1
|
Fernandes GM, Rodrigues-Mattos GH, Torres LM, Guedes KS, Fontes CJF, Ntumngia FB, Adams JH, Brito CFA, Kano FS, de Sousa TN, Carvalho LH. Natural genetic diversity of the DBL domain of a novel member of the Plasmodium vivax erythrocyte binding-like proteins (EBP2) in the Amazon rainforest. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105628. [PMID: 38936525 PMCID: PMC11425718 DOI: 10.1016/j.meegid.2024.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
In malaria parasites, the erythrocyte binding-like proteins (EBL) are a family of invasion proteins that are attractive vaccine targets. In the case of Plasmodium vivax, the widespread malaria parasite, blood-stage vaccines have been largely focused on a single EBL candidate, the Duffy binding-like domain (DBL) of the Duffy binding protein (DBPII), due to its well-characterized role in the reticulocyte invasion. A novel P. vivax EBL family member, the Erythrocyte binding protein (EBP2, also named EBP or DBP2), binds preferentially to reticulocytes and may mediate an alternative P. vivax invasion pathway. To gain insight into the natural genetic diversity of the DBL domain of EBP2 (region II; EBP2-II), we analyzed ebp2-II gene sequences of 71 P. vivax isolates collected in different endemic settings of the Brazilian Amazon rainforest, where P. vivax is the predominant malaria-associated species. Although most of the substitutions in the ebp2-II gene were non-synonymous and suggested positive selection, the results showed that the DBL domain of the EBP2 was much less polymorphic than that of DBPII. The predominant EBP2 haplotype in the Amazon region corresponded to the C127 reference sequence first described in Cambodia (25% C127-like haplotype). An overview of ebp2-II gene sequences available at GenBank (n = 352) from seven countries (Cambodia, Madagascar, Myanmar, PNG, South Korea, Thailand, Vietnam) confirmed the C127-like haplotype as highly prevalent worldwide. Two out of 43 haplotypes (5 to 20 inferred per country) showed a global frequency of 60%. The results presented here open new avenues of research pursuit while suggesting that a vaccine based on the DBL domain of EBP2 should target a few haplotypes for broad coverage.
Collapse
Affiliation(s)
- Gabriela M Fernandes
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Universidade Federal de Minas Gerais (UFMG), Departamento de Parasitologia, Belo Horizonte, Brazil
| | - Guilherme H Rodrigues-Mattos
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia M Torres
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karla S Guedes
- Julio Muller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Cor J F Fontes
- Julio Muller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Cristiana F A Brito
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Flora S Kano
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Taís N de Sousa
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Luzia H Carvalho
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Liu J, Hufnagel RB. PNPLA6 disorders: what's in a name? Ophthalmic Genet 2023; 44:530-538. [PMID: 37732399 PMCID: PMC10840751 DOI: 10.1080/13816810.2023.2254830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Variants in the patatin-like phospholipase domain containing 6 (PNPLA6) gene cause a broad spectrum of neurological disorders characterized by gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. This review examines the clinical, cellular, and biochemical features found across the five PNPLA6-related diseases, with a focus on future questions to be addressed. MATERIALS AND METHODS A literature review was performed on published clinical reports on patients with PNPLA6 variants. Additionally, in vitro and in vivo models used to study the encoded protein, Neuropathy Target Esterase (NTE), are summarized to lend mechanistic perspective to human diseases. RESULTS Biallelic pathogenic PNPLA6 variants cause five systemic neurological disorders: spastic paraplegia type 39, Gordon-Holmes, Boucher-Neuhäuser, Laurence-Moon, and Oliver-McFarlane syndromes. PNPLA6 encodes NTE, an enzyme involved in maintaining phospholipid homeostasis and trafficking in the nervous system. Retinal disease presents with a unique chorioretinal dystrophy that is phenotypically similar to choroideremia and Leber congenital amaurosis. Animal and cellular models support a loss-of-function mechanism. CONCLUSIONS Clinicians should be aware of choroideremia-like ocular presentation in patients who also experience growth defects, motor dysfunction, and/or hair anomalies. Although NTE biochemistry is well characterized, further research on the relationship between genotype and the presence or absence of retinopathy should be explored to improve diagnosis and prognosis.
Collapse
Affiliation(s)
- James Liu
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Wu W, Wang P. Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase. Molecules 2023; 28:7747. [PMID: 38067477 PMCID: PMC10708158 DOI: 10.3390/molecules28237747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Neuropathy target esterase (NTE) is a serine hydrolase with phospholipase B activity, which is involved in maintaining the homeostasis of phospholipids. It can be inhibited by aging inhibitors such as some organophosphorus (OP) compounds, which leads to delayed neurotoxicity with distal degeneration of axons. However, the detailed binding conformation of aging and non-aging inhibitors with NTE is not known. In this study, new computational models were constructed by using MODELLER 10.3 and AlphaFold2 to further investigate the inhibition mechanism of aging and non-aging compounds using molecular docking. The results show that the non-aging compounds bind the hydrophobic pocket much deeper than aging compounds and form the hydrophobic interaction with Phe1066. Therefore, the unique binding conformation of non-aging compounds may prevent the aging reaction. These important differences of the binding conformations of aging and non-aging inhibitors with NTE may help explain their different inhibition mechanism and the protection of non-aging NTE inhibitors against delayed neuropathy.
Collapse
Affiliation(s)
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
5
|
The Catalytic Domain of Neuropathy Target Esterase Influences Lipid Droplet Biogenesis and Lipid Metabolism in Human Neuroblastoma Cells. Metabolites 2022; 12:metabo12070637. [PMID: 35888761 PMCID: PMC9319352 DOI: 10.3390/metabo12070637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
As an endoplasmic reticulum (ER)-anchored phospholipase, neuropathy target esterase (NTE) catalyzes the deacylation of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). The catalytic domain of NTE (NEST) exhibits comparable activity to NTE and binds to lipid droplets (LD). In the current study, the nucleotide monophosphate (cNMP)-binding domains (CBDs) were firstly demonstrated not to be essential for the ER-targeting of NTE, but to be involved in the normal ER distribution and localization to LD. NEST was associated with LD surface and influenced LD formation in human neuroblastoma cells. Overexpression of NEST enhances triacylglycerol (TG) accumulation upon oleic acid loading. Quantitative targeted lipidomic analysis shows that overexpression of NEST does not alter diacylglycerol levels but reduces free fatty acids content. NEST not only lowered levels of LPC and acyl-LPC, but not PC or alkyl-PC, but also widely altered levels of other lipid metabolites. Qualitative PCR indicates that the increase in levels of TG is due to the expression of diacylglycerol acyltransferase 1 gene by NEST overexpression. Thus, NTE may broadly regulate lipid metabolism to play roles in LD biogenesis in cells.
Collapse
|
6
|
PNPLA6/NTE, an Evolutionary Conserved Phospholipase Linked to a Group of Complex Human Diseases. Metabolites 2022; 12:metabo12040284. [PMID: 35448471 PMCID: PMC9025805 DOI: 10.3390/metabo12040284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
Patatin-like phospholipase domain-containing protein 6 (PNPLA6), originally called Neuropathy Target Esterase (NTE), belongs to a family of hydrolases with at least eight members in mammals. PNPLA6/NTE was first identified as a key factor in Organophosphate-induced delayed neuropathy, a degenerative syndrome that occurs after exposure to organophosphates found in pesticides and nerve agents. More recently, mutations in PNPLA6/NTE have been linked with a number of inherited diseases with diverse clinical symptoms that include spastic paraplegia, ataxia, and chorioretinal dystrophy. A conditional knockout of PNPLA6/NTE in the mouse brain results in age-related neurodegeneration, whereas a complete knockout causes lethality during embryogenesis due to defects in the development of the placenta. PNPLA6/NTE is an evolutionarily conserved protein that in Drosophila is called Swiss-Cheese (SWS). Loss of SWS in the fly also leads to locomotory defects and neuronal degeneration that progressively worsen with age. This review will describe the identification of PNPLA6/NTE, its expression pattern, and normal role in lipid homeostasis, as well as the consequences of altered NPLA6/NTE function in both model systems and patients.
Collapse
|
7
|
Chang P, Sun T, Heier C, Gao H, Xu H, Huang F. Interaction of the Lysophospholipase PNPLA7 with Lipid Droplets through the Catalytic Region. Mol Cells 2020; 43:286-297. [PMID: 32208367 PMCID: PMC7103881 DOI: 10.14348/molcells.2020.2283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown. Herein, we demonstrate that PNPLA7-C localizes to the mature LDs ex vivo and also colocalizes with pre-existing LDs. Localization of PNPLA7-C with LDs induces LDs clustering via non-enzymatic intermolecular associations, while PNPLA7 alone does not induce LD clustering. Residues 742-1016 contains four putative transmembrane domains which act as a LD targeting motif and are required for the localization of PNPLA7-C to LDs. Furthermore, the N-terminal flanking region of the LD targeting motif, residues 681-741, contributes to the LD targeting, whereas the C-terminal flanking region (1169-1326) has an anti-LD targeting effect. Interestingly, the LD targeting motif does not exhibit lysophosphatidylcholine hydrolase activity even though it associates with LDs phospholipid membranes. These findings characterize the specific functional domains of PNPLA7 mediating subcellular positioning and interactions with LDs, as wells as providing critical insights into the structure of this evolutionarily conserved phospholipid-metabolizing enzyme family.
Collapse
Affiliation(s)
- Pingan Chang
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Tengteng Sun
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hao Gao
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Hongmei Xu
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Feifei Huang
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
8
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Characterization of the Interaction of Neuropathy Target Esterase with the Endoplasmic Reticulum and Lipid Droplets. Biomolecules 2019; 9:biom9120848. [PMID: 31835418 PMCID: PMC6995513 DOI: 10.3390/biom9120848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/02/2022] Open
Abstract
Neuropathy target esterase (NTE) is an endoplasmic reticulum (ER)-localized phospholipase that deacylates phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Loss-of-function mutations in the human NTE gene have been associated with a spectrum of neurodegenerative disorders such as hereditary spastic paraplegia, ataxia and chorioretinal dystrophy. Despite this, little is known about structure–function relationships between NTE protein domains, enzymatic activity and the interaction with cellular organelles. In the current study we show that the C-terminal region of NTE forms a catalytically active domain that exhibits high affinity for lipid droplets (LDs), cellular storage organelles for triacylglycerol (TAG), which have been recently implicated in the progression of neurodegenerative diseases. Ectopic expression of the C domain in cultured cells decreases cellular PC, elevates TAG and induces LD clustering. LD interactions of NTE are inhibited by default by a non-enzymatic regulatory (R) region with three putative nucleotide monophosphate binding sites. Together with a N-terminal TMD the R region promotes proper distribution of the catalytic C-terminal region to the ER network. Taken together, our data indicate that NTE may exhibit dynamic interactions with the ER and LDs depending on the interplay of its functional regions. Mutations that disrupt this interplay may contribute to NTE-associated disorders by affecting NTE positioning.
Collapse
|
10
|
O’Neil E, Serrano L, Scoles D, Cunningham KE, Han G, Chiang J, Bennett J, Aleman TS. Detailed retinal phenotype of Boucher-Neuhäuser syndrome associated with mutations in PNPLA6 mimicking choroideremia. Ophthalmic Genet 2019; 40:267-275. [DOI: 10.1080/13816810.2019.1605392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Erin O’Neil
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leona Serrano
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Scoles
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Grace Han
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Chiang
- Molecular Vision Laboratory, Hillsboro, OR, USA
| | - Jean Bennett
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomas S. Aleman
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Camargos Costa D, Pereira de Assis GM, de Souza Silva FA, Araújo FC, de Souza Junior JC, Braga Hirano ZM, Satiko Kano F, Nóbrega de Sousa T, Carvalho LH, Ferreira Alves de Brito C. Plasmodium simium, a Plasmodium vivax-related malaria parasite: genetic variability of Duffy binding protein II and the Duffy antigen/receptor for chemokines. PLoS One 2015; 10:e0131339. [PMID: 26107662 PMCID: PMC4480967 DOI: 10.1371/journal.pone.0131339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocytic invasion pathway. The genes encoding P. simium DBP (PsDBPII) and simian DARC (sDARC) were sequenced from Southern brown howler monkeys (Alouatta guariba clamitans) naturally infected with P. simium because P. simium may also depend on the DBPII/DARC interaction. The sequences of DBP binding domains from P. vivax and P. simium were highly similar. However, the genetic variability of PsDBPII was lower than that of PvDBPII. Phylogenetic analyses demonstrated that these genes were strictly related and clustered in the same clade of the evolutionary tree. DARC from A. clamitans was also sequenced and contained three new non-synonymous substitutions. None of these substitutions were located in the N-terminal domain of DARC, which interacts directly with DBPII. The interaction between sDARC and PvDBPII was evaluated using a cytoadherence assay of COS7 cells expressing PvDBPII on their surfaces. Inhibitory binding assays in vitro demonstrated that antibodies from monkey sera blocked the interaction between COS-7 cells expressing PvDBPII and hDARC-positive erythrocytes. Taken together, phylogenetic analyses reinforced the hypothesis that the host switch from humans to monkeys may have occurred very recently in evolution, which sheds light on the evolutionary history of new world plasmodia. Further invasion studies would confirm whether P. simium depends on DBP/DARC to trigger internalization into red blood cells.
Collapse
Affiliation(s)
- Daniela Camargos Costa
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Flávia Carolina Araújo
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Júlio César de Souza Junior
- FURB, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
- CEPESBI—Centro de Pesquisas Biológicas de Indaial, Indaial, Santa Catarina, Brazil
| | - Zelinda Maria Braga Hirano
- FURB, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
- CEPESBI—Centro de Pesquisas Biológicas de Indaial, Indaial, Santa Catarina, Brazil
| | - Flora Satiko Kano
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Taís Nóbrega de Sousa
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luzia Helena Carvalho
- Laboratório de Malária, Centro de Pesquisas René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
12
|
Wijeyesakere SJ, Richardson RJ, Stuckey JA. Crystal structure of patatin-17 in complex with aged and non-aged organophosphorus compounds. PLoS One 2014; 9:e108245. [PMID: 25248161 PMCID: PMC4172759 DOI: 10.1371/journal.pone.0108245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Patatin is a non-specific plant lipase and the eponymous member of a broad class of serine hydrolases termed the patatin-like phospholipase domain containing proteins (PNPLAs). Certain PNPLA family members can be inhibited by organophosphorus (OP) compounds. Currently, no structural data are available on the modes of interaction between the PNPLAs and OP compounds or their native substrates. To this end, we present the crystal structure of patatin-17 (pat17) in its native state as well as following inhibition with methyl arachidonyl fluorophosphonate (MAFP) and inhibition/aging with diisopropylphosphorofluoridate (DFP). The native pat17 structure revealed the existence of two portals (portal1 and portal2) that lead to its active-site chamber. The DFP-inhibited enzyme underwent the aging process with the negatively charged phosphoryl oxygen, resulting from the loss of an isopropyl group, being within hydrogen-binding distance to the oxyanion hole. The MAFP-inhibited pat17 structure showed that MAFP did not age following its interaction with the nucleophilic serine residue (Ser77) of pat17 since its O-methyl group was intact. The MAFP moiety is oriented with its phosphoryl oxygen in close proximity to the oxyanion hole of pat17 and its O-methyl group located farther away from the oxyanion hole of pat17 relative to the DFP-bound state. The orientation of the alkoxy oxygens within the two OP compounds suggests a role for the oxyanion hole in stabilizing the emerging negative charge on the oxygen during the aging reaction. The arachidonic acid side chain of MAFP could be contained within portals 1 or 2. Comparisons of pat17 in the native, inhibited, and aged states showed no significant global conformational changes with respect to their Cα backbones, consistent with observations from other α/β hydrolases such as group VIIA phospholipase A2.
Collapse
Affiliation(s)
- Sanjeeva J. Wijeyesakere
- Toxicology Program, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rudy J. Richardson
- Toxicology Program, Department of Environmental Health Sciences, and Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeanne A. Stuckey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mohamed YM, Ghazy MA, Sayed A, Ouf A, El-Dorry H, Siam R. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool. Sci Rep 2013; 3:3358. [PMID: 24285146 PMCID: PMC6506439 DOI: 10.1038/srep03358] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/07/2013] [Indexed: 11/09/2022] Open
Abstract
The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65°C), halotolerant (maintains its activity in up to 4.5 M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.
Collapse
Affiliation(s)
- Yasmine M Mohamed
- 1] Biology Department, American University in Cairo, Cairo, Egypt [2] YJ-The Science and Technology Research Center, American University in Cairo, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
14
|
Richardson RJ, Hein ND, Wijeyesakere SJ, Fink JK, Makhaeva GF. Neuropathy target esterase (NTE): overview and future. Chem Biol Interact 2012; 203:238-44. [PMID: 23220002 DOI: 10.1016/j.cbi.2012.10.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
Abstract
Neuropathy target esterase (NTE) was discovered by M.K. Johnson in his quest for the entity responsible for the striking and mysterious paralysis brought about by certain organophosphorus (OP) esters. His pioneering work on OP neuropathy led to the view that the biochemical lesion consisted of NTE that had undergone OP inhibition and aging. Indeed, nonaging NTE inhibitors failed to produce disease but protected against neuropathy from subsequently administered aging inhibitors. Thus, inhibition of NTE activity was not the culprit; rather, formation of an abnormal protein was the agent of the disorder. More recently, however, Paul Glynn and colleagues showed that whereas conventional knockout of the NTE gene was embryonic lethal, conditional knockout of central nervous system NTE produced neurodegeneration, suggesting to these authors that the absence of NTE rather than its presence in some altered form caused disease. We now know that NTE is the 6th member of a 9-protein family called patatin-like phospholipase domain-containing proteins, PNPLA1-9. Mutations in the catalytic domain of NTE (PNPLA6) are associated with a slowly developing disease akin to OP neuropathy and hereditary spastic paraplegia called NTE-related motor neuron disorder (NTE-MND). Furthermore, the NTE protein from affected individuals has altered enzymological characteristics. Moreover, closely related PNPLA7 is regulated by insulin and glucose. These seemingly disparate findings are not necessarily mutually exclusive, but we need to reconcile recent genetic findings with the historical body of toxicological data indicating that inhibition and aging of NTE are both necessary in order to produce neuropathy from exposure to certain OP compounds. Solving this mystery will be satisfying in itself, but it is also an enterprise likely to pay dividends by enhancing our understanding of the physiological and pathogenic roles of the PNPLA family of proteins in neurological health and disease, including a potential role for NTE in diabetic neuropathy.
Collapse
Affiliation(s)
- Rudy J Richardson
- Toxicology Program, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | |
Collapse
|
15
|
Makhaeva GF, Radchenko EV, Baskin II, Palyulin VA, Richardson RJ, Zefirov NS. Combined QSAR studies of inhibitor properties of O-phosphorylated oximes toward serine esterases involved in neurotoxicity, drug metabolism and Alzheimer's disease. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:627-647. [PMID: 22587543 DOI: 10.1080/1062936x.2012.679690] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Oxime reactivation of serine esterases (EOHs) inhibited by organophosphorus (OP) compounds can produce O-phosphorylated oximes (POXs). Such oxime derivatives are of interest, because some of them can have greater anti-EOH potencies than the OP inhibitors from which they were derived. Accordingly, inhibitor properties of 58 POXs against four EOHs, along with pair-wise selectivities between them, have been analysed using different QSAR approaches. EOHs (with their abbreviations and consequences of inhibition in parentheses) comprised acetylcholinesterase (AChE: acute neurotoxicity; cognition enhancement), butyrylcholinesterase (BChE: inhibition of drug metabolism or stoichiometric scavenging of EOH inhibitors; cognition enhancement), carboxylesterase (CaE: inhibition of drug metabolism or stoichiometric scavenging of EOH inhibitors), and neuropathy target esterase (NTE: delayed neurotoxicity). QSAR techniques encompassed linear regression and backpropagation neural networks in conjunction with fragmental descriptors containing labelled atoms, Molecular Field Topology Analysis (MFTA), Comparative Molecular Similarity Index Analysis (CoMSIA), and molecular modelling. All methods provided mostly consistent and complementary information, and they revealed structural features controlling the 'esterase profiles', i.e. patterns of anti-EOH activities and selectivities of the compounds of interest. In addition, MFTA models were used to design a library of compounds having a cognition-enhancement esterase profile suitable for potential application to the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- G F Makhaeva
- Institute of Physiologically Active Compounds, Chernogolovka, Moscow Region, Russia
| | | | | | | | | | | |
Collapse
|
16
|
Kano FS, Sanchez BAM, Sousa TN, Tang ML, Saliba J, Oliveira FM, Nogueira PA, Gonçalves AQ, Fontes CJF, Soares IS, Brito CFA, Rocha RS, Carvalho LH. Plasmodium vivax Duffy binding protein: baseline antibody responses and parasite polymorphisms in a well-consolidated settlement of the Amazon Region. Trop Med Int Health 2012; 17:989-1000. [PMID: 22643072 DOI: 10.1111/j.1365-3156.2012.03016.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate risk factors associated with the acquisition of antibodies against Plasmodium vivax Duffy binding protein (PvDBP) - a leading malaria vaccine candidate - in a well-consolidated agricultural settlement of the Brazilian Amazon Region and to determine the sequence diversity of the PvDBP ligand domain (DBP(II)) within the local malaria parasite population. METHODS Demographic, epidemiological and clinical data were collected from 541 volunteers using a structured questionnaire. Malaria parasites were detected by conventional microscopy and PCR, and blood collection was used for antibody assays and molecular characterisation of DBP(II). RESULTS The frequency of malaria infection was 7% (6% for P. vivax and 1% for P. falciparum), with malaria cases clustered near mosquito breeding sites. Nearly 50% of settlers had anti-PvDBP IgG antibodies, as detected by enzyme-linked immunosorbent assay (ELISA) with subject's age being the only strong predictor of seropositivity to PvDBP. Unexpectedly, low levels of DBP(II) diversity were found within the local malaria parasites, suggesting the existence of low gene flow between P. vivax populations, probably due to the relative isolation of the studied settlement. CONCLUSION The recognition of PvDBP by a significant proportion of the community, associated with low levels of DBP(II) diversity among local P. vivax, reinforces the variety of malaria transmission patterns in communities from frontier settlements. Such studies should provide baseline information for antimalarial vaccines now in development.
Collapse
Affiliation(s)
- Flora S Kano
- Laboratório de Malária, Centro de Pesquisas René Rachou/Fiocruz, Belo Horizonte-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification of two novel splicing variants of murine NTE-related esterase. Gene 2012; 497:164-71. [PMID: 22326266 DOI: 10.1016/j.gene.2012.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/09/2012] [Accepted: 01/26/2012] [Indexed: 11/22/2022]
Abstract
NTE-related esterase (NRE) is an insulin-regulated lysophospholipase with homology to neuropathy target esterase (NTE), which plays a role in energy metabolism. Here, we reported two alternative splicing variants of the murine NRE (mNRE) gene, termed mNREV1 and mNREV2. Genomic organization analysis indicated that 5' splice site of mNRE intron 33 was changed in both mNREV1 and mNREV2, and mNRE exon 21 was deleted in mNREV2. mNREV1 had the same protein domains with mNRE, while mNREV2 lacked the patatin domain in the C-terminal catalytic region. Green fluorescent protein-mNREV1 or mNREV2 fusion proteins localized to the endoplasmic reticulum. mNREV1 and mNRE exhibited equal hydrolytic activity to the substrate phenyl valerate, whereas mNREV2 did not have any catalytic activity. The expression profiles of mNRE and its splicing isoforms in white adipose tissue, cardiac muscle, skeletal muscle, and testis tissues were further analyzed by real time quantitative-PCR in fed and fasted states, which indicated that the major isoform of mNRE mRNA generated switched from mNREV2 to mNREV1 during fasting. Thus there was a nutritional regulation of mNRE expression at the mRNA levels via alternative splicing.
Collapse
|
18
|
Sousa TN, Tarazona-Santos EM, Wilson DJ, Madureira AP, Falcão PRK, Fontes CJF, Gil LHS, Ferreira MU, Carvalho LH, Brito CFA. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in Brazilian Plasmodium vivax populations. Malar J 2010; 9:334. [PMID: 21092207 PMCID: PMC3003673 DOI: 10.1186/1475-2875-9-334] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/22/2010] [Indexed: 11/30/2022] Open
Abstract
Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII), which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii) PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.
Collapse
Affiliation(s)
- Taís N Sousa
- Laboratory of Malaria, Centro de Pesquisa Rene Rachou/FIOCRUZ, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hein ND, Stuckey JA, Rainier SR, Fink JK, Richardson. RJ. Constructs of human neuropathy target esterase catalytic domain containing mutations related to motor neuron disease have altered enzymatic properties. Toxicol Lett 2010; 196:67-73. [PMID: 20382209 PMCID: PMC4310459 DOI: 10.1016/j.toxlet.2010.03.1120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Neuropathy target esterase (NTE) is a phospholipase/lysophospholipase associated with organophosphorus (OP) compound-induced delayed neurotoxicity (OPIDN). Distal degeneration of motor axons occurs in both OPIDN and the hereditary spastic paraplegias (HSPs). Recently, mutations within the esterase domain of NTE were identified in patients with a novel type of HSP (SPG39) designated NTE-related motor neuron disease (NTE-MND). Two of these mutations, arginine 890 to histidine (R890H) and methionine 1012 to valine (M1012V), were created in human recombinant NTE catalytic domain (NEST) to measure possible changes in catalytic properties. These mutated enzymes had decreased specific activities for hydrolysis of the artificial substrate, phenyl valerate. In addition, the M1012V mutant exhibited a reduced bimolecular rate constant of inhibition (k(i)) for all three inhibitors tested: mipafox, diisopropylphosphorofluoridate, and chlorpyrifos oxon. Finally, while both mutated enzymes inhibited by OP compounds exhibited altered time-dependent loss of their ability to be reactivated by nucleophiles (aging), more pronounced effects were seen with the M1012V mutant. Taken together, the results from specific activity, inhibition, and aging experiments suggest that the mutations found in association with NTE-MND have functional correlates in altered enzymological properties of NTE.
Collapse
Affiliation(s)
- Nichole D. Hein
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - John K. Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Geriatrics Research, Education, and Clinical Center, Ann Arbor VAHS, Ann Arbor, MI, USA
| | - Rudy J. Richardson.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Toxicology Program, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Chang PA, Wang ZX, Long DX, Qin WZ, Wu YJ. Protein domains, catalytic activity, and subcellular distribution of mouse NTE-related esterase. Mol Cell Biochem 2010; 339:181-90. [PMID: 20058052 DOI: 10.1007/s11010-009-0382-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/09/2009] [Indexed: 12/21/2022]
Abstract
A mammalian family of lipid hydrolases, designated "patatin-like phospholipase domain containing (PNPLA)" recently has attracted attention. NTE-related esterase (NRE) as a member of PNPLA is an insulin-regulated lysophospholipase with homology to neuropathy target esterase (NTE). Mouse NRE (mNRE) has a predicted amino-terminal transmembrane region (TM), a putative regulatory (R) domain, and a hydrophobic catalytic (C) domain. In the current study, we described the expression of green fluorescent protein (GFP)-tagged constructs of mNRE and mutant proteins lacking the specific protein domains. Esterase assays indicated that neither the TM nor R-domain was essential for mNRE esterase activity, but the TM significantly contributed to its activity. Subcellular distribution showed that mNRE was anchored in ER via its TM domain and that its C-domain was associated with ER. Furthermore, experiments involving proteinase treatment revealed that most of mNRE molecule was exposed on the cytoplasmic face of ER membranes. Collectively, our results for the first time revealed the protein domains, catalytic activity, and subcellular location of mNRE and a simplified model for mNRE was proposed.
Collapse
Affiliation(s)
- Ping-An Chang
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Nan'an District, 400065 Chongqing, People's Republic of China.
| | | | | | | | | |
Collapse
|
21
|
Chang PA, Wu YJ. Motor neuron diseases and neurotoxic substances: A possible link? Chem Biol Interact 2009; 180:127-30. [DOI: 10.1016/j.cbi.2009.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/16/2009] [Accepted: 03/10/2009] [Indexed: 12/12/2022]
|
22
|
Chang PA, Long DX, Wu YJ, Sun Q, Song FZ. Identification and characterization of chicken neuropathy target esterase. Gene 2009; 435:45-52. [PMID: 19393187 DOI: 10.1016/j.gene.2009.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/06/2009] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Neuropathy target esterase (NTE) was proposed as the initial target during the process of organophosphate-induced delayed neuropathy (OPIDN) and adult hens are the animal model of OPIDN. However, little has been known about the sequence and characteristics of chicken NTE. Here, we firstly identified the full length cDNA of chicken NTE (cNTE), which contained an open reading frame of 3966 nucleotides encoding 1321 amino acids. Chicken NTE had two distinct regions, one was the regulatory domain (cNTER) and the other was the catalytic domain (cNEST). Over-expression of cNTER in mammalian cells did not show any NTE activity, whereas cNEST had NTE activity. Cells expressing cNTER tagged with green fluorescent protein (GFP) showed accumulation of cNTER-GFP in an endoplasmic reticulum-like localization pattern. In addition, macroautophagy and the proteasome pathways were found to be involved in the degradation of cNTER, but not cNEST. These results first showed that cNTE was an ER-anchored protein and degraded by macroautophagy as well as the proteasome.
Collapse
Affiliation(s)
- Ping-An Chang
- Chongqing University of Posts and Telecommunications, Nan'an District, PR China.
| | | | | | | | | |
Collapse
|
23
|
Casida JE, Nomura DK, Vose SC, Fujioka K. Organophosphate-sensitive lipases modulate brain lysophospholipids, ether lipids and endocannabinoids. Chem Biol Interact 2008; 175:355-64. [PMID: 18495101 PMCID: PMC2582404 DOI: 10.1016/j.cbi.2008.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 12/28/2022]
Abstract
Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3112, USA.
| | | | | | | |
Collapse
|
24
|
Chang PA, Long DX, Sun Q, Wang Q, Bu YQ, Wu YJ. Identification and characterization of a splice variant of the catalytic domain of mouse NTE-related esterase. Gene 2008; 417:43-50. [PMID: 18486363 DOI: 10.1016/j.gene.2008.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/06/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Patatin-domain containing proteins constitute a large family of enzymes including known lipases that hydrolyze triglycerides, diglycerides, and phospholipids, some of which still remain to be characterized. One of those is NTE-related esterase (NRE), which exhibits sequence and domain homology to neuropathy target esterase (NTE). A splice variant of the catalytic domain of mouse NRE (mNRECV) was identified in multiple adult tissues, including brain, kidney, liver and testis. Genomic organization showed that mNRECV gene lacked the 22nd exon of mouse NRE and the 14th exon termination site of mNRECV was behind of 5 bp with the comparison of the 34th exon of mNRE gene. Over-expression of mNREC and mNRECV in mammalian cells showed that they had similar phenyl valerate esterase activities, but different from human NTE esterase domain. Subcellular distribution of an enhanced green fluorescent protein-mNRECV fusion protein was mainly observed to colocalize with endoplasmic reticulum in the juxtanuclear area and a little in cytoplasm. Moreover, autophagy/lysosome pathway was found to be involved in the degradation of mNRECV protein by inhibition and induction of autophagy, as well as co-location of mNRECV-EGFP with lysosomes. The high identity between mNRECV and mNREC suggested that mouse NRE has similar characteristics.
Collapse
Affiliation(s)
- Ping-An Chang
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | | | | | | | | | | |
Collapse
|
25
|
Chang PA, Sun Q, Ni XM, Qv FQ, Wu YJ, Song FZ. Molecular cloning and expression analysis of cDNA ends of chicken neuropathy target esterase. Chem Biol Interact 2007; 172:54-62. [PMID: 18191825 DOI: 10.1016/j.cbi.2007.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/18/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
Neuropathy target esterase (NTE) was proposed as the initial target during the process of organophosphate-induced delayed neuropathy (OPIDN) in human and some sensitive animals. Adult hens are usually the animal model for experimental studies of OPIDN. However, little is known about the sequence and characteristics of chicken NTE. We report here the cloning of the 5' and 3' cDNA ends of chicken NTE through rapid amplification of cDNA ends (RACE) and their expression profiles in different tissues with northern blotting. The cloned 3' cDNA end of chicken NTE is 801 base pair (bp) in length with an open reading frame (ORF) of 379 bp. It contains a termination codon (TAG) and a 422-nucleotide noncoding sequence with the polyA sequence (GenBank accession no. DQ126678). The chicken NTE 5' cDNA end is 665 bp in length with an ORF of 552 bp. It contains an initiation codon (ATG) and a 113-bp untranslated region (GenBank accession no. DQ126677). The deduced proteins from 5' and 3' cDNA ends have a high degree of homology to humans and mouse NTE at the amino acid level. Chicken NTE is suggested to be a transmembrane protein by the transmembrane helix prediction of the deduced N-terminal sequence. The chicken NTE gene is expressed as a 4.5k b transcript in different tissues, including brain, kidney, liver and testis. Moreover, the mRNA expression of chicken NTE is highest in brain, and the mRNA levels of chicken NTE in testis, kidney and liver are about 75%, 47% and 24% of that in brain, respectively. These results should be helpful in cloning chicken full-length NTE gene.
Collapse
Affiliation(s)
- Ping-An Chang
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing, PR China.
| | | | | | | | | | | |
Collapse
|
26
|
Vose SC, Holland NT, Eskenazi B, Casida JE. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants. Toxicol Appl Pharmacol 2007; 224:98-104. [PMID: 17663017 PMCID: PMC2682731 DOI: 10.1016/j.taap.2007.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/01/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.
Collapse
Affiliation(s)
- Sarah C. Vose
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
- Center for Children’s Environmental Health Research, School of Public Health, University of California, Berkeley, California 94720, USA
| | - Nina T. Holland
- Center for Children’s Environmental Health Research, School of Public Health, University of California, Berkeley, California 94720, USA
| | - Brenda Eskenazi
- Center for Children’s Environmental Health Research, School of Public Health, University of California, Berkeley, California 94720, USA
| | - John E. Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Chang PA, Long DX, Wu YJ. Molecular cloning and expression of the C-terminal domain of mouse NTE-related esterase. Mol Cell Biochem 2007; 306:25-32. [PMID: 17673953 DOI: 10.1007/s11010-007-9550-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/12/2007] [Indexed: 11/29/2022]
Abstract
NTE-related esterase (NRE), conserved in mouse, rat and human, was a member of patatin-like phospholipases (PLPLA) with high homology to neuropathy target esterase (NTE). Little has been known about the characteristics of NRE and NRE functional esterase activity has yet not been defined. The C-terminal gene sequence of mouse NRE (mNREC) encoding 923-1,326 amino acid containing the patatin domain was first cloned and then expressed tagged with enhanced green fluorescence protein (EGFP) in mammalian cells. The results showed that mNREC had NTE esterase activity in mammalian cells. Overexpression of mNREC did not affect the esterase activity sensitive to paraoxon or resistant to both paraoxon and mipafox. mNREC was distributed in the cytoplasm in contrast to the distribution of human NTE esterase domain. The expression analysis of NRE gene in adult mouse tissues by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) showed that there were higher levels of NRE mRNA in the brain and testis than in the liver and kidney, which was about 50% and 35% of that in the brain. These results firstly showed the tissue distribution of NRE gene in adult mouse and defined that NRE had functional esterase activity.
Collapse
Affiliation(s)
- Ping-An Chang
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | | | | |
Collapse
|