1
|
Truong KT, Wambaugh JF, Kapraun DF, Davidson-Fritz SE, Eytcheson S, Judson RS, Paul Friedman K. Interpretation of thyroid-relevant bioactivity data for comparison to in vivo exposures: A prioritization approach for putative chemical inhibitors of in vitro deiodinase activity. Toxicology 2025; 515:154157. [PMID: 40262668 DOI: 10.1016/j.tox.2025.154157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Many ToxCast assay endpoints can be mapped to molecular initiating events (MIEs) within the thyroid adverse outcome pathway (AOP) network. Herein, we provide a framework for interpretation of thyroid-relevant bioactivity data across MIEs. As a proof-of-concept, we used ToxCast data on the inhibition of deiodinase (DIO) enzymes, which convert thyroid hormones between active and inactive forms, and identified substances most likely to inhibit DIO enzymes. Data from 4 relevant cell-free in vitro assays are available for > 2000 chemicals in single concentration screening and 327 chemicals in multi-concentration screening. We filtered to identify chemicals that demonstrated inhibition for each DIO enzyme less likely to be confounded by assay interference, refining the list of putatively active chemicals from 523 to 135. In vitro bioactivity data were then used to estimate administered equivalent doses (AEDs) using a novel high-throughput toxicokinetic (HTTK) model for in vitro to in vivo extrapolation (IVIVE) of dose. To consider potential thyroid-disrupting activity in an appropriate life-stage and dose context, we extended an existing human maternal-fetal HTTK model to allow for simulations involving the first trimester of pregnancy. For many chemicals, using modeled fetal tissue concentrations produced lower AED estimates than using modeled maternal plasma concentrations alone, at least partially due to conservative assumptions in our HTTK model of complete gestation. This extensible approach for MIE groups of thyroid-related bioactivity data from ToxCast may inform further screening or analyses for potential adverse outcomes during pregnancy and development.
Collapse
Affiliation(s)
- K T Truong
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency (multiple locations), Washington, DC, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - J F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency (multiple locations), Washington, DC, USA
| | - D F Kapraun
- Center for Public Health and Environmental AssessmentUS EPA, Research Triangle Park, NC 27711, USA
| | - S E Davidson-Fritz
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency (multiple locations), Washington, DC, USA
| | - S Eytcheson
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency (multiple locations), Washington, DC, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - R S Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency (multiple locations), Washington, DC, USA
| | - K Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency (multiple locations), Washington, DC, USA.
| |
Collapse
|
2
|
Padilla Mercado G, Cook C, Adkins N, Albrecht L, Cary G, Edwards B, Haggard DE, Hanley NM, Hughes MF, Jarnagin A, Kodavanti TD, Korol-Bexell E, Kreutz A, Ngo M, Patullo C, Rowan EG, Huse LM, Correa VA, Kesic B, Casey W, Aboabdo J, Wolf K, Sayre R, Sharma B, Wall JT, Yamazaki H, Wambaugh JF, Ring CL. Informatics for toxicokinetics. J Pharmacokinet Pharmacodyn 2025; 52:30. [PMID: 40325299 DOI: 10.1007/s10928-025-09977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Toxicokinetic and pharmacokinetic (PK) summary parameters, such as Cmax (peak concentration), AUC (time-integrated area under the plasma concentration curve), and t1/2 (elimination half-life from the body), are important information for understanding chemical safety in both pharmaceuticals and commercial industry. Although standardized tools exist for PK analysis of individual chemicals, new workflows can enhance chemoinformatic trend analysis. The Concentration versus Time Database (CvTdb) is a public repository of PK data at the U.S. Environmental Protection Agency (EPA). The CvTdb contains manually curated, standardized toxicokinetic data from hundreds of publications. Experimental time-course data of chemical concentrations in body fluids and tissues are extracted along with descriptive metadata. The advantage of standardized data is that it can be analyzed systematically. For example, we observe that 88.6% of replicate measurements of blood or plasma concentrations of chemicals after intravenous or oral dosing are within two-fold of the mean concentration. Although most experimental data have final timepoints within three days, some experiments extend up to a year, usually for long-lived chemicals. Here we have estimated PK parameters of CvTdb data using a custom R package, invivoPKfit. Standardized 1- and 2- compartmental PK model parameters were estimated using all data associated with a particular compound, including data that spans multiple references. We used invivoPKfit to estimate PK parameters such as volume of distribution (Vd) and t1/2. The parameter values estimated with invivoPKfit are distributed similar to estimates made in the literature by a variety of methods. Overall, CvTdb serves as a standardized set of open data and for calibrating and evaluating PK models, while invivoPKfit allows for batch processing of this data type in a transparent and scalable manner. In addition to scientific insights, chemical risk assessment may be better informed by transparent, reproducible, and open-source workflows for PK informatics.
Collapse
Affiliation(s)
- Gilberto Padilla Mercado
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Christopher Cook
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Norman Adkins
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Lucas Albrecht
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Grace Cary
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Brenda Edwards
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Derik E Haggard
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Nancy M Hanley
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Michael F Hughes
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Anna Jarnagin
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Tirumala D Kodavanti
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Evgenia Korol-Bexell
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Anna Kreutz
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
- Inotiv, Suite 200, 601 Keystone Park Drive, Morrisville, NC, 27560, USA
| | - Mayla Ngo
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Caitlyn Patullo
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Evelyn G Rowan
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - L McKenna Huse
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Veronica A Correa
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Branislav Kesic
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Will Casey
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Jennat Aboabdo
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Kaitlyn Wolf
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Risa Sayre
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bhaskar Sharma
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Jonathan T Wall
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA
| | - Caroline L Ring
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Durham, NC, 27709, USA.
| |
Collapse
|
3
|
Davidson-Fritz SE, Ring CL, Evans MV, Schacht CM, Chang X, Breen M, Honda GS, Kenyon E, Linakis MW, Meade A, Pearce RG, Sfeir MA, Sluka JP, Devito MJ, Wambaugh JF. Enabling transparent toxicokinetic modeling for public health risk assessment. PLoS One 2025; 20:e0321321. [PMID: 40238721 PMCID: PMC12002443 DOI: 10.1371/journal.pone.0321321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
Toxicokinetic modeling describes the absorption, distribution, metabolism, and elimination of chemicals by the body. Chemical-specific in vivo toxicokinetic data is often unavailable for the thousands of chemicals in commerce. However, predictions from generalized toxicokinetic models allow for extrapolation from in vitro toxicological data, obtained via new approach methods (NAMs), to predict in vivo human health outcomes and provide key information on chemicals for public health risk assessment. The httk R package provides an open-source software tool containing a suite of generalized toxicokinetic models covering various exposure scenarios, a library of chemical-specific data from peer-reviewed high-throughput toxicokinetic (HTTK) studies, and other utility functions to parameterize and evaluate toxicokinetic models. Generalized HTTK models in httk use the open-source language MCSim to describe the compartmental and physiologically based toxicokinetics (PBTK). New HTTK models may be integrated into httk with a model description code file (C script generated via MCSim) and a model documentation file (R script). httk provides a series of functionalities such as model parameterization, in vivo-derived data for evaluating model predictions, unit conversion, Monte Carlo simulations for uncertainty propagation and biological variability, and other model utilities. Here, we describe in detail how to add new HTTK models into the httk package to leverage its pre-existing data and functionality. As a demonstration, we describe the integration of a gas inhalation PBTK model. The intention of httk is to provide a transparent, open-source tool for toxicokinetics, bioinformatics, and public health risk assessment that makes use of publicly available data on more than one thousand chemicals.
Collapse
Affiliation(s)
- Sarah E. Davidson-Fritz
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, United States of America
| | - Caroline L. Ring
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Marina V. Evans
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Celia M. Schacht
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Xiaoqing Chang
- Inotiv, Research Triangle Park, North Carolina, United States of America
| | - Miyuki Breen
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Gregory S. Honda
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Elaina Kenyon
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | | | - Annabel Meade
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Robert G. Pearce
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Mark A. Sfeir
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - James P. Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Michael J. Devito
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - John F. Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
4
|
Chou WC, Lin Z. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicol Sci 2023; 191:1-14. [PMID: 36156156 PMCID: PMC9887681 DOI: 10.1093/toxsci/kfac101] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) models are useful tools in drug development and risk assessment of environmental chemicals. PBPK model development requires the collection of species-specific physiological, and chemical-specific absorption, distribution, metabolism, and excretion (ADME) parameters, which can be a time-consuming and expensive process. This raises a need to create computational models capable of predicting input parameter values for PBPK models, especially for new compounds. In this review, we summarize an emerging paradigm for integrating PBPK modeling with machine learning (ML) or artificial intelligence (AI)-based computational methods. This paradigm includes 3 steps (1) obtain time-concentration PK data and/or ADME parameters from publicly available databases, (2) develop ML/AI-based approaches to predict ADME parameters, and (3) incorporate the ML/AI models into PBPK models to predict PK summary statistics (eg, area under the curve and maximum plasma concentration). We also discuss a neural network architecture "neural ordinary differential equation (Neural-ODE)" that is capable of providing better predictive capabilities than other ML methods when used to directly predict time-series PK profiles. In order to support applications of ML/AI methods for PBPK model development, several challenges should be addressed (1) as more data become available, it is important to expand the training set by including the structural diversity of compounds to improve the prediction accuracy of ML/AI models; (2) due to the black box nature of many ML models, lack of sufficient interpretability is a limitation; (3) Neural-ODE has great potential to be used to generate time-series PK profiles for new compounds with limited ADME information, but its application remains to be explored. Despite existing challenges, ML/AI approaches will continue to facilitate the efficient development of robust PBPK models for a large number of chemicals.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
5
|
Eccles KM, Karmaus AL, Kleinstreuer NC, Parham F, Rider CV, Wambaugh JF, Messier KP. A geospatial modeling approach to quantifying the risk of exposure to environmental chemical mixtures via a common molecular target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158905. [PMID: 36152849 PMCID: PMC9979101 DOI: 10.1016/j.scitotenv.2022.158905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 05/14/2023]
Abstract
In the real world, individuals are exposed to chemicals from sources that vary over space and time. However, traditional risk assessments based on in vivo animal studies typically use a chemical-by-chemical approach and apical disease endpoints. New approach methodologies (NAMs) in toxicology, such as in vitro high-throughput (HTS) assays generated in Tox21 and ToxCast, can more readily provide mechanistic chemical hazard information for chemicals with no existing data than in vivo methods. In this paper, we establish a workflow to assess the joint action of 41 modeled ambient chemical exposures in the air from the USA-wide National Air Toxics Assessment by integrating human exposures with hazard data from curated HTS (cHTS) assays to identify counties where exposure to the local chemical mixture may perturb a common biological target. We exemplify this proof-of-concept using CYP1A1 mRNA up-regulation. We first estimate internal exposure and then convert the inhaled concentration to a steady state plasma concentration using physiologically based toxicokinetic modeling parameterized with county-specific information on ages and body weights. We then use the estimated blood plasma concentration and the concentration-response curve from the in vitro cHTS assay to determine the chemical-specific effects of the mixture components. Three mixture modeling methods were used to estimate the joint effect from exposure to the chemical mixture on the activity levels, which were geospatially mapped. Finally, a Monte Carlo uncertainty analysis was performed to quantify the influence of each parameter on the combined effects. This workflow demonstrates how NAMs can be used to predict early-stage biological perturbations that can lead to adverse health outcomes that result from exposure to chemical mixtures. As a result, this work will advance mixture risk assessment and other early events in the effects of chemicals.
Collapse
Affiliation(s)
- Kristin M Eccles
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Agnes L Karmaus
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, NC, USA
| | - Nicole C Kleinstreuer
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Fred Parham
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Cynthia V Rider
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - John F Wambaugh
- United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Durham, USA
| | - Kyle P Messier
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA.
| |
Collapse
|
6
|
Kapraun DF, Sfeir M, Pearce RG, Davidson-Fritz SE, Lumen A, Dallmann A, Judson RS, Wambaugh JF. Evaluation of a rapid, generic human gestational dose model. Reprod Toxicol 2022; 113:172-188. [PMID: 36122840 PMCID: PMC9761697 DOI: 10.1016/j.reprotox.2022.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
Chemical risk assessment considers potentially susceptible populations including pregnant women and developing fetuses. Humans encounter thousands of chemicals in their environments, few of which have been fully characterized. Toxicokinetic (TK) information is needed to relate chemical exposure to potentially bioactive tissue concentrations. Observational data describing human gestational exposures are unavailable for most chemicals, but physiologically based TK (PBTK) models estimate such exposures. Development of chemical-specific PBTK models requires considerable time and resources. As an alternative, generic PBTK approaches describe a standardized physiology and characterize chemicals with a set of standard physical and TK descriptors - primarily plasma protein binding and hepatic clearance. Here we report and evaluate a generic PBTK model of a human mother and developing fetus. We used a published set of formulas describing the major anatomical and physiological changes that occur during pregnancy to augment the High-Throughput Toxicokinetics (httk) software package. We simulated the ratio of concentrations in maternal and fetal plasma and compared to literature in vivo measurements. We evaluated the model with literature in vivo time-course measurements of maternal plasma concentrations in pregnant and non-pregnant women. Finally, we prioritized chemicals measured in maternal serum based on predicted fetal brain concentrations. This new model can be used for TK simulations of 859 chemicals with existing human-specific in vitro TK data as well as any new chemicals for which such data become available. This gestational model may allow for in vitro to in vivo extrapolation of point of departure doses relevant to reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Dustin F Kapraun
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark Sfeir
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Robert G Pearce
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Sarah E Davidson-Fritz
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration, USA
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Richard S Judson
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
7
|
Luijten M, Sprong RC, Rorije E, van der Ven LTM. Prioritization of chemicals in food for risk assessment by integrating exposure estimates and new approach methodologies: A next generation risk assessment case study. FRONTIERS IN TOXICOLOGY 2022; 4:933197. [PMID: 36199824 PMCID: PMC9527283 DOI: 10.3389/ftox.2022.933197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022] Open
Abstract
Next generation risk assessment is defined as a knowledge-driven system that allows for cost-efficient assessment of human health risk related to chemical exposure, without animal experimentation. One of the key features of next generation risk assessment is to facilitate prioritization of chemical substances that need a more extensive toxicological evaluation, in order to address the need to assess an increasing number of substances. In this case study focusing on chemicals in food, we explored how exposure data combined with the Threshold of Toxicological Concern (TTC) concept could be used to prioritize chemicals, both for existing substances and new substances entering the market. Using a database of existing chemicals relevant for dietary exposure we calculated exposure estimates, followed by application of the TTC concept to identify substances of higher concern. Subsequently, a selected set of these priority substances was screened for toxicological potential using high-throughput screening (HTS) approaches. Remarkably, this approach resulted in alerts for a selection of substances that are already on the market and represent relevant exposure in consumers. Taken together, the case study provides proof-of-principle for the approach taken to identify substances of concern, and this approach can therefore be considered a supportive element to a next generation risk assessment strategy.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health Protection, Bilthoven, Netherlands
- *Correspondence: Mirjam Luijten,
| | - R. Corinne Sprong
- Centre for Nutrition, Prevention and Health Services, Bilthoven, Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|
8
|
Najjar A, Punt A, Wambaugh J, Paini A, Ellison C, Fragki S, Bianchi E, Zhang F, Westerhout J, Mueller D, Li H, Shi Q, Gant TW, Botham P, Bars R, Piersma A, van Ravenzwaay B, Kramer NI. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment. Arch Toxicol 2022; 96:3407-3419. [PMID: 36063173 PMCID: PMC9584981 DOI: 10.1007/s00204-022-03356-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
With an increasing need to incorporate new approach methodologies (NAMs) in chemical risk assessment and the concomitant need to phase out animal testing, the interpretation of in vitro assay readouts for quantitative hazard characterisation becomes more important. Physiologically based kinetic (PBK) models, which simulate the fate of chemicals in tissues of the body, play an essential role in extrapolating in vitro effect concentrations to in vivo bioequivalent exposures. As PBK-based testing approaches evolve, it will become essential to standardise PBK modelling approaches towards a consensus approach that can be used in quantitative in vitro-to-in vivo extrapolation (QIVIVE) studies for regulatory chemical risk assessment based on in vitro assays. Based on results of an ECETOC expert workshop, steps are recommended that can improve regulatory adoption: (1) define context and implementation, taking into consideration model complexity for building fit-for-purpose PBK models, (2) harmonise physiological input parameters and their distribution and define criteria for quality chemical-specific parameters, especially in the absence of in vivo data, (3) apply Good Modelling Practices (GMP) to achieve transparency and design a stepwise approach for PBK model development for risk assessors, (4) evaluate model predictions using alternatives to in vivo PK data including read-across approaches, (5) use case studies to facilitate discussions between modellers and regulators of chemical risk assessment. Proof-of-concepts of generic PBK modelling approaches are published in the scientific literature at an increasing rate. Working on the previously proposed steps is, therefore, needed to gain confidence in PBK modelling approaches for regulatory use.
Collapse
Affiliation(s)
| | - Ans Punt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - John Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | | | | | - Styliani Fragki
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | - Joost Westerhout
- The Netherlands Organisation for Applied Scientific Research TNO, Utrecht, The Netherlands
| | - Dennis Mueller
- Research and Development, Crop Science, Bayer AG, Monheim, Germany
| | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire UK
| | - Quan Shi
- Shell Global Solutions International B.V, The Hague, The Netherlands
| | - Timothy W. Gant
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Phil Botham
- Syngenta, Jealott’s Hill, Bracknell, Berkshire UK
| | - Rémi Bars
- Crop Science Division, Bayer S.A.S., Sophia Antipolis, France
| | - Aldert Piersma
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Nynke I. Kramer
- Toxicology Division, Wageningen University, PO Box 8000, 6700 EA Wageningen, The Netherlands
| |
Collapse
|
9
|
El-Masri H, Paul Friedman K, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicol Appl Pharmacol 2022; 450:116141. [PMID: 35777528 PMCID: PMC9619339 DOI: 10.1016/j.taap.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Human health risk assessment is a function of chemical toxicity, bioavailability to reach target biological tissues, and potential environmental exposure. These factors are complicated by many physiological, biochemical, physical and lifestyle factors. Furthermore, chemical health risk assessment is challenging in view of the large, and continually increasing, number of chemicals found in the environment. These challenges highlight the need to prioritize resources for the efficient and timely assessment of those environmental chemicals that pose greatest health risks. Computational methods, either predictive or investigative, are designed to assist in this prioritization in view of the lack of cost prohibitive in vivo experimental data. Computational methods provide specific and focused toxicity information using in vitro high throughput screening (HTS) assays. Information from the HTS assays can be converted to in vivo estimates of chemical levels in blood or target tissue, which in turn are converted to in vivo dose estimates that can be compared to exposure levels of the screened chemicals. This manuscript provides a review for the landscape of computational methods developed and used at the U.S. Environmental Protection Agency (EPA) highlighting their potentials and challenges.
Collapse
Affiliation(s)
- Hisham El-Masri
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Qian Y, Markowitz JS. Prediction of Carboxylesterase 1-mediated In Vivo Drug Interaction between Methylphenidate and Cannabinoids using Static and Physiologically Based Pharmacokinetic Models. Drug Metab Dispos 2022; 50:968-979. [PMID: 35512806 PMCID: PMC11022897 DOI: 10.1124/dmd.121.000823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The use of cannabis products has increased substantially. Cannabis products have been perceived and investigated as potential treatments for attention-deficit/hyperactivity disorder (ADHD). Accordingly, co-administration of cannabis products and methylphenidate (MPH), a first-line medication for ADHD, is possible. Oral MPH undergoes extensive presystemic metabolism by carboxylesterase 1 (CES1), a hepatic enzyme which can be inhibited by two prominent cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). This prompts further investigation into the likelihood of clinical interactions between MPH and these two cannabinoids through CES1 inhibition. In the present study, inhibition parameters were obtained from a human liver S9 system and then incorporated into static and physiologically-based pharmacokinetic (PBPK) models for prediction of potential clinical significance. The inhibition of MPH hydrolysis by THC and CBD was reversible, with estimated unbound inhibition constants (Ki,u) of 0.031 and 0.091 µM, respectively. The static model predicted a mild increase in MPH exposure by concurrent THC (34%) and CBD (94%) from smoking a cannabis cigarette and ingestion of prescriptive CBD, respectively. PBPK models suggested no significant interactions between single doses of MPH and CBD (2.5 - 10 mg/kg) when administered simultaneously, while a mild interaction (area under drug concentration-time curve increased by up to 55% and maximum concentration by up to 45%) is likely if multiple doses of CBD (10 mg/kg twice daily) are administered. In conclusion, the pharmacokinetic disposition of MPH can be potentially influenced by THC and CBD under certain clinical scenarios. Whether the magnitude of predicted interactions translates into clinically relevant outcomes requires verification in an appropriately designed clinical study. SIGNIFICANCE STATEMENT: This work demonstrated a potential mechanism of drug-drug interactions between methylphenidate (MPH) and two major cannabinoids (Δ9-tetrahydrocannabinol [THC] and cannabidiol [CBD]) not previously reported. We predicted a mild interaction between MPH and THC when the cannabinoid exposure occurred via cannabis smoking. Mild interactions between MPH and CBD were predicted with multiple oral administrations of CBD.
Collapse
Affiliation(s)
- Yuli Qian
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| |
Collapse
|
11
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
12
|
Kang Y, Jeong B, Lim DH, Lee D, Lim KM. In silico prediction of the full United Nations Globally Harmonized System eye irritation categories of liquid chemicals by IATA-like bottom-up approach of random forest method. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:960-972. [PMID: 34328061 DOI: 10.1080/15287394.2021.1956661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an alternative to in vivo Draize rabbit eye irritation test, this study aimed to construct an in silico model to predict the complete United Nations (UN) Globally Harmonized System (GHS) for classification and labeling of chemicals for eye irritation category [eye damage (Category 1), irritating to eye (Category 2) and nonirritating (No category)] of liquid chemicals with Integrated approaches to testing and assessment (IATA)-like two-stage random forest approach. Liquid chemicals (n = 219) with 34 physicochemical descriptors and quality in vivo data were collected with no missing values. Seven machine learning algorithms (Naive Bayes, Logistic Regression, First Large Margin, Neural Net, Random Forest (RF), Gradient Boosted Tree, and Support Vector Machine) were examined for the ternary categorization of eye irritation potential at a single run through 10-fold cross-validation. RF, which performed best, was further improved by applying the 'Bottom-up approach' concept of IATA, namely, separating No category first, and discriminating Category 1 from 2, thereafter. The best performing training dataset achieved an overall accuracy of 73% and the correct prediction for Category 1, 2, and No category was 80%, 50%, and 77%, respectively for the test dataset. This prediction model was further validated with an external dataset of 28 chemicals, for which an overall accuracy of 71% was achieved.
Collapse
Affiliation(s)
- Yeonsoo Kang
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Boram Jeong
- Department of Statistics, Ewha Womans University, Seoul, Republic of Korea
| | | | - Donghwan Lee
- Department of Statistics, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Armitage JM, Hughes L, Sangion A, Arnot JA. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks. ENVIRONMENT INTERNATIONAL 2021; 154:106557. [PMID: 33892222 DOI: 10.1016/j.envint.2021.106557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 05/21/2023]
Abstract
This study describes the development and intercomparison of generic physiologically-based toxicokinetic (PBTK) models for humans comprised of internally consistent one-compartment (1Co-) and multi-compartment (MCo-) implementations (G-PBTK). The G-PBTK models were parameterized for an adult male (70 kg) using common physiological parameters and in vitro biotransformation rate estimates and subsequently evaluated using independent concentration versus time data (n = 6) and total elimination half-lives (n = 15) for diverse organic chemicals. The model performance is acceptable considering the inherent uncertainty in the biotransformation rate data and the absence of model calibration. The G-PBTK model was then applied using hypothetical neutral organics, acidic ionizable organics and basic ionizable organics (IOCs) to identify combinations of partitioning properties and biotransformation rates leading to substantial discrepancies between 1Co- and MCo-PBTK calculations for whole body concentrations and half-lives. The 1Co- and MCo-PBTK model calculations for key toxicokinetic parameters are broadly consistent unless biotransformation is rapid (e.g., half-life less than five days). When half-lives are relatively short, discrepancies are greatest for the neutral organics and least for the acidic IOCs which follows from the estimated volumes of distribution (e.g., VDSS = 9.6-15.4 L/kg vs 0.3-1.6 L/kg for the neutral and acidic compounds respectively) and the related approach to internal chemical equilibrium. The model intercomparisons demonstrate that 1Co-PBTK models can be applied with confidence to many exposure scenarios, particularly those focused on chronic or repeat exposures and for prioritization and screening-level decision contexts. However, MCo-PBTK models may be necessary in certain contexts, particularly for intermittent, short-term and highly variable exposures. A key recommendation to guide model selection and the development of tiered PBTK modeling frameworks that emerges from this study is the need to harmonize models with respect to parameterization and process descriptions to the greatest extent possible when proceeding from the application of simpler to more complex modeling tools as part of chemical assessment activities.
Collapse
Affiliation(s)
- James M Armitage
- AES Armitage Environmental Sciences, Inc., Ottawa, Ontario K1L 8C3, Canada; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| | - Lauren Hughes
- ARC Arnot Research and Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Alessandro Sangion
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada; ARC Arnot Research and Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Jon A Arnot
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada; ARC Arnot Research and Consulting, Toronto, Ontario M4M 1W4, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
14
|
Breen M, Ring CL, Kreutz A, Goldsmith MR, Wambaugh JF. High-throughput PBTK models for in vitro to in vivo extrapolation. Expert Opin Drug Metab Toxicol 2021; 17:903-921. [PMID: 34056988 PMCID: PMC9703392 DOI: 10.1080/17425255.2021.1935867] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Toxicity data are unavailable for many thousands of chemicals in commerce and the environment. Therefore, risk assessors need to rapidly screen these chemicals for potential risk to public health. High-throughput screening (HTS) for in vitro bioactivity, when used with high-throughput toxicokinetic (HTTK) data and models, allows characterization of these thousands of chemicals. AREAS COVERED This review covers generic physiologically based toxicokinetic (PBTK) models and high-throughput PBTK modeling for in vitro-in vivo extrapolation (IVIVE) of HTS data. We focus on 'httk', a public, open-source set of computational modeling tools and in vitro toxicokinetic (TK) data. EXPERT OPINION HTTK benefits chemical risk assessors with its ability to support rapid chemical screening/prioritization, perform IVIVE, and provide provisional TK modeling for large numbers of chemicals using only limited chemical-specific data. Although generic TK model design can increase prediction uncertainty, these models provide offsetting benefits by increasing model implementation accuracy. Also, public distribution of the models and data enhances reproducibility. For the httk package, the modular and open-source design can enable the tool to be used and continuously improved by a broad user community in support of the critical need for high-throughput chemical prioritization and rapid dose estimation to facilitate rapid hazard assessments.
Collapse
Affiliation(s)
- Miyuki Breen
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Caroline L Ring
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Anna Kreutz
- Oak Ridge Institute for Science and Education (ORISE) fellow at the Center for Computational Toxicology and Exposure, Office of Research and Development, Research Triangle Park, NC, USA
| | - Michael-Rock Goldsmith
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Fairman K, Li M, Kabadi SV, Lumen A. Physiologically based pharmacokinetic modeling: A promising tool for translational research and regulatory toxicology. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Linakis MW, Sayre RR, Pearce RG, Sfeir MA, Sipes NS, Pangburn HA, Gearhart JM, Wambaugh JF. Development and evaluation of a high throughput inhalation model for organic chemicals. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:866-877. [PMID: 32546826 PMCID: PMC7483974 DOI: 10.1038/s41370-020-0238-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/27/2020] [Accepted: 06/03/2020] [Indexed: 05/12/2023]
Abstract
Currently it is difficult to prospectively estimate human toxicokinetics (particularly for novel chemicals) in a high-throughput manner. The R software package httk has been developed, in part, to address this deficiency, and the aim of this investigation was to develop a generalized inhalation model for httk. The structure of the inhalation model was developed from two previously published physiologically based models from Jongeneelen and Berge (Ann Occup Hyg 55:841-864, 2011) and Clewell et al. (Toxicol Sci 63:160-172, 2001), while calculated physicochemical data was obtained from EPA's CompTox Chemicals Dashboard. In total, 142 exposure scenarios across 41 volatile organic chemicals were modeled and compared to published data. The slope of the regression line of best fit between log-transformed simulated and observed blood and exhaled breath concentrations was 0.46 with an r2 = 0.45 and a root mean square error (RMSE) of direct comparison between the log-transformed simulated and observed values of 1.11. Approximately 5.1% (n = 108) of the data points analyzed were >2 orders of magnitude different than expected. The volatile organic chemicals examined in this investigation represent small, generally lipophilic molecules. Ultimately this paper details a generalized inhalation component that integrates with the httk physiologically based toxicokinetic model to provide high-throughput estimates of inhalation chemical exposures.
Collapse
Affiliation(s)
- Matthew W Linakis
- United States Air Force, 711th Human Performance Wing, Airman Readiness Optimization, Wright-Patterson AFB, Wright-Patterson AFB, OH, 45433, USA
- UES, Inc., Dayton, OH, 45432, USA
| | - Risa R Sayre
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
- National Center for Computational Toxicology, United States Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Robert G Pearce
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
- National Center for Computational Toxicology, United States Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Mark A Sfeir
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
- National Center for Computational Toxicology, United States Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Nisha S Sipes
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27711, USA
| | - Heather A Pangburn
- United States Air Force, 711th Human Performance Wing, Molecular Bioeffects, Wright-Patterson AFB, Wright-Patterson AFB, OH, 45433, USA
| | - Jeffery M Gearhart
- United States Air Force, 711th Human Performance Wing, Airman Readiness Optimization, Wright-Patterson AFB, Wright-Patterson AFB, OH, 45433, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson AFB, Wright-Patterson AFB, OH, 45433, USA
| | - John F Wambaugh
- National Center for Computational Toxicology, United States Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
17
|
Nyffeler J, Willis C, Lougee R, Richard A, Paul-Friedman K, Harrill JA. Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol Appl Pharmacol 2020; 389:114876. [PMID: 31899216 PMCID: PMC8409064 DOI: 10.1016/j.taap.2019.114876] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 10/25/2022]
Abstract
The present study adapted an existing high content imaging-based high-throughput phenotypic profiling (HTPP) assay known as "Cell Painting" for bioactivity screening of environmental chemicals. This assay uses a combination of fluorescent probes to label a variety of organelles and measures a large number of phenotypic features at the single cell level in order to detect chemical-induced changes in cell morphology. First, a small set of candidate phenotypic reference chemicals (n = 14) known to produce changes in the cellular morphology of U-2 OS cells were identified and screened at multiple time points in concentration-response format. Many of these chemicals produced distinct cellular phenotypes that were qualitatively similar to those previously described in the literature. A novel workflow for phenotypic feature extraction, concentration-response modeling and determination of in vitro thresholds for chemical bioactivity was developed. Subsequently, a set of 462 chemicals from the ToxCast library were screened in concentration-response mode. Bioactivity thresholds were calculated and converted to administered equivalent doses (AEDs) using reverse dosimetry. AEDs were then compared to effect values from mammalian toxicity studies. In many instances (68%), the HTPP-derived AEDs were either more conservative than or comparable to the in vivo effect values. Overall, we conclude that the HTPP assay can be used as an efficient, cost-effective and reproducible screening method for characterizing the biological activity and potency of environmental chemicals for potential use in in vitro-based safety assessments.
Collapse
Affiliation(s)
- Johanna Nyffeler
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, United States of America
| | - Clinton Willis
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States of America
| | - Ryan Lougee
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, United States of America
| | - Ann Richard
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Joshua A Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America.
| |
Collapse
|
18
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
19
|
Wambaugh JF, Wetmore BA, Ring CL, Nicolas CI, Pearce R, Honda G, Dinallo R, Angus D, Gilbert J, Sierra T, Badrinarayanan A, Snodgrass B, Brockman A, Strock C, Setzer W, Thomas RS. Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization. Toxicol Sci 2019; 172:235-251. [PMID: 31532498 PMCID: PMC8136471 DOI: 10.1093/toxsci/kfz205] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High(er) throughput toxicokinetics (HTTK) encompasses in vitro measures of key determinants of chemical toxicokinetics and reverse dosimetry approaches for in vitro-in vivo extrapolation (IVIVE). With HTTK, the bioactivity identified by any in vitro assay can be converted to human equivalent doses and compared with chemical intake estimates. Biological variability in HTTK has been previously considered, but the relative impact of measurement uncertainty has not. Bayesian methods were developed to provide chemical-specific uncertainty estimates for 2 in vitro toxicokinetic parameters: unbound fraction in plasma (fup) and intrinsic hepatic clearance (Clint). New experimental measurements of fup and Clint are reported for 418 and 467 chemicals, respectively. These data raise the HTTK chemical coverage of the ToxCast Phase I and II libraries to 57%. Although the standard protocol for Clint was followed, a revised protocol for fup measured unbound chemical at 10%, 30%, and 100% of physiologic plasma protein concentrations, allowing estimation of protein binding affinity. This protocol reduced the occurrence of chemicals with fup too low to measure from 44% to 9.1%. Uncertainty in fup was also reduced, with the median coefficient of variation dropping from 0.4 to 0.1. Monte Carlo simulation was used to propagate both measurement uncertainty and biological variability into IVIVE. The uncertainty propagation techniques used here also allow incorporation of other sources of uncertainty such as in silico predictors of HTTK parameters. These methods have the potential to inform risk-based prioritization based on the relationship between in vitro bioactivities and exposures.
Collapse
Affiliation(s)
- John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
| | - Caroline L. Ring
- National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
| | - Chantel I. Nicolas
- National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
- Office of Pollution Prevention and Toxics, U.S. EPA, Washington, D.C. 20460
| | - Robert Pearce
- National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
| | - Gregory Honda
- National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
| | | | | | | | | | | | | | | | | | - Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
| | - Russell S. Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711
| |
Collapse
|
20
|
Evaluation of phenylethylamine type entactogens and their metabolites relevant to ecotoxicology - a QSAR study. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:563-584. [PMID: 31639096 DOI: 10.2478/acph-2019-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 01/19/2023]
Abstract
The impact of the selected entactogens and their o-quinone metabolites on the environment was explored in QSAR studies by the use of predicted molecular descriptors, ADMET properties and environmental toxicity parameters, i.e., acute toxicity in Tetrahymena pyriformis (TOX_ATTP) expressed as Th_pyr_pIGC50/mmol L-1, acute toxicity in Pimephales promelas, the fathead minnow (TOX_FHM) expressed as Minnow LC50/mg L-1, the acute toxicity in Daphnia magna (TOX_DM) expressed as Daphnia LC50/mg L-1 and bioconcentration factor (BCF). The formation of corresponding o-quinones via benzo-dioxo-lone ring, O-demethylenation was predicted as the main metabolic pathway for all entactogens except for 1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)propan-2-amine (DiFMDA). The least favourable ADMET profile was revealed for N-(1-(benzo[d][1,3]dioxol-5-yl)propan-2-yl)-O-methylhydroxylamine (MDMEO). QSAR studies revealed significant linear correlations between MlogP of entactogens and MlogP of o-quinone metabolites (R = 0.99), and Th_pyr_pIGC50/mmol L-1 (R = 0.94), also their MlogPs with Minnow_LC50/mg L-1 (R = 0.80 and R = 0.78), BCF (R = 0.86 and R = 0.82) and percentage of o-quinones' yields (R = 0.73 and R = 0.80). Entactogens were predicted as non-biodegradable molecules, whereas the majority of their o-quinones were biodegradable.
Collapse
|
21
|
Profiling 58 compounds including cosmetic-relevant chemicals using ToxRefDB and ToxCast. Food Chem Toxicol 2019; 132:110718. [DOI: 10.1016/j.fct.2019.110718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 01/29/2023]
|
22
|
Thomas RS, Bahadori T, Buckley TJ, Cowden J, Deisenroth C, Dionisio KL, Frithsen JB, Grulke CM, Gwinn MR, Harrill JA, Higuchi M, Houck KA, Hughes MF, Hunter ES, Isaacs KK, Judson RS, Knudsen TB, Lambert JC, Linnenbrink M, Martin TM, Newton SR, Padilla S, Patlewicz G, Paul-Friedman K, Phillips KA, Richard AM, Sams R, Shafer TJ, Setzer RW, Shah I, Simmons JE, Simmons SO, Singh A, Sobus JR, Strynar M, Swank A, Tornero-Valez R, Ulrich EM, Villeneuve DL, Wambaugh JF, Wetmore BA, Williams AJ. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicol Sci 2019; 169:317-332. [PMID: 30835285 PMCID: PMC6542711 DOI: 10.1093/toxsci/kfz058] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.
Collapse
Affiliation(s)
- Russell S. Thomas
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Tina Bahadori
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Buckley
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John Cowden
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Chad Deisenroth
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Kathie L. Dionisio
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Jeffrey B. Frithsen
- Chemical Safety for Sustainability National Research Program, Office of Research and Development, US Environmental Protection Agency
| | - Christopher M. Grulke
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Maureen R. Gwinn
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Joshua A. Harrill
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Keith A. Houck
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - E. Sidney Hunter
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Kristin K. Isaacs
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Thomas B. Knudsen
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jason C. Lambert
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Monica Linnenbrink
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Todd M. Martin
- National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Seth R. Newton
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katie Paul-Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katherine A. Phillips
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Ann M. Richard
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Reeder Sams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Shafer
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jane E. Simmons
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Steven O. Simmons
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Amar Singh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jon R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Mark Strynar
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Adam Swank
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Rogelio Tornero-Valez
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Elin M. Ulrich
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Daniel L Villeneuve
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| |
Collapse
|
23
|
Honda GS, Pearce RG, Pham LL, Setzer RW, Wetmore BA, Sipes NS, Gilbert J, Franz B, Thomas RS, Wambaugh JF. Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions. PLoS One 2019; 14:e0217564. [PMID: 31136631 PMCID: PMC6538186 DOI: 10.1371/journal.pone.0217564] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Linking in vitro bioactivity and in vivo toxicity on a dose basis enables the use of high-throughput in vitro assays as an alternative to traditional animal studies. In this study, we evaluated assumptions in the use of a high-throughput, physiologically based toxicokinetic (PBTK) model to relate in vitro bioactivity and rat in vivo toxicity data. The fraction unbound in plasma (fup) and intrinsic hepatic clearance (Clint) were measured for rats (for 67 and 77 chemicals, respectively), combined with fup and Clint literature data for 97 chemicals, and incorporated in the PBTK model. Of these chemicals, 84 had corresponding in vitro ToxCast bioactivity data and in vivo toxicity data. For each possible comparison of in vitro and in vivo endpoint, the concordance between the in vivo and in vitro data was evaluated by a regression analysis. For a base set of assumptions, the PBTK results were more frequently better associated than either the results from a “random” model parameterization or direct comparison of the “untransformed” values of AC50 and dose (performed best in 51%, 28%, and 21% of cases, respectively). We also investigated several assumptions in the application of PBTK for IVIVE, including clearance and internal dose selection. One of the better assumptions sets–restrictive clearance and comparing free in vivo venous plasma concentration with free in vitro concentration–outperformed the random and untransformed results in 71% of the in vitro-in vivo endpoint comparisons. These results demonstrate that applying PBTK improves our ability to observe the association between in vitro bioactivity and in vivo toxicity data in general. This suggests that potency values from in vitro screening should be transformed using in vitro-in vivo extrapolation (IVIVE) to build potentially better machine learning and other statistical models for predicting in vivo toxicity in humans.
Collapse
Affiliation(s)
- Gregory S. Honda
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Robert G. Pearce
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Ly L. Pham
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - R. W. Setzer
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina, United States of America
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, United States of America
| | - Nisha S. Sipes
- Division of the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina, United States of America
| | - Jon Gilbert
- Cyprotex, Watertown, MA, United States of America
| | - Briana Franz
- Cyprotex, Watertown, MA, United States of America
| | - Russell S. Thomas
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina, United States of America
| | - John F. Wambaugh
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Nicolas CI, Mansouri K, Phillips KA, Grulke CM, Richard AM, Williams AJ, Rabinowitz J, Isaacs KK, Yau A, Wambaugh JF. Rapid experimental measurements of physicochemical properties to inform models and testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:901-909. [PMID: 29729507 PMCID: PMC6214190 DOI: 10.1016/j.scitotenv.2018.04.266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 04/14/2023]
Abstract
The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(Kow) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(Kow) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data.
Collapse
Affiliation(s)
- Chantel I Nicolas
- ScitoVation, LLC 6 Davis Drive, Durham, NC 27703, USA; National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Kamel Mansouri
- ScitoVation, LLC 6 Davis Drive, Durham, NC 27703, USA; National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Katherine A Phillips
- National Exposure Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Christopher M Grulke
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Antony J Williams
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - James Rabinowitz
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Kristin K Isaacs
- National Exposure Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Alice Yau
- Southwest Research Institute, San Antonio, TX 78238, USA
| | - John F Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
25
|
Frank CL, Brown JP, Wallace K, Wambaugh JF, Shah I, Shafer TJ. Defining toxicological tipping points in neuronal network development. Toxicol Appl Pharmacol 2018; 354:81-93. [DOI: 10.1016/j.taap.2018.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
|
26
|
McNally K, Hogg A, Loizou G. A Computational Workflow for Probabilistic Quantitative in Vitro to in Vivo Extrapolation. Front Pharmacol 2018; 9:508. [PMID: 29867507 PMCID: PMC5968095 DOI: 10.3389/fphar.2018.00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022] Open
Abstract
A computational workflow was developed to facilitate the process of quantitative in vitro to in vivo extrapolation (QIVIVE), specifically the translation of in vitro concentration-response to in vivo dose-response relationships and subsequent derivation of a benchmark dose value (BMD). The workflow integrates physiologically based pharmacokinetic (PBPK) modeling; global sensitivity analysis (GSA), Approximate Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) simulation. For a given set of in vitro concentration and response data the algorithm returns the posterior distribution of the corresponding in vivo, population-based dose-response values, for a given route of exposure. The novel aspect of the workflow is a rigorous statistical framework for accommodating uncertainty in both the parameters of the PBPK model (both parameter uncertainty and population variability) and in the structure of the PBPK model itself recognizing that the model is an approximation to reality. Both these sources of uncertainty propagate through the workflow and are quantified within the posterior distribution of in vivo dose for a fixed representative in vitro concentration. To demonstrate this process and for comparative purposes a similar exercise to previously published work describing the kinetics of ethylene glycol monoethyl ether (EGME) and its embryotoxic metabolite methoxyacetic acid (MAA) in rats was undertaken. The computational algorithm can be used to extrapolate from in vitro data to any organism, including human. Ultimately, this process will be incorporated into a user-friendly, freely available modeling platform, currently under development, that will simplify the process of QIVIVE.
Collapse
|
27
|
Wambaugh JF, Hughes MF, Ring CL, MacMillan DK, Ford J, Fennell TR, Black SR, Snyder RW, Sipes NS, Wetmore BA, Westerhout J, Setzer RW, Pearce RG, Simmons JE, Thomas RS. Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics. Toxicol Sci 2018; 163:152-169. [PMID: 29385628 PMCID: PMC5920326 DOI: 10.1093/toxsci/kfy020] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks.
Collapse
Affiliation(s)
| | - Michael F Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Caroline L Ring
- National Center for Computational Toxicology
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
| | - Denise K MacMillan
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Jermaine Ford
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | - Sherry R Black
- RTI International, Research Triangle Park, North Carolina
| | | | - Nisha S Sipes
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27717
| | - Barbara A Wetmore
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Joost Westerhout
- The Netherlands Organisation for Applied Scientific Research (TNO), AJ Zeist 3700, The Netherlands
| | | | - Robert G Pearce
- National Center for Computational Toxicology
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
| | - Jane Ellen Simmons
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | |
Collapse
|
28
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|