1
|
Banijamali M, Höjer P, Nagy A, Hååg P, Gomero EP, Stiller C, Kaminskyy VO, Ekman S, Lewensohn R, Karlström AE, Viktorsson K, Ahmadian A. Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis. J Extracell Vesicles 2022; 11:e12277. [DOI: 10.1002/jev2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mahsan Banijamali
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| | - Pontus Höjer
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| | - Abel Nagy
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Petra Hååg
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
| | - Elizabeth Paz Gomero
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Christiane Stiller
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Vitaliy O. Kaminskyy
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Simon Ekman
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Theme Cancer, Medical Unit head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center Karolinska University Hospital Solna Sweden
| | - Rolf Lewensohn
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Theme Cancer, Medical Unit head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center Karolinska University Hospital Solna Sweden
| | - Amelie Eriksson Karlström
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | | | - Afshin Ahmadian
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| |
Collapse
|
2
|
Hefni AM, Sayed AM, Hussien MT, Abdalla AZ, Gabr AG. CD133 is an independent predictive and prognostic marker in metastatic breast cancer. Cancer Biomark 2022; 35:207-215. [PMID: 36120770 DOI: 10.3233/cbm-210539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND CD133 is a transmembrane glycoprotein and is considered the most common cell surface marker to identify cancer stem cells in hematological and solid tumors, including breast cancer. OBJECTIVES To evaluate the impact of immunohistochemical expression of CD133 on response rate and survival in metastatic breast cancer, as well as to correlate it with various demographics and clinicopathological characteristics. METHODS One-hundred metastatic breast cancer patients were prospectively recruited at the Medical Oncology Department at South Egypt Cancer Institute during the period from January 2018 to January 2020. RESULTS There was a statistically significant correlation between CD133 positive patients with various adverse clinicopathological parameters such as high grade (p= 0.013), higher tumor (p= 0.001), and nodal staging (p= 0.024) during a median follow-up time of 17 months. In addition, Cases with CD133 positive expression had a significantly lower survival time than those with negative expression (3-years OS 37.4% versus 85.5%, p= 0.024). Regarding the response rate, CD133 positive patients had a lower response rate than negative patients (50% versus 54%, p= 0.012). CONCLUSIONS Positive CD133 is correlated with poor prognosis in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Ahmed Mubarak Hefni
- Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Ayat Mohammed Sayed
- Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Marwa T Hussien
- Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | | | - Adel Gomaa Gabr
- Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Jordan KR, Hall JK, Schedin T, Borakove M, Xian JJ, Dzieciatkowska M, Lyons TR, Schedin P, Hansen KC, Borges VF. Extracellular vesicles from young women's breast cancer patients drive increased invasion of non-malignant cells via the Focal Adhesion Kinase pathway: a proteomic approach. Breast Cancer Res 2020; 22:128. [PMID: 33225939 PMCID: PMC7681773 DOI: 10.1186/s13058-020-01363-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment. However, the proteomic content of EVs isolated from young women’s breast cancer patients and the mechanisms underlying the influence of EVs on tumor cell behavior have not yet been reported. Methods In our current translational studies, we compared the proteomic content of EVs isolated from invasive breast cancer cell lines and plasma samples from young women’s breast cancer (YWBC) patients and age-matched healthy donors using mass spectrometry. We analyzed the functionality of EVs in two dimensional tumor cell invasion assays and the gene expression changes in tumor cells after incubation with EVs. Results We found that treatment with EVs from both invasive breast cancer cell lines and plasma of YWBC patients altered the invasive properties of non-invasive breast cancer cells. Proteomics identified differences between EVs from YWBC patients and healthy donors that correlated with their altered function. Further, we identified gene expression changes in non-invasive breast cancer cells after treatment with EVs that implicate the Focal Adhesion Kinase (FAK) signaling pathway as a potential targetable pathway affected by breast cancer-derived EVs. Conclusions Our results suggest that the proteome of EVs from breast cancer patients reflects their functionality in tumor motility assays and may help elucidate the role of EVs in breast cancer progression.
Collapse
Affiliation(s)
- Kimberly R Jordan
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jessica K Hall
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Troy Schedin
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle Borakove
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenny J Xian
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pepper Schedin
- Knight Cancer Institute and Department of Cell, Developmental & Cancer Biology, Oregon Health Science University, Portland, OR, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Virginia F Borges
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Particulate mediators of the bystander effect linked to suicide and interferon-β transgene expression in melanoma cells. Gene Ther 2020; 28:38-55. [PMID: 32127652 DOI: 10.1038/s41434-020-0136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/08/2022]
Abstract
In the context of comparative oncology, melanoma cells derived from companion animal tumors are good models for optimizing and predicting their in vivo response to therapeutic strategies. Here, we report that human, canine, and feline melanoma cells driven to death by bleomycin, interferon-β gene, or herpes simplex virus thymidine kinase/ganciclovir suicide gene (SG) treatment significantly increased their internal granularity. This fact correlated with the release of a heterogeneous collection of nano- and micro-sized granules as revealed by transmission electron microscopy. While killing lipofected cells, the expressed transgenes and their derived products were incorporated into these granules that were isolated by differential centrifugation. These particulate factors (PFs) were able to transfer, in a dose- and time-dependent manner, appreciable levels of therapeutic genes, related proteins, and drugs. Thus, when recipient cells of SG-carrying PFs were exposed to ganciclovir, this prodrug was efficiently activated, eliminating them. These PFs kept the functionality of their cargo, even after being subjected to adverse conditions, such as the presence of DNase, freezing, or heating. Since our in vitro system did not include any of the immune mechanisms that could provide additional antitumor activity, the chemo-gene treatments amplified by these delivery bags of therapeutic agents offer a great clinical potential.
Collapse
|
5
|
Kemmerling U, Osuna A, Schijman AG, Truyens C. Congenital Transmission of Trypanosoma cruzi: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses. Front Microbiol 2019; 10:1854. [PMID: 31474955 PMCID: PMC6702454 DOI: 10.3389/fmicb.2019.01854] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is considered a neglected tropical disease by the World Health Organization. Congenital transmission of CD is an increasingly relevant public health problem. It progressively becomes the main transmission route over others and can occur in both endemic and non-endemic countries. Though most congenitally infected newborns are asymptomatic at birth, they display higher frequencies of prematurity, low birth weight, and lower Apgar scores compared to uninfected ones, and some suffer from severe symptoms. If not diagnosed and treated, infected newborns are at risk of developing disabling and life-threatening chronic pathologies later in life. The success or failure of congenital transmission depends on interactions between the parasite, the placenta, the mother, and the fetus. We review and discuss here the current knowledge about these parameters, including parasite virulence factors such as exovesicles, placental tropism, potential placental defense mechanisms, the placental transcriptome of infected women, gene polymorphism, and the maternal and fetal/neonatal immune responses, that might modulate the risk of T. cruzi congenital transmission.
Collapse
Affiliation(s)
- Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Alejandro Gabriel Schijman
- Molecular Biology of Chagas Disease Laboratory, Genetic Engineering and Molecular Biology Research Institute Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Wu J, Li H, Xie H, Wu X, Lan P. The malignant role of exosomes in the communication among colorectal cancer cell, macrophage and microbiome. Carcinogenesis 2019; 40:601-610. [PMID: 30864655 DOI: 10.1093/carcin/bgy138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/15/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jinjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyan Li
- Department of Breast and Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Bhat A, Sharma A, Bharti AC. Upstream Hedgehog signaling components are exported in exosomes of cervical cancer cell lines. Nanomedicine (Lond) 2018; 13:2127-2138. [PMID: 30265222 DOI: 10.2217/nnm-2018-0143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate export of Hedgehog pathway (Hh) proteins Patched1, Smoothened, Sonic hedgehog and Indian hedgehog in cervical cancer cell line (CaCx) exosomes. METHODS Exosomes were isolated and characterized by Western blotting, scanning electron microscopy and in a colorimetric assay. Nucleic acids (RNA, DNA) and protein content of exosomes were analyzed. Hh pathway proteins in exosomes were detected using Western blotting. RESULTS CaCx secrete bio-macromolecule (DNA, RNA and proteins) enriched exosomes. CaCx exosomes contained higher amount of RNA with respect to DNA. CaCx preferentially exported Hh proteins (Patched1, Smoothened, Sonic hedgehog, Indian hedgehog) in their exosomes. Cellular uptake assay revealed rapid internalization of CaCx exosomes in human umbilical vein endothelial cells. CONCLUSION Our study showed that Hh proteins are exported in CaCx exosomes.
Collapse
Affiliation(s)
- Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, North Campus, University Of Delhi, New Delhi 110007, India
| | - Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, Lab 4, 400 NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, North Campus, University Of Delhi, New Delhi 110007, India
| |
Collapse
|
9
|
Chiriacò MS, Bianco M, Nigro A, Primiceri E, Ferrara F, Romano A, Quattrini A, Furlan R, Arima V, Maruccio G. Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3175. [PMID: 30241303 PMCID: PMC6210978 DOI: 10.3390/s18103175] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
Abstract
Interest in extracellular vesicles and in particular microvesicles and exosomes, which are constitutively produced by cells, is on the rise for their huge potential as biomarkers in a high number of disorders and pathologies as they are considered as carriers of information among cells, as well as being responsible for the spreading of diseases. Current methods of analysis of microvesicles and exosomes do not fulfill the requirements for their in-depth investigation and the complete exploitation of their diagnostic and prognostic value. Lab-on-chip methods have the potential and capabilities to bridge this gap and the technology is mature enough to provide all the necessary steps for a completely automated analysis of extracellular vesicles in body fluids. In this paper we provide an overview of the biological role of extracellular vesicles, standard biochemical methods of analysis and their limits, and a survey of lab-on-chip methods that are able to meet the needs of a deeper exploitation of these biological entities to drive their use in common clinical practice.
Collapse
Affiliation(s)
| | - Monica Bianco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Annamaria Nigro
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- STMicroelectronics, Via Monteroni, I-73100 Lecce, Italy.
| | - Alessandro Romano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Angelo Quattrini
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Valentina Arima
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Maruccio
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- Department of Mathematics and Physics, University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
10
|
Wu J, Yang J, Ding J, Guo X, Zhu XQ, Zheng Y. Exosomes in virus-associated cancer. Cancer Lett 2018; 438:44-51. [PMID: 30219505 DOI: 10.1016/j.canlet.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
Exosomes are phospholipid bilayer membrane-enclosed vesicles in a size from 30 to 150 nm, carrying a variety of active components, such as proteins, mRNA and miRNAs, and are involved in intercellular communication. Exosomes are released by almost all living cells and detected in various biological fluids. Viruses especially oncogenic viruses have been reported to influence the formation of virus-associated cancer through reshaping the tumor microenvironment via exosomes. In this review, a role of exosomes released by oncogenic virus-infected cells in promoting or inhibiting cancer formation is outlined. Moreover, the prospects and challenges of exosome applications in cancer therapies are critically discussed.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Semina SE, Scherbakov AM, Vnukova AA, Bagrov DV, Evtushenko EG, Safronova VM, Golovina DA, Lyubchenko LN, Gudkova MV, Krasil'nikov MA. Exosome-Mediated Transfer of Cancer Cell Resistance to Antiestrogen Drugs. Molecules 2018; 23:molecules23040829. [PMID: 29617321 PMCID: PMC6017149 DOI: 10.3390/molecules23040829] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/26/2022] Open
Abstract
Exosomes are small vesicles which are produced by the cells and released into the surrounding space. They can transfer biomolecules into recipient cells. The main goal of the work was to study the exosome involvement in the cell transfer of hormonal resistance. The experiments were performed on in vitro cultured estrogen-dependent MCF-7 breast cancer cells and MCF-7 sublines resistant to SERM tamoxifen and/or biguanide metformin, which exerts its anti-proliferative effect, at least in a part, via the suppression of estrogen machinery. The exosomes were purified by differential ultracentrifugation, cell response to tamoxifen was determined by MTT test, and the level and activity of signaling proteins were determined by Western blot and reporter analysis. We found that the treatment of the parent MCF-7 cells with exosomes from the resistant cells within 14 days lead to the partial resistance of the MCF-7 cells to antiestrogen drugs. The primary resistant cells and the cells with the exosome-induced resistance were characterized with these common features: decrease in ERα activity and parallel activation of Akt and AP-1, NF-κB, and SNAIL1 transcriptional factors. In general, we evaluate the established results as the evidence of the possible exosome involvement in the transferring of the hormone/metformin resistance in breast cancer cells.
Collapse
Affiliation(s)
- Svetlana E Semina
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia.
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia.
| | - Anna A Vnukova
- Faculty of Preventive Medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, Moscow 119991, Russia.
| | - Dmitry V Bagrov
- Faculty of Biology, Lomonosov Moscow State University, 1/12, Leninskie gory, Moscow 119234, Russia.
| | - Evgeniy G Evtushenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1/3, Leninskie gory, Moscow 119234, Russia.
| | - Vera M Safronova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia.
| | - Daria A Golovina
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia.
| | - Ludmila N Lyubchenko
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia.
| | - Margarita V Gudkova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia.
| | - Mikhail A Krasil'nikov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia.
| |
Collapse
|
12
|
Steigedal TS, Toraskar J, Redvers RP, Valla M, Magnussen SN, Bofin AM, Opdahl S, Lundgren S, Eckhardt BL, Lamar JM, Doherty J, Hynes RO, Anderson RL, Svineng G. Nephronectin is Correlated with Poor Prognosis in Breast Cancer and Promotes Metastasis via its Integrin-Binding Motifs. Neoplasia 2018; 20:387-400. [PMID: 29539586 PMCID: PMC5909680 DOI: 10.1016/j.neo.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
Most cancer patients with solid tumors who succumb to their illness die of metastatic disease. While early detection and improved treatment have led to reduced mortality, even for those with metastatic cancer, some patients still respond poorly to treatment. Understanding the mechanisms of metastasis is important to improve prognostication, to stratify patients for treatment, and to identify new targets for therapy. We have shown previously that expression of nephronectin (NPNT) is correlated with metastatic propensity in breast cancer cell lines. In the present study, we provide a comprehensive analysis of the expression pattern and distribution of NPNT in breast cancer tissue from 842 patients by immunohistochemical staining of tissue microarrays from a historic cohort. Several patterns of NPNT staining were observed. An association between granular cytoplasmic staining (in <10% of tumor cells) and poor prognosis was found. We suggest that granular cytoplasmic staining may represent NPNT-positive exosomes. We found that NPNT promotes adhesion and anchorage-independent growth via its integrin-binding and enhancer motifs and that enforced expression in breast tumor cells promotes their colonization of the lungs. We propose that NPNT may be a novel prognostic marker in a subgroup of breast cancer patients.
Collapse
Affiliation(s)
- Tonje S Steigedal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Central Norway Regional Health Authority, Stjørdal, Norway.
| | - Jimita Toraskar
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Central Norway Regional Health Authority, Stjørdal, Norway
| | - Richard P Redvers
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Marit Valla
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Synnøve N Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Signe Opdahl
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Steinar Lundgren
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bedrich L Eckhardt
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas at MD Anderson Cancer Centre, Houston, TX, USA; Section of Translational Breast Cancer Research, The University of Texas at MD Anderson Cancer Centre, Houston, TX, USA; Department of Breast Medical Oncology, The University of Texas at MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - John M Lamar
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Judy Doherty
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Richard O Hynes
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robin L Anderson
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Gunbjørg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Ruiz-López L, Blancas I, Garrido JM, Mut-Salud N, Moya-Jódar M, Osuna A, Rodríguez-Serrano F. The role of exosomes on colorectal cancer: A review. J Gastroenterol Hepatol 2018; 33:792-799. [PMID: 29156509 DOI: 10.1111/jgh.14049] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular microvesicles released from cells, which are involved in many biological and pathological processes, mainly because of their role in intercellular communication. Exosomes derived from colorectal cancer (CRC) cells are related to oncogenesis, tumor cell survival, chemo-resistance, and metastasis. The role of the exosomes in these processes involves the transfer of proteins, RNAs, or mutant versions of proto-oncogenes to the target cells. In recent years, great efforts have been made to identify useful biomarkers in CRC exosomes for diagnosis, prediction of prognosis, and treatment response. This review focuses on recent studies on CRC exosomes, considering isolation, cargo, biomarkers, and the effects of exosomes on the development and progression of CRC, including resistance to antitumor therapy.
Collapse
Affiliation(s)
- Lidia Ruiz-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - Isabel Blancas
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Oncology, San Cecilio University Hospital, Granada, Spain
| | - José M Garrido
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Cardiovascular Surgery, Virgen de las Nieves University Hospital, Granada, Spain
| | - Nuria Mut-Salud
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - Marta Moya-Jódar
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - Antonio Osuna
- Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Fernando Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Wang N, Xie L. Diagnostic and therapeutic applications of tumor-associated exosomes. PRECISION RADIATION ONCOLOGY 2017. [DOI: 10.1002/pro6.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ning Wang
- School of Medicine and Life Sciences; University of Jinan, Shandong Academy of Medical Sciences; Jinan Shandong Province China
- Shandong Provincial Key Laboratory of Radiation Oncology; Shandong Cancer Hospital Affiliated to Shandong University; Jinan Shandong Province China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology; Shandong Cancer Hospital Affiliated to Shandong University; Jinan Shandong Province China
| |
Collapse
|
15
|
Guardia JJ, Tapia R, Mahdjour S, Rodriguez-Serrano F, Mut-Salud N, Chahboun R, Alvarez-Manzaneda E. Antiproliferative Activity of Natural Taiwaniaquinoids and Related Compounds. JOURNAL OF NATURAL PRODUCTS 2017; 80:308-318. [PMID: 28121430 DOI: 10.1021/acs.jnatprod.6b00700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The in vitro antiproliferative activities of some taiwaniaquinoids and related compounds with functionalized A, B, or C rings against human breast (MCF-7), colon (T-84), and lung (A-549) tumor cell lines were assayed. The most potent compounds, 16, 27, and 36, were more effective than the naturally occurring taiwaniaquinones A (4) and F (5) in all three cell lines. The structure-activity relationship study of these new taiwaniaquinoids highlighted the correlation between the bromo substituent and the antiproliferative activity, especially in MCF-7 cells. These findings indicate that some of the taiwaniaquinoids might be useful as cytostatic agents against breast, colon, and lung cancer cell lines.
Collapse
Affiliation(s)
| | | | - Soumicha Mahdjour
- Laboratory Productions, Plant and Microbial Valuations (LP2VM), Department of Biotechnology, University of Sciences and Technology of Oran Mohamed Boudiaf , BP 1525, El M'Naouer, Oran, Algeria
| | | | | | | | | |
Collapse
|
16
|
Sharma A, Khatun Z, Shiras A. Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine (Lond) 2016; 11:421-37. [PMID: 26784674 DOI: 10.2217/nnm.15.210] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanosized (30-150 nm) extracellular vesicles 'exosomes' are secreted by cells for intercellular communication during normal and pathological conditions. Exosomes carry biomacromolecules from cell-of-origin and, therefore, represent molecular bioprint of the cell. Tumor-derived exosomes or TDEx modulate tumor microenvironment by transfer of macromolecules locally as well as at distant metastatic sites. Due to their biological stability, TDEx are rich source of biomarkers in cancer patients. TDEx focused cancer diagnosis allows liquid biopsy-based tumor typing and may facilitate therapy response monitoring by developing novel exosomes diagnostics. Therefore, efficient and specific capturing of exosomes for subsequent amplification of the biomessages; for example, DNA, RNA, miRNA can reinvent cancer diagnosis. Here, in this review, we discuss advancements in exosomes isolation strategies, presence of exosomes biomarkers and importance of TDEx in gauging tumor heterogeneity for their potential use in cancer diagnosis, therapy.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, L4, 100 NCL Innovation Park, Dr Homi Bhabha Road, Pune-411008, India.,National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune411007
| | - Zamila Khatun
- ExoCan Healthcare Technologies Pvt Ltd, L4, 100 NCL Innovation Park, Dr Homi Bhabha Road, Pune-411008, India
| | - Anjali Shiras
- National Centre for Cell Science, SP Pune University Campus, Ganeshkhind, Pune411007
| |
Collapse
|