1
|
Myllymäki SM, Lan Q, Mikkola ML. Embryonic Mammary Gland Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:9-27. [PMID: 39821018 DOI: 10.1007/978-3-031-70875-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma. Placode and bud stages are morphologically similar with other ectodermal appendages like the hair follicle, reflecting the mammary gland's assumed evolutionary origin from an ancestral hair follicle-associated glandular unit. The shared features extend to signalling cascades such as the Wnt/β-catenin, fibroblast growth factor (Fgf), and ectodysplasin (Eda) pathways, while pathways unique to mammary gland include parathyroid hormone-like hormone (Pthlh) signalling and Hedgehog activity suppression. Mammary gland branching is highly non-stereotypic, achieved by the dynamic use of two distinct modes of branching: tip bifurcation and side branching and stochastic branch point formation. The cellular mechanisms driving the initial morphogenetic steps are slowly beginning to be unravelled. During placode and bud stages, mammary primordium predominantly grows through cell influx, while sprouting correlates with heightened proliferation. Branch elongation is driven by directional cell migration combined with differential cell motility and proliferation supplying the reservoir of migratory cells, whereas a bifurcating tip is associated with localized repression of the cell cycle and cell motility. Numerous similarities exist between embryonic programs and breast tumorigenesis, spanning cellular plasticity, epithelial-stromal interactions, and molecular regulators. Understanding embryonic mammogenesis may provide insights into how normal developmental processes can go awry, leading to malignancy, or how they can be reversed to prevent cancer progression.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Mayerl CJ, Kaczmarek EB, Smith AE, Shideler HE, Blilie ME, Edmonds CE, Steer KE, Adjerid K, Howe S, Johnson ML, Danos N, German RZ. A Ducted, Biomimetic Nipple Improves Aspects of Infant Feeding Physiology and Performance in an Animal Model. Dysphagia 2024:10.1007/s00455-024-10780-5. [PMID: 39487856 DOI: 10.1007/s00455-024-10780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Breastfeeding is widely regarded as the optimal form of feeding infants, as it provides both nutritional and physiological benefits. For example, breastfed infants generate greater intraoral suction and have higher amplitude muscle activities compared to bottle-fed infants, with downstream implications for motor function, development, and health. One mechanism that might explain these physiological differences is the structure of the nipple an infant is feeding on. Breasts in most mammals are ducted soft-tissue structures that require suction to be generated for milk to be released, whereas bottle nipples are hollow and allow milk to be acquired by compression of the nipple. We used a validated animal model (pigs) to test how being raised on a novel ducted nipple impacted feeding physiology and performance compared to infants raised on a standard (cisternic) nipple. At the end of infancy, we fed both groups with both nipple types and used high-speed videofluoroscopy synchronized with intraoral pressure measurements to evaluate feeding function. Nipple type did not have a profound impact on sucking or swallowing rates. However, when feeding on a ducted nipple, infant pigs raised on a ducted nipple generated more suction, consumed milk at a faster rate, swallowed larger boluses of milk, and had decreased likelihood of penetration and aspiration than those raised on a cisternic nipple. These data replicate those found when comparing breast- and bottle-fed infants, suggesting that a ducted, biomimetic nipple may provide bottle-fed infants with the physiologic benefits of breastfeeding.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - E B Kaczmarek
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - A E Smith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - H E Shideler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - M E Blilie
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - C E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - K E Steer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - K Adjerid
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - S Howe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - M L Johnson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - N Danos
- Department of Biology, University of San Diego, San Diego, CA, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
3
|
Stadtmauer DJ, Wagner GP. The mammary hair of Monodelphis domestica and homology of the mammary pilosebacous unit. J Morphol 2024; 285:e21769. [PMID: 39188032 DOI: 10.1002/jmor.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The unitary mammary gland is a synapomorphy of therian mammals and is thought to have evolved from the pilosebaceous organ in the mammalian stem lineage from which the lactogenic patch of monotremes is also derived. One of the key lines of evidence for the homology of the nipple and the lactogenic patch is that marsupials have retained a transient hair associated with developing mammary glands. However, these structures have not been documented since the early 20th-century drawings of Ernst Bresslau. In this study, we examine the developing mammary organs of Monodelphis domestica and document the presence of mammary hairs in 12-week-old females, as well as their absence after 18 weeks of age. Histochemical staining for cystine confirms the structures as keratinized hairs. Milk ducts of both juvenile and adult nipples show a division between KRT18+ luminal epithelium and KRT14+ ACTA2+ myoepithelium. These patterns match those in eutherians and suggest a conserved ductal morphology and mechanism of milk expulsion. Finally, PTHLH, a peptide hormone which promotes homeotic transformation of hairy skin into hairless nipples in the mouse, was detected in the Monodelphis milk duct during the mammary hair stage, suggesting that the mutual exclusivity of "hairless nipple" and "hair" organ identity is derived in eutherian mammals. These results reveal shared characteristics of the M. domestica nipple with both the eutherian nipple and the pilosebaceous organ, consistent with the evolutionary derivation of the mammary gland from an ancestral hair organ via developmental individualization of pilosebaceous and mammary identities.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Günter P Wagner
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Sahu S, Sahoo S, Sullivan T, O'Sullivan TN, Turan S, Albaugh ME, Burkett S, Tran B, Salomon DS, Kozlov SV, Koehler KR, Jolly MK, Sharan SK. Spatiotemporal modulation of growth factors directs the generation of multilineage mouse embryonic stem cell-derived mammary organoids. Dev Cell 2024; 59:175-186.e8. [PMID: 38159568 PMCID: PMC10872289 DOI: 10.1016/j.devcel.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Teresa Sullivan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - T Norene O'Sullivan
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA
| | - Sevilay Turan
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bao Tran
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - David S Salomon
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Serguei V Kozlov
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Karl R Koehler
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology, Department of Plastic & Oral Surgery, and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shyam K Sharan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
5
|
Kim HY, Sinha I, Sears KE, Kuperwasser C, Rauner G. Expanding the evo-devo toolkit: generation of 3D mammary tissue from diverse mammals. Development 2024; 151:dev202134. [PMID: 38276965 PMCID: PMC10905751 DOI: 10.1242/dev.202134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The varying pathways of mammary gland development across species and evolutionary history are underexplored, largely due to a lack of model systems. Recent progress in organoid technology holds the promise of enabling in-depth studies of the developmental adaptations that have occurred throughout the evolution of different species, fostering beneficial phenotypes. The practical application of this technology for mammary glands has been mostly confined to rodents and humans. In the current study, we have successfully created next-generation 3D mammary gland organoids from eight eutherian mammals and the first branched organoid of a marsupial mammary gland. Using mammary organoids, we identified a role for ROCK protein in regulating branching morphogenesis, a role that manifests differently in organoids from different mammals. This finding demonstrates the utility of the 3D organoid model for understanding the evolution and adaptations of signaling pathways. These achievements highlight the potential for organoid models to expand our understanding of mammary gland biology and evolution, and their potential utility in studies of lactation or breast cancer.
Collapse
Affiliation(s)
- Hahyung Y. Kim
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Ishani Sinha
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Karen E. Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
- Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Gat Rauner
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
6
|
Mayerl CJ, German RZ. Evolution, diversification and function of the maternal-infant dyad in mammalian feeding. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220554. [PMID: 37839443 PMCID: PMC10577036 DOI: 10.1098/rstb.2022.0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023] Open
Abstract
The evolution of the mother/infant dyad providing a source of nutrition for infants is essential for the origin and subsequent diversification of mammals. Despite the importance of this dyad, research on maternal and infant function is often treated independently. Our goal is to synthesize the work on maternal and infant function, discuss our own studies of suckling, and compare the origins of lactation and suckling with their ensuing diversification. Our central premise is that while extensive work has demonstrated variation across mammals in the maternal aspect of this system, very little has been done to address how this relates to infant function. We start with a discussion of the fundamental anatomy and physiology of both mother and infant. We next discuss the origin of mammary glands and milk, and infant suckling, which is distinct from their subsequent diversification. We then discuss the diversification of maternal and infant function, highlighting the evolutionary diversity present in maternal function (both anatomically and physiologically), before arguing that the diversity of infant function is unexplored, and needs to be better studied in the future. We end by discussing some of the holes in our understanding, and suggestions for future work that can address these lacunae. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Christopher J. Mayerl
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001-5766, USA
| | - Rebecca Z. German
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
7
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
8
|
Geiger A, Hovey R. Development of the mammary glands and its regulation: how not all species are equal. Anim Front 2023; 13:44-54. [PMID: 37324203 PMCID: PMC10266756 DOI: 10.1093/af/vfad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
|
9
|
Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances. Cells 2022; 11:cells11203325. [PMID: 36291191 PMCID: PMC9600653 DOI: 10.3390/cells11203325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The mammary gland is a unique organ with the ability to undergo repeated cyclic changes throughout the life of mammals. Among domesticated livestock species, ruminants (cattle and buffalo) constitute a distinct class of livestock species that are known milk producers. Cattle and buffalo contribute to 51 and 13% of the total milk supply in the world, respectively. They also play an essential role in the development of the economy for farming communities by providing milk, meat, and draft power. The development of the ruminant mammary gland is highly dynamic and multiphase in nature. There are six developmental stages: embryonic, prepubertal, pubertal, pregnancy, lactation, and involution. There has been substantial advancement in our understanding of the development of the mammary gland in both mouse and human models. Until now, there has not been a thorough investigation into the molecular processes that underlie the various stages of cow udder development. The current review sheds light on the morphological and molecular changes that occur during various developmental phases in diverse species, with a particular focus on the cow udder. It aims to explain the physiological differences between cattle and non-ruminant mammalian species such as humans, mice, and monkeys. Understanding the developmental biology of the mammary gland in molecular detail, as well as species-specific variations, will facilitate the researchers working in this area in further studies on cellular proliferation, differentiation, apoptosis, organogenesis, and carcinogenesis. Additionally, in-depth knowledge of the mammary gland will promote its use as a model organ for research work and promote enhanced milk yield in livestock animals without affecting their health and welfare.
Collapse
|
10
|
De Palo P, Auclair-Ronzaud J, Maggiolino A. Mammary gland physiology and farm management of dairy mares and jennies. JDS COMMUNICATIONS 2022; 3:234-237. [PMID: 36338815 PMCID: PMC9623692 DOI: 10.3168/jdsc.2021-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
The equid udder has a lower storage capacity than the ruminant udder. Milking frequency is one of the most important factors affecting milk yield. Foals can be partly artificially suckled during lactation. Mechanical milking has been used in equids but our understanding of machine milking remains poor. Automated milking systems for equids represent a great challenge for the future.
Equid milk is arousing increasing interest in consumers and researchers because of its similarity in composition to human milk. The low and different protein content makes equid milk it suitable for children with cow milk protein allergy. Both horse and milk production, in many farms, still follow a characteristic and traditional method of separating the foal from the mother to allow milking procedures. This separation lasts at least 2 to 3 h before milking, a time in which the foal remains fasting. This operation is repeated several times a day, as the equid udder has little collection capacity, and milking frequency is one of the most important parameters to increase milk production; it must be emptied often. New partial artificially suckling techniques have been developed that allow the foal to be separated from its mother for many hours without starving. Furthermore, mechanical milking has been introduced in equid milk production, although in-depth knowledge is lacking on milking parameters and how these aspects affect milk production and udder health. Moreover, in some farms, new milking parlors for Equidae have been developed, ensuring that stress is minimized and production and animal welfare are ensured. It is important to develop and apply technologies for equid milk production, evaluating potential effects on welfare, health, and milk production. This represents the broadest perspective and the greatest challenge because of the need to understand management best practices, thinking to the possibility to introduce as soon as possible automatic milking systems that could ensure a good milking frequency.
Collapse
Affiliation(s)
- Pasquale De Palo
- Department of Veterinary Medicine, University “Aldo Moro” of Bari, 70010 Valenzano, Italy
- Corresponding author:
| | - Juliette Auclair-Ronzaud
- IFCE, Plateau Technique de la Station Expérimentale, 1 Impasse des Haras, 19370, Hamberet, France
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University “Aldo Moro” of Bari, 70010 Valenzano, Italy
| |
Collapse
|
11
|
The Indicators of Clinical and Subclinical Mastitis in Equine Milk. Animals (Basel) 2022; 12:ani12040440. [PMID: 35203147 PMCID: PMC8868146 DOI: 10.3390/ani12040440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Mastitis, the inflammation of the mammary gland, is a major problem in a mare’s perinatal period, negatively affecting both the health of the mare and newborn foal and the quality of milk produced on dairy equine farms. The detection of mastitis is therefore one of the important goals in the equine breeding and dairy industry. This study aimed to determine the somatic cell count (SCC), the percentage of the immune cells, the electrical conductivity (ECM), and bacteriological index (BII) in milk collected from mares with (CM) and without (NCM) clinical symptoms of mastitis. The increase in examined indicators is suspected to be a subclinical mastitis indicator, therefore the study aimed to separate two subgroups, mares with (SM) and without (NSM) subclinical symptoms of mastitis. In milk from NCM mares the values of SCC, immune cells, and ECM increased immediately after birth and weaning, whereas during the rest of the lactation period their values were at a low level. Similarly, in milk from CM mares, the values of examined indicators were high and comparable to the weaning time. An increase in the level of examined indicators may become an early indication of subclinical mastitis. Abstract The somatic cell count in milk (SCC) and electrical conductivity of milk (ECM) are indicators of the health status of the mammary gland. Among somatic cells, mainly polymorphonuclear neutrophils (PMN), macrophages (MAC), and lymphocytes (LYM) are rated. This study aimed to determine the SCC, PMN, MAC, LYM, ECM, and bacteriological index (BII) in milk collected from mares with (CM) and without (NCM) clinical symptoms of mastitis concerning mares with (SM) and without (NSM) subclinical mastitis. Milk samples were collected from 27 mares divided into NCM (n = 12) and CM (n = 15) groups. In samples, SCC quantification, cytological examinations, ECM measurement, and bacteriological examination were performed. In NCM mares, the values of SCC, PMN, MAC, LYM, and ECM were higher in initial than in consecutive examined days after birth until weaning. After weaning the proportion of SCC, PMN, MAC, LYM, ECM, and BII increased and did not differ with the average values in CM mares. These equine milk indicators may reflect an early symptom of subclinical mastitis and in the future may be used in the early detection of mastitis or as a tool of assessment of the health status of the mammary gland in the dairy equine farm.
Collapse
|
12
|
Kozlov AP. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infect Agent Cancer 2022; 17:2. [PMID: 35012580 PMCID: PMC8751115 DOI: 10.1186/s13027-021-00412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Earlier I hypothesized that hereditary tumors might participate in the evolution of multicellular organisms. I formulated the hypothesis of evolution by tumor neofunctionalization, which suggested that the evolutionary role of hereditary tumors might consist in supplying evolving multicellular organisms with extra cell masses for the expression of evolutionarily novel genes and the origin of new cell types, tissues, and organs. A new theory—the carcino-evo-devo theory—has been developed based on this hypothesis. Main text My lab has confirmed several non-trivial predictions of this theory. Another non-trivial prediction is that evolutionarily new organs if they originated from hereditary tumors or tumor-like structures, should recapitulate some tumor features in their development. This paper reviews the tumor-like features of evolutionarily novel organs. It turns out that evolutionarily new organs such as the eutherian placenta, mammary gland, prostate, the infantile human brain, and hoods of goldfishes indeed have many features of tumors. I suggested calling normal organs, which have many tumor features, the tumor-like organs. Conclusion Tumor-like organs might originate from hereditary atypical tumor organs and represent the part of carcino-evo-devo relationships, i.e., coevolution of normal and neoplastic development. During subsequent evolution, tumor-like organs may lose the features of tumors and the high incidence of cancer and become normal organs without (or with almost no) tumor features.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971. .,Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
| |
Collapse
|
13
|
Link K, Shved N, Serrano N, Akgül G, Caelers A, Faass O, Mouttet F, Raabe O, D’Cotta H, Baroiller JF, Eppler E. Effects of seawater and freshwater challenges on the Gh/Igf system in the saline-tolerant blackchin tilapia (Sarotherodon melanotheron). Front Endocrinol (Lausanne) 2022; 13:976488. [PMID: 36313755 PMCID: PMC9596810 DOI: 10.3389/fendo.2022.976488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Prolactin (Prl) and growth hormone (Gh) as well as insulin-like growth factor 1 (Igf1) are involved in the physiological adaptation of fish to varying salinities. The Igfs have been also ascribed other physiological roles during development, growth, reproduction and immune regulation. However, the main emphasis in the investigation of osmoregulatory responses has been the endocrine, liver-derived Igf1 route and local regulation within the liver and osmoregulatory organs. Few studies have focused on the impact of salinity alterations on the Gh/Igf-system within the neuroendocrine and immune systems and particularly in a salinity-tolerant species, such as the blackchin tilapia Sarotherodon melanotheron. This species is tolerant to hypersalinity and saline variations, but it is confronted by severe climate changes in the Saloum inverse estuary. Here we investigated bidirectional effects of increased salinity followed by its decrease on the gene regulation of prl, gh, igf1, igf2, Gh receptor and the tumor-necrosis factor a. A mixed population of sexually mature 14-month old blackchin tilapia adapted to freshwater were first exposed to seawater for one week and then to fresh water for another week. Brain, pituitary, head kidney and spleen were excised at 4 h, 1, 2, 3 and 7 days after both exposures and revealed differential expression patterns. This investigation should give us a better understanding of the role of the Gh/Igf system within the neuroendocrine and immune organs and the impact of bidirectional saline challenges on fish osmoregulation in non-osmoregulatory organs, notably the complex orchestration of growth factors and cytokines.
Collapse
Affiliation(s)
- Karl Link
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Natallia Shved
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Nabil Serrano
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Gülfirde Akgül
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
| | - Antje Caelers
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | - Oliver Faass
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | | | - Oksana Raabe
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena D’Cotta
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Université Montpellier, Institut de Recherche pour le Développement (the French National Research Institute for Sustainable Development) (IRD), Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies) (EPHE), Centre National de la Recherche Scientifique (French National Centre for Scientific Research) (CNRS), Unité Mixte de Recherche (Mixed Research Unit) (UMR) 5554, Montpellier, France
- UMR116-Institut des Sciences de l’Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Jean-François Baroiller
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Université Montpellier, Institut de Recherche pour le Développement (the French National Research Institute for Sustainable Development) (IRD), Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies) (EPHE), Centre National de la Recherche Scientifique (French National Centre for Scientific Research) (CNRS), Unité Mixte de Recherche (Mixed Research Unit) (UMR) 5554, Montpellier, France
- UMR116-Institut des Sciences de l’Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Elisabeth Eppler
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
- Institute of Evolutionary Medicine IEM, University of Zürich, Zürich, Switzerland
- Institute of Anatomy, University of Bern, Bern, Switzerland
- *Correspondence: Elisabeth Eppler,
| |
Collapse
|
14
|
Spina E, Cowin P. Embryonic mammary gland development. Semin Cell Dev Biol 2021; 114:83-92. [DOI: 10.1016/j.semcdb.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
|
15
|
Abstract
An understanding of the anatomy, histology, and development of the equine mammary gland underpins study of the pathology of diseases including galactorrhoea, agalactia, mastitis, and mammary tumour development. This review examines the prenatal development of the equine mammary gland and the striking degree to which the tissue undergoes postnatal development associated with the reproductive cycle. The gland is characterised by epithelial structures arranged in terminal duct lobular units, similar to those of the human breast, supported by distinct zones of intra- and interlobular collagenous stroma. Mastitis and mammary carcinomas are two of the most frequently described equine mammary pathologies and have an overlap in associated clinical signs. Mastitis is most frequently associated with bacterial aetiologies, particularly Streptococcus spp., and knowledge of the process of post-lactational regression can be applied to preventative husbandry strategies. Equine mammary tumours are rare and carry a poor prognosis in many cases. Recent studies have used mammosphere assays to reveal novel insights into the identification and potential behaviour of mammary stem/progenitor cell populations. These suggest that mammospheres derived from equine cells have different growth dynamics compared to those from other species. In parallel with studying the equine mammary gland in order to advance knowledge of equine mammary disease at the interface of basic and clinical science, there is a need to better understand equine lactational biology. This is driven in part by the recognition of the potential value of horse and donkey milk for human consumption, particularly donkey milk in children with 'Cow Milk Protein Allergy'.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Pharo EA. Marsupial milk: a fluid source of nutrition and immune factors for the developing pouch young. Reprod Fertil Dev 2020; 31:1252-1265. [PMID: 30641029 DOI: 10.1071/rd18197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Marsupials have a very different reproductive strategy to eutherians. An Australian marsupial, the tammar wallaby (Macropus eugenii) has a very short pregnancy of about 26.5 days, with a comparatively long lactation of 300-350 days. The tammar mother gives birth to an altricial, approximately 400 mg young that spends the first 200 days postpartum (p.p.) in its mother's pouch, permanently (0-100 days p.p.; Phase 2A) and then intermittently (100-200 days p.p.; Phase 2B) attached to the teat. The beginning of Phase 3 marks the first exit from the pouch (akin to the birth of a precocious eutherian neonate) and the supplementation of milk with herbage. The marsupial mother progressively alters milk composition (proteins, fats and carbohydrates) and individual milk constituents throughout the lactation cycle to provide nutrients and immunological factors that are appropriate for the considerable physiological development and growth of her pouch young. This review explores the changes in tammar milk components that occur during the lactation cycle in conjunction with the development of the young.
Collapse
|
17
|
Nishihara H. Retrotransposons spread potential cis-regulatory elements during mammary gland evolution. Nucleic Acids Res 2020; 47:11551-11562. [PMID: 31642473 PMCID: PMC7145552 DOI: 10.1093/nar/gkz1003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Acquisition of cis-elements is a major driving force for rewiring a gene regulatory network. Several kinds of transposable elements (TEs), mostly retrotransposons that propagate via a copy-and-paste mechanism, are known to possess transcription factor binding motifs and have provided source sequences for enhancers/promoters. However, it remains largely unknown whether retrotransposons have spread the binding sites of master regulators of morphogenesis and accelerated cis-regulatory expansion involved in common mammalian morphological features during evolution. Here, I demonstrate that thousands of binding sites for estrogen receptor α (ERα) and three related pioneer factors (FoxA1, GATA3 and AP2γ) that are essential regulators of mammary gland development arose from a spreading of the binding motifs by retrotransposons. The TE-derived functional elements serve primarily as distal enhancers and are enriched around genes associated with mammary gland morphogenesis. The source TEs occurred via a two-phased expansion consisting of mainly L2/MIR in a eutherian ancestor and endogenous retrovirus 1 (ERV1) in simian primates and murines. Thus the build-up of potential sources for cis-elements by retrotransposons followed by their frequent utilization by the host (co-option/exaptation) may have a general accelerating effect on both establishing and diversifying a gene regulatory network, leading to morphological innovation.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-S2-17, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
18
|
Wen L, Wu Y, Yang Y, Han TL, Wang W, Fu H, Zheng Y, Shan T, Chen J, Xu P, Jin H, Lin L, Liu X, Qi H, Tong C, Baker P. Gestational Diabetes Mellitus Changes the Metabolomes of Human Colostrum, Transition Milk and Mature Milk. Med Sci Monit 2019; 25:6128-6152. [PMID: 31418429 PMCID: PMC6708282 DOI: 10.12659/msm.915827] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a pregnancy complication that is diagnosed by the novel onset of abnormal glucose intolerance. Our study aimed to investigate the changes in human breast milk metabolome over the first month of lactation and how GDM affects milk metabolome. MATERIAL AND METHODS Colostrum, transition milk, and mature milk samples from women with normal uncomplicated pregnancies (n=94) and women with GDM-complicated pregnancies (n=90) were subjected to metabolomic profiling by the use of gas chromatography-mass spectrometry (GC-MS). RESULTS For the uncomplicated pregnancies, there were 59 metabolites that significantly differed among colostrum, transition milk, and mature milk samples, while 58 metabolites differed in colostrum, transition milk, and mature milk samples from the GDM pregnancies. There were 28 metabolites that were found to be significantly different between women with normal pregnancies and women with GDM pregnancies among colostrum, transition milk, and mature milk samples. CONCLUSIONS The metabolic profile of human milk is dynamic throughout the first months of lactation. High levels of amino acids in colostrum and high levels of saturated fatty acids and unsaturated fatty acids in mature milk, which may be critical for neonatal development in the first month of life, were features of both normal and GDM pregnancies.
Collapse
Affiliation(s)
- Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Ting-li Han
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wenling Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
- Department of Obstetrics, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, P.R. China
| | - Huijia Fu
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Tengfei Shan
- Department of Obstetrics and Gynecology, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, P.R. China
| | - Jianjun Chen
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, P.R. China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Huili Jin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Li Lin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, P.R. China
| | - Philip Baker
- Ministry of Education of China International Collaborative Joint Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, P.R. China
- Liggins Institute, University of Auckland, Auckland, New Zealand
- College of Life Sciences, University of Leicester, Leicester, U.K
| |
Collapse
|
19
|
Lu P, Zhou T, Xu C, Lu Y. Mammary stem cells, where art thou? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e357. [PMID: 31322329 DOI: 10.1002/wdev.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Tremendous progress has been made in the field of stem cell biology. This is in part due to the emergence of various vertebrate organs, including the mammary gland, as an amenable model system for adult stem cell studies and remarkable technical advances in single cell technology and modern genetic lineage tracing. In the current review, we summarize the recent progress in mammary gland stem cell biology at both the adult and embryonic stages. We discuss current challenges and controversies, and potentially new and exciting directions for future research. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tao Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
20
|
Hughes K, Watson CJ. Sinus-like dilatations of the mammary milk ducts, Ki67 expression, and CD3-positive T lymphocyte infiltration, in the mammary gland of wild European rabbits during pregnancy and lactation. J Anat 2018; 233:266-273. [PMID: 29736914 PMCID: PMC6036928 DOI: 10.1111/joa.12824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 02/03/2023] Open
Abstract
Sinus-like dilatations of the mammary duct are recognisable in the mammary gland of pregnant and lactating wild European rabbits. These dilatations exhibit a bilaminar epithelial lining, with luminal epithelial cells expressing basal and lateral E-cadherin. Occasional binucleated mammary epithelial cells are present in the luminal layer. Underlying the luminal epithelial cells is a basal layer of cytokeratin 14-positive cells, supported by a thin layer of fibrous tissue. Multi-segmental epithelial proliferation, as indicated by Ki67 expression, is apparent in the luminal epithelial cells, suggesting a capacity for division during pregnancy and lactation. CD3-positive T lymphocytes are present both intraepithelially, suggesting exocytosis, and in foci subjacent to the ductular epithelium. We consider that sinus-like dilatations of the mammary duct may have the potential to give rise to a subset of the mammary gland neoplasms classified as ductal in origin. Milk accumulation in these sinus-like dilatations is likely to provide a niche for bacterial replication in cases of mastitis in rabbits. These structures are an important component of the innate immune system of the mammary gland, both as a physical barrier and as an interface between the milk and mammary immune cells.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
21
|
Williams MM, Vaught DB, Joly MM, Hicks DJ, Sanchez V, Owens P, Rahman B, Elion DL, Balko JM, Cook RS. ErbB3 drives mammary epithelial survival and differentiation during pregnancy and lactation. Breast Cancer Res 2017; 19:105. [PMID: 28886748 PMCID: PMC5591538 DOI: 10.1186/s13058-017-0893-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/07/2017] [Indexed: 01/05/2023] Open
Abstract
Background During pregnancy, as the mammary gland prepares for synthesis and delivery of milk to newborns, a luminal mammary epithelial cell (MEC) subpopulation proliferates rapidly in response to systemic hormonal cues that activate STAT5A. While the receptor tyrosine kinase ErbB4 is required for STAT5A activation in MECs during pregnancy, it is unclear how ErbB3, a heterodimeric partner of ErbB4 and activator of phosphatidyl inositol-3 kinase (PI3K) signaling, contributes to lactogenic expansion of the mammary gland. Methods We assessed mRNA expression levels by expression microarray of mouse mammary glands harvested throughout pregnancy and lactation. To study the role of ErbB3 in mammary gland lactogenesis, we used transgenic mice expressing WAP-driven Cre recombinase to generate a mouse model in which conditional ErbB3 ablation occurred specifically in alveolar mammary epithelial cells (aMECs). Results Profiling of RNA from mouse MECs isolated throughout pregnancy revealed robust Erbb3 induction during mid-to-late pregnancy, a time point when aMECs proliferate rapidly and undergo differentiation to support milk production. Litters nursed by ErbB3KO dams weighed significantly less when compared to litters nursed by ErbB3WT dams. Further analysis revealed substantially reduced epithelial content, decreased aMEC proliferation, and increased aMEC cell death during late pregnancy. Consistent with the potent ability of ErbB3 to activate cell survival through the PI3K/Akt pathway, we found impaired Akt phosphorylation in ErbB3KO samples, as well as impaired expression of STAT5A, a master regulator of lactogenesis. Constitutively active Akt rescued cell survival in ErbB3-depleted aMECs, but failed to restore STAT5A expression or activity. Interestingly, defects in growth and survival of ErbB3KO aMECs as well as Akt phosphorylation, STAT5A activity, and expression of milk-encoding genes observed in ErbB3KO MECs progressively improved between late pregnancy and lactation day 5. We found a compensatory upregulation of ErbB4 activity in ErbB3KO mammary glands. Enforced ErbB4 expression alleviated the consequences of ErbB3 ablation in aMECs, while combined ablation of both ErbB3 and ErbB4 exaggerated the phenotype. Conclusions These studies demonstrate that ErbB3, like ErbB4, enhances lactogenic expansion and differentiation of the mammary gland during pregnancy, through activation of Akt and STAT5A, two targets crucial for lactation. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0893-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle M Williams
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA
| | - David B Vaught
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA
| | - Meghan Morrison Joly
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA
| | - Donna J Hicks
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA
| | - Bushra Rahman
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA
| | - David L Elion
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Rm 749 Preston Research Building, Nashville, TN, 37232, USA.
| |
Collapse
|
22
|
Rauner G, Ledet MM, Van de Walle GR. Conserved and variable: Understanding mammary stem cells across species. Cytometry A 2017; 93:125-136. [PMID: 28834173 DOI: 10.1002/cyto.a.23190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023]
Abstract
Postnatal mammary gland development requires the presence of mammary stem and progenitor cells (MaSC), which give rise to functional milk-secreting cells and regenerate the mammary epithelium with each cycle of lactation. These long-lived, tissue-resident MaSC are also targets for malignant transformation and may be cancer cells-of-origin. Consequently, MaSC are extensively researched in relation to their role and function in development, tissue regeneration, lactation, and breast cancer. The basic structure and function of the mammary gland are conserved among all mammalian species, from the most primitive to the most evolved. However, species vary greatly in their lactation strategies and mammary cancer incidence, making MaSC an interesting focus for comparative research. MaSC have been characterized in mice, to a lesser degree in humans, and to an even lesser degree in few additional mammals. They remain uncharacterized in most mammalian species, including "ancient" monotremes, marsupials, wild, and rare species, as well as in common and domestic species such as cats. Identification and comparison of MaSC across a large variety of species, particularly those with extreme lactational adaptations or low mammary cancer incidence, is expected to deepen our understanding of development and malignancy in the mammary gland. Here, we review the current status of MaSC characterization across species, and underline species variations in lactation and mammary cancer through which we may learn about the role of MaSC in these processes. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, New York 14853
| | - Melissa M Ledet
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, New York 14853
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, New York 14853
| |
Collapse
|
23
|
Misery L, Talagas M. Innervation of the Male Breast: Psychological and Physiological Consequences. J Mammary Gland Biol Neoplasia 2017; 22:109-115. [PMID: 28551701 DOI: 10.1007/s10911-017-9380-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2017] [Indexed: 12/25/2022] Open
Abstract
Breasts, including the nipple and areola, have two functions: lactation and as an erogenous area. Male breasts are much less studied that those of women. In men, breasts have only an erotic function. Because there is dense and very well organized innervation of the nipple-areola complex in men, nipple erection occurs frequently and via different mechanisms from penile erection. Although it seems to be less important for men than for women and it is poorly studied, the erotic value of breast stimulation is notable. Consequently, there is a need to include this aspect in sexological and andrological studies and to preserve breasts and their innervation or to reconstruct them in cases of surgical intervention.
Collapse
Affiliation(s)
- Laurent Misery
- Laboratory of Neurosciences of Brest, University of Western Brittany, Brest, France.
- Department of Dermatology and Venerology, University Hospital of Brest, 29609, Brest, France.
| | - Matthieu Talagas
- Laboratory of Neurosciences of Brest, University of Western Brittany, Brest, France
- Department of Pathology, University Hospital of Brest, Brest, France
| |
Collapse
|
24
|
Pflüger HJ. Professor Ernst Bresslau, founder of the Zoology Departments at the Universities of Cologne and Sao Paulo: lessons to learn from his life history. ZOOLOGY 2017; 122:1-6. [PMID: 28550947 DOI: 10.1016/j.zool.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 11/19/2022]
Abstract
In this article, the life history of the founding father of the departments of Zoology at the Universities of Cologne and Sao Paulo, Prof. Ernst Bresslau, is described on occasion of the establishing of the "Ernst Bresslau Guest Professorship" at the University of Cologne. His main scientific achievements are discussed, in particular his research on the evolutionary origin of the mammary apparatus, in addition to his broad interest in biological topics. Among the many technical advancements that he introduced was the micro slow-motion camera developed together with the Zeiss Company which allowed to film ciliary beats at high speeds.
Collapse
Affiliation(s)
- Hans-Joachim Pflüger
- Institute of Biology, Neurobiology, Freie Universität Berlin, Koenigin-Luise-Str. 28-30, D-14195 Berlin, Germany.
| |
Collapse
|
25
|
Suzuki TK. On the Origin of Complex Adaptive Traits: Progress Since the Darwin Versus Mivart Debate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:304-320. [PMID: 28397400 DOI: 10.1002/jez.b.22740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 01/12/2023]
Abstract
The evolutionary origin of complex adaptive traits has been a controversial topic in the history of evolutionary biology. Although Darwin argued for the gradual origins of complex adaptive traits within the theory of natural selection, Mivart insisted that natural selection could not account for the incipient stages of complex traits. The debate starting from Darwin and Mivart eventually engendered two opposite views: gradualism and saltationism. Although this has been a long-standing debate, the issue remains unresolved. However, recent studies have interrogated classic examples of complex traits, such as the asymmetrical eyes of flatfishes and leaf mimicry of butterfly wings, whose origins were debated by Darwin and Mivart. Here, I review recent findings as a starting point to provide a modern picture of the evolution of complex adaptive traits. First, I summarize the empirical evidence that unveils the evolutionary steps toward complex traits. I then argue that the evolution of complex traits could be understood within the concept of "reducible complexity." Through these discussions, I propose a conceptual framework for the formation of complex traits, named as reducible-composable multicomponent systems, that satisfy two major characteristics: reducibility into a sum of subcomponents and composability to construct traits from various additional and combinatorial arrangements of the subcomponents. This conceptual framework provides an analytical foundation for exploring evolutionary pathways to build up complex traits. This review provides certain essential avenues for deciphering the origin of complex adaptive traits.
Collapse
Affiliation(s)
- Takao K Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, 305-8634, Japan
| |
Collapse
|
26
|
Wu HJ, Oh JW, Spandau DF, Tholpady S, Diaz J, Schroeder LJ, Offutt CD, Glick AB, Plikus MV, Koyama S, Foley J. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple. Development 2017; 144:1498-1509. [PMID: 28289136 DOI: 10.1242/dev.141630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022]
Abstract
Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts.
Collapse
Affiliation(s)
- Hsing-Jung Wu
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.,Biomedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Korea
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sunil Tholpady
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jesus Diaz
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Laura J Schroeder
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Carlos D Offutt
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Sachiko Koyama
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA .,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Veltmaat JM. Prenatal Mammary Gland Development in the Mouse: Research Models and Techniques for Its Study from Past to Present. Methods Mol Biol 2017; 1501:21-76. [PMID: 27796947 DOI: 10.1007/978-1-4939-6475-8_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mammary gland development starts during prenatal life, when at designated positions along the ventrolateral boundary of the embryonic or fetal trunk, surface ectodermal cells coalesce to form primordia for mammary glands, instead of differentiating into epidermis. With the wealth of genetically engineered mice available as research models, our understanding of the prenatal phase of mammary development has recently greatly advanced. This understanding includes the recognition of molecular and mechanistic parallels between prenatal and postnatal mammary morphogenesis and even tumorigenesis, much of which can moreover be extrapolated to human. This makes the murine embryonic mammary gland a useful model for a myriad of questions pertaining to normal and pathological breast development. Hence, unless indicated otherwise, this review describes embryonic mammary gland development in mouse only, and lists mouse models that have been examined for defects in embryonic mammary development. Techniques that originated in the field of developmental biology, such as explant culture and tissue recombination, were adapted specifically to research on the embryonic mammary gland. Detailed protocols for these techniques have recently been published elsewhere. This review describes how the development and adaptation of these techniques moved the field forward from insights on (comparative) morphogenesis of the embryonic mammary gland to the understanding of tissue and molecular interactions and their regulation of morphogenesis and functional development of the embryonic mammary gland. It is here furthermore illustrated how generic molecular biology and biochemistry techniques can be combined with these older, developmental biology techniques, to address relevant research questions. As such, this review should provide a solid starting point for those wishing to familiarize themselves with this fascinating and important subdomain of mammary gland biology, and guide them in designing a relevant research strategy.
Collapse
Affiliation(s)
- Jacqueline M Veltmaat
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|
28
|
Control of Hoxd gene transcription in the mammary bud by hijacking a preexisting regulatory landscape. Proc Natl Acad Sci U S A 2016; 113:E7720-E7729. [PMID: 27856734 DOI: 10.1073/pnas.1617141113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vertebrate Hox genes encode transcription factors operating during the development of multiple organs and structures. However, the evolutionary mechanism underlying this remarkable pleiotropy remains to be fully understood. Here, we show that Hoxd8 and Hoxd9, two genes of the HoxD complex, are transcribed during mammary bud (MB) development. However, unlike in other developmental contexts, their coexpression does not rely on the same regulatory mechanism. Hoxd8 is regulated by the combined activity of closely located sequences and the most distant telomeric gene desert. On the other hand, Hoxd9 is controlled by an enhancer-rich region that is also located within the telomeric gene desert but has no impact on Hoxd8 transcription, thus constituting an exception to the global regulatory logic systematically observed at this locus. The latter DNA region is also involved in Hoxd gene regulation in other contexts and strongly interacts with Hoxd9 in all tissues analyzed thus far, indicating that its regulatory activity was already operational before the appearance of mammary glands. Within this DNA region and neighboring a strong limb enhancer, we identified a short sequence conserved in therian mammals and capable of enhancer activity in the MBs. We propose that Hoxd gene regulation in embryonic MBs evolved by hijacking a preexisting regulatory landscape that was already at work before the emergence of mammals in structures such as the limbs or the intestinal tract.
Collapse
|
29
|
Rowson-Hodel AR, Manjarin R, Trott JF, Cardiff RD, Borowsky AD, Hovey RC. Neoplastic transformation of porcine mammary epithelial cells in vitro and tumor formation in vivo. BMC Cancer 2015; 15:562. [PMID: 26228788 PMCID: PMC4520266 DOI: 10.1186/s12885-015-1572-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 07/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammary glands of pigs share many functional and morphological similarities with the breasts of humans, raising the potential of their utility for research into the mechanisms underlying normal mammary function and breast carcinogenesis. Here we sought to establish a model for the efficient manipulation and transformation of porcine mammary epithelial cells (pMEC) in vitro and tumor growth in vivo. METHODS We utilized a vector encoding the red florescent protein tdTomato to transduce populations of pMEC from Yorkshire -Hampshire crossbred female pigs in vitro and in vivo. Populations of primary pMEC were then separated by FACS using markers to distinguish epithelial cells (CD140a-) from stromal cells (CD140a+), with or without further enrichment for basal and luminal progenitor cells (CD49f+). These separated pMEC populations were transduced by lentivirus encoding murine polyomavirus T antigens (Tag) and tdTomato and engrafted to orthotopic or ectopic sites in immunodeficient NOD.Cg-Prkdc (scid) Il2rg (tm1Wjl) /SzJ (NSG) mice. RESULTS We demonstrated that lentivirus effectively transduces pMEC in vitro and in vivo. We further established that lentivirus can be used for oncogenic-transformation of pMEC ex vivo for generating mammary tumors in vivo. Oncogenic transformation was confirmed in vitro by anchorage-independent growth, increased cell proliferation, and expression of CDKN2A, cyclin A2 and p53 alongside decreased phosphorylation of Rb. Moreover, Tag-transformed CD140a- and CD140a-CD49f + pMECs developed site-specific tumors of differing histopathologies in vivo. CONCLUSIONS Herein we establish a model for the transduction and oncogenic transformation of pMEC. This is the first report describing a porcine model of mammary epithelial cell tumorigenesis that can be applied to the study of human breast cancers.
Collapse
Affiliation(s)
- A R Rowson-Hodel
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Present Address: Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA.
| | - R Manjarin
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Present Address: USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - J F Trott
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - R D Cardiff
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, CA, USA.
| | - A D Borowsky
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, CA, USA.
| | - R C Hovey
- Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Urashima T, Inamori H, Fukuda K, Saito T, Messer M, Oftedal OT. 4-O-Acetyl-sialic acid (Neu4,5Ac2) in acidic milk oligosaccharides of the platypus (Ornithorhynchus anatinus) and its evolutionary significance. Glycobiology 2015; 25:683-97. [DOI: 10.1093/glycob/cwv010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
|
31
|
Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat Commun 2014; 5:5861. [PMID: 25519203 PMCID: PMC4284646 DOI: 10.1038/ncomms6861] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022] Open
Abstract
Lactation, hair development and homeothermy are characteristic evolutionary features that define mammals from other vertebrate species. Here we describe the discovery of two autosomal dominant mutations with antagonistic, pleiotropic effects on all three of these biological processes, mediated through the prolactin signalling pathway. Most conspicuously, mutations in prolactin (PRL) and its receptor (PRLR) have an impact on thermoregulation and hair morphology phenotypes, giving prominence to this pathway outside of its classical roles in lactation. The hormone prolactin is a known modulator of mammalian lactation and hair growth. Here, the authors describe two dominant mutations in bovine prolactin and its receptor, demonstrating antagonistic effects on these traits and highlighting a role for this pathway in sweat gland function and thermoregulation.
Collapse
|
32
|
Oftedal OT, Nicol SC, Davies NW, Sekii N, Taufik E, Fukuda K, Saito T, Urashima T. Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus). Glycobiology 2014; 24:826-39. [DOI: 10.1093/glycob/cwu041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Olav T Oftedal
- Smithsonian Environmental Research Center, Smithsonian Institution, Edgewater, MD 21037, USA
| | | | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia
| | - Nobuhiro Sekii
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Epi Taufik
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kenji Fukuda
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Tadao Saito
- Graduate School of Agriculture, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Tadasu Urashima
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
33
|
Howard BA, Lu P. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Semin Cell Dev Biol 2014; 25-26:43-51. [DOI: 10.1016/j.semcdb.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 01/06/2023]
|
34
|
Propper AY, Howard BA, Veltmaat JM. Prenatal morphogenesis of mammary glands in mouse and rabbit. J Mammary Gland Biol Neoplasia 2013; 18:93-104. [PMID: 23736987 PMCID: PMC3691486 DOI: 10.1007/s10911-013-9298-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/02/2013] [Indexed: 01/25/2023] Open
Abstract
Our understanding of prenatal morphogenesis of mammary glands has recently greatly advanced. This review focuses on morphogenesis proper, as well as cellular processes and tissue interactions involved in the progression of the embryonic mammary gland through sequential morphogenic stages in both the mouse and rabbit embryo. We provide a synthesis of both historical and more recent studies of embryonic mammary gland development, as well as arguments to revise old concepts about mechanisms of mammary line and rudiment formation. Finally, we highlight outstanding issues that remain to be addressed.
Collapse
Affiliation(s)
- Alain Y. Propper
- Laboratoire de Neurosciences, EA481, Université de Franche-Comté, (Emeritus), 25030 Besançon Cedex, France
| | - Beatrice A. Howard
- Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Jacqueline M. Veltmaat
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
| |
Collapse
|