varieties grown in China (the susceptible "HongLi," HL and the partially resistant "Shuhe_Wuyingli," SW). Three time points were selected for comparison: The initiation stage (A), growth stage (B), and maturation stage (C). Results showed that concentrations of hydrogen peroxide (H2O2) and the activities of peroxidase (POD) and superoxide dismutase (SOD) enzyme were elevated in the resistant SW leaves compared with those in HL leaves at all three developmental stages, while catalase (CAT) and polyphenol oxidase (PPO) activities were mostly higher in HL leaves. RNA-Seq transcriptomic analyses of HL and SW leaves revealed that various metabolic pathways involved in GWDK stress responses, such as plant hormone signal transduction, MAPK signaling, and the peroxisome pathway, were enriched in the contrasting samples. Moreover, the weighted gene co-expression network analysis (WGCNA) of differentially expressed genes in the POD pathway combined with transcription factors (TFs) indicated that the expression of TF members of bHLH, WRKY, NAC, and MYB family positively correlated with POD pathway gene expression. The TFs CmbHLH130 (EVM0032437), CmWRKY31 (EVM0017000), CmNAC50 (EVM0000033), and CmPHL12 (EVM0007330) were identified as putative TFs that participate in the regulation of insect-induced plant enzyme activities in chestnut, which may contribute to GWDK resistance in SW. Expression levels of 8 random differentially expressed genes (DEGs) were furthermore selected to perform quantitative reverse transcription PCR (qRT-PCR) to validate the accuracy of the RNA-Seq-derived expression patterns. This study guides the functional analyses of further candidate genes and mechanisms important for GWDK resistance in chestnuts in the future as well as can help in identifying the master transcriptional regulators and important enzyme steps that support major insect defense pathways in chestnut.
Collapse
Affiliation(s)
- Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Wu Wang,
| | - Yu Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shijie Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fenghou Shi
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | | | | |
Collapse
|
24
|
The Laccase Gene Family Mediate Multi-Perspective Trade-Offs during Tea Plant ( Camellia sinensis) Development and Defense Processes. Int J Mol Sci 2021; 22:ijms222212554. [PMID: 34830436 PMCID: PMC8618718 DOI: 10.3390/ijms222212554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
Laccase (LAC) plays important roles in different plant development and defense processes. In this study, we identified laccase genes (CsLACs) in Camellia sinensis cv ‘Longjing43′ cultivars, which were classified into six subclades. The expression patterns of CsLACs displayed significant spatiotemporal variations across different tissues and developmental stages. Most members in subclades II, IV and subclade I exhibited contrasting expression patterns during leaf development, consistent with a trade-off model for preferential expression in the early and late developmental stages. The extensive transcriptional changes of CsLACs under different phytohormone and herbivore treatment were observed and compared, with the expression of most genes in subclades I, II and III being downregulated but genes in subclades IV, V and VI being upregulated, suggesting a growth and defense trade-off model between these subclades. Taken together, our research reveal that CsLACs mediate multi-perspective trade-offs during tea plant development and defense processes and are involved in herbivore resistance in tea plants. More in-depth research of CsLACs upstream regulation and downstream targets mediating herbivore defense should be conducted in the future.
Collapse
|
25
|
Huang X, Ou S, Li Q, Luo Y, Lin H, Li J, Zhu M, Wang K. The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene CsPPO1 in Tea Plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:739951. [PMID: 34804087 PMCID: PMC8600361 DOI: 10.3389/fpls.2021.739951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polyphenol oxidase (PPO) plays a role in stress response, secondary metabolism, and other physiological processes during plant growth and development, and is also a critical enzyme in black tea production. However, the regulatory mechanisms of PPO genes and their activity in tea plants are still unclear. In this study, we measured PPO activity in two different tea cultivars, Taoyuandaye (TYDY) and Bixiangzao (BXZ), which are commonly used to produce black tea and green tea, respectively. The expression pattern of CsPPO1 was assessed and validated via transcriptomics and quantitative polymerase chain reaction in both tea varieties. In addition, we isolated and identified an R2R3-MYB transcription factor CsMYB59 that may regulate CsPPO1 expression. CsMYB59 was found to be a nuclear protein, and its expression in tea leaves was positively correlated with CsPPO1 expression and PPO activity. Transcriptional activity analysis showed that CsMYB59 was a transcriptional activator, and the dual-luciferase assay indicated that CsMYB59 could activate the expression of CsPPO1 in tobacco leaves. In summary, our study demonstrates that CsMYB59 represents a transcriptional activator in tea plants and may mediate the regulation of PPO activity by activating CsPPO1 expression. These findings provide novel insights into the regulatory mechanism of PPO gene in Camellia sinensis, which might help to breed tea cultivars with high PPO activity.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuqiong Ou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Qin Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yong Luo
- School of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou, China
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
G protein and PLDδ are involved in JA to regulate osmotic stress responses in Arabidopsis thaliana. Biochem Biophys Rep 2021; 26:100952. [PMID: 33659715 PMCID: PMC7890375 DOI: 10.1016/j.bbrep.2021.100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023] Open
Abstract
Jasmonic acid (JA) is regarded as an endogenous regulator which plays an important role in regulating plant growth, development and stress response. Using the seedlings of A. thaliana ecotype Col-0 (wild-type, WT), phospholipase Dδ (PLDδ) deficient mutant (pldδ), the G protein α subunit (GPA1) deficient mutant (gpa1-4), 9-Lipoxygenase (9-LOX) deficient mutants (lox1 and lox5) as materials, the effects of JA responding to osmotic stress and the functions of G protein and PLDδ in this response were investigated. The results showed that GPA1 involved in the regulation of JA to PLDδ under osmotic stress. Both GPA1 and PLDδ participated in the regulation of JA on the seed germination and osmotic tolerance. Exogenous MeJA reduced the EL and MDA in WT, but increased the EL and MDA in gpa1-4 and pldδ, indicating that GPA1 and PLDδ were involved in the protection of JA on the membrane. The genes expression levels, and the activities of PLDδ and LOX1 were significantly induced by osmotic stress. The LOX activity and JA content in pldδ seedings were lower obviously than those in WT, but were markedly increased and were higher than WT after applying phosphatidic acid (PA). These results demonstrated that JA responded to osmotic stress by regulating G protein and PLDδ in A. thaliana. PLDδ was located upstream of 9-LOX and involved in the JA biosynthesis. The endogenous JA content, G protein activity, PLD activity and LOX activity were increased under osmotic stress. Both GPA1 and PLDδ participated in the seed germination and drought tolerance regulated by JA. JA regulated G protein and PLDδ to respond to osmotic stress. PLDδ/PA is located upstream of 9-LOX and involved in the JA biosynthesis.
Collapse
|
27
|
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. PHYTOCHEMISTRY 2021; 181:112588. [PMID: 33232863 DOI: 10.1016/j.phytochem.2020.112588] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/29/2023]
Abstract
Plant polyphenol oxidases (PPOs) are ubiquitous copper metalloenzymes with a biochemistry that has been known for more than a century. By the 1990s, biologists began to recognize the importance of PPOs in plant response to the infestation of herbivores and pathogens; ideas concerning a defensive role for PPOs arose to address observed evidence, and several testable hypotheses were suggested. Two pivotal discoveries in tomato (Lycopersicon esculentum Miller) plants, an inverse correlation between PPO levels and insect growth and PPO induction by defence signals, have driven many studies of PPO defence functions in the context of abiotic and biotic stresses. During the past three decades, extensive molecular research in transgenic and non-transgenic systems has partly revealed the sophisticated mechanisms underlying PPO defence against herbivores and pathogens. These understandings, rather than theoretical predictions, have driven the development of new hypotheses and advanced PPO-related studies. Here, we review progress in PPO family features, expression regulation and the defensive role of PPOs in plants. We propose assumptions of an extended range of co- and post-transcriptional processes to the regulation of unexplored PPO expression. In addition, the identification of endogenous PPO substrates and downstream targets of PPO action will be useful for elucidating PPO defensive roles. The potential effects of PPO-mediated oxidative defences on herbivore performance ultimately needs to be further investigated. Therefore, expanding multidisciplinary approaches to unexplored dimensions of PPO defence function should be a future priority.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
28
|
Genome-Wide Identification of the Tify Gene Family and Their Expression Profiles in Response to Biotic and Abiotic Stresses in Tea Plants ( Camellia sinensis). Int J Mol Sci 2020; 21:ijms21218316. [PMID: 33167605 PMCID: PMC7664218 DOI: 10.3390/ijms21218316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
The TIFY family is a plant-specific gene family that is involved in regulating a variety of plant processes, including developmental and defense responses. The chromosome-level genome of the tea plant (Camellia sinensis) has recently been released, but a comprehensive view of the TIFY family in C. sinensis (the CsTIFY genes) is lacking. The current study performed an extensive genome-wide identification of CsTIFY genes. The phylogenetics, chromosome location, exon/intron structure, and conserved domains of these genes were analyzed to characterize the members of the CsTIFY family. The expression profiles of the CsTIFY genes in four organs were analyzed, and they showed different spatial expression patterns. All CsJAZ genes were observed to be induced by jasmonate acid (JA) and exhibited different responses to abiotic and biotic stresses. Six of seven CsJAZ genes (CsJAZ1, CsJAZ2, CsJAZ3, CsJAZ4, CsJAZ7, and CsJAZ8) were upregulated by mechanical wounding and infestation with the tea geometrid (Ectropis obliqua), while infection with tea anthracnose (Colletotrichum camelliae) primarily upregulated the expression levels of CsJAZ1 and CsJAZ10. In addition, CsJAZs were observed to interact with CsMYC2 and AtMYC2. Therefore, the results of this study may contribute to the functional characterization of the CsTIFY genes, especially the members of the JAZ subfamily, as regulators of the JA-mediated defense response in tea plant.
Collapse
|
29
|
Lin S, Dong Y, Li X, Xing Y, Liu M, Sun X. JA-Ile-macrolactone 5b Induces Tea Plant ( Camellia sinensis) Resistance to Both Herbivore Ectropis obliqua and Pathogen Colletotrichum camelliae. Int J Mol Sci 2020; 21:ijms21051828. [PMID: 32155845 PMCID: PMC7084730 DOI: 10.3390/ijms21051828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 01/16/2023] Open
Abstract
Jasmonates (JAs), the group of lipid-derived hormones, were found to control the defense responses in a myriad of plants. Meaningfully, the macrolactones of 12-hydroxy jasmonate isoleucine (12OH-JA-Ile) were reported to induce the defensive response of wild tobacco. However, little to nothing has been known about the elicitation effect of JA-Ile-macrolactones on woody plants to harmful organisms, let alone its underlying mechanisms. Here, we first optimized the synthetic routine using mild toxic reagent isobutyl chloroformate instead of ethyl chloroformate for conjugation, and we used acetonitrile (MeCN) instead of ethyl alcohol for the better dissolution of p-toluenesulfonic acid (p-TsOH) to gain JA-Ile-macrolactones. JA-Ile-macrolactone 5b-treated tea plants significantly inhibited the larvae weight gain of Ectropis obliqua larvae and the lesions caused by Colletotrichum camelliae. Furthermore, the expression level of CsOPR3 was significantly upregulated in 5b-treated leaves. Meanwhile, 5b reduced the accumulation of eriodictyol 7-O-glucuronide (EDG) in tea plants, which was confirmed to promote the growth rate of E. obliqua larvae by artificial diet assay. In conclusion, our study proved that the exogenous application of 5b could induce the tea plant resistance both to herbivore E. obliqua and pathogen C. camelliae, and EDG was identified as one of the secondary metabolites that could influence the growth rate of E. obliqua, but it did not directly influence the infection of C. camelliae in vitro. Further research should be carried out to clarify the mechanism through which 5b induces tea plant resistance to C. camelliae.
Collapse
Affiliation(s)
- Songbo Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (S.L.); (Y.D.); (X.L.); (Y.X.); (M.L.)
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Yanan Dong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (S.L.); (Y.D.); (X.L.); (Y.X.); (M.L.)
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (S.L.); (Y.D.); (X.L.); (Y.X.); (M.L.)
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Yuxian Xing
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (S.L.); (Y.D.); (X.L.); (Y.X.); (M.L.)
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Miaomiao Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (S.L.); (Y.D.); (X.L.); (Y.X.); (M.L.)
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (S.L.); (Y.D.); (X.L.); (Y.X.); (M.L.)
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- Correspondence:
| |
Collapse
|