1
|
Rezaei Somee L, Ebrahimi P, Agnetti G, Upadhyay M, Shobhawat R, Kumar A, Shahsavani MB, Zarei I, Amanlou M, Saboury AA, Moosavi-Movahedi AA, Yousefi R. Structural and functional consequences of the cardiomyopathy-associated p.R157C mutation in the C-terminal palindromic motif of human αB-crystallin. FEBS Lett 2025. [PMID: 40351021 DOI: 10.1002/1873-3468.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 05/14/2025]
Abstract
αB-crystallin, a small heat shock protein, is crucial for maintaining lenticular transparency and prevents protein aggregation as a molecular chaperone in various tissues. Mutations in αB-crystallin can lead to diseases such as cataracts, cardiomyopathy, and neurodegenerative disorders. This study explores the effects of the p.R157C mutation in the C-terminal domain, near the IXI motif, which is associated with cardiomyopathy. The mutant protein was generated through site-directed mutagenesis, expressed in bacterial systems, and purified by ion-exchange chromatography. Biophysical and computational techniques revealed significant alterations in secondary structure, oligomerization, and conformational stability. The mutation also enhanced chaperone activity and promoted amyloid fibril formation. These alterations may disrupt the interactions of the p.R157C mutant αB-crystallin with cardiac proteins such as desmin and calcineurin, potentially contributing to cardiomyopathy. These findings offer mechanistic insights into αB-crystallin-related cardiomyopathy, shedding light on its pathological role and potential therapeutic targets.
Collapse
Affiliation(s)
- Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| | - Parisa Ebrahimi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| | - Giulio Agnetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Mansi Upadhyay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Rahul Shobhawat
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Issa Zarei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| |
Collapse
|
2
|
Karmakar S, Das KP. Histidine Tags in Human Recombinant Alpha B-Crystallin (HSPB5) Proteins Are Detrimental for Zinc Binding Studies. Biopolymers 2025; 116:e70003. [PMID: 39878199 DOI: 10.1002/bip.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn2. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability. Three histidines H104, H111, and H119 of recombinant human αB-crystallin (HSPB5) are found to be the Zn2+ binding residues. In this article, we did site-directed mutagenesis of six histidine residues and made five-point mutants and a double mutant of αB-crystallin. We studied the effect of zinc on the chaperone function, surface hydrophobicity, and stability of the histidine mutants. We removed the histidine tag from H18A and H101V mutants and studied the stability and chaperone function in the presence and absence of zinc. H83 and H111 mutations showed similar enhancement in chaperone function like WT in the presence of Zn2+. Point mutants having his tags showed similar stability enhancement, but point mutant H18A without his tag showed less enhancement in stability in the presence of zinc. This indicates the significance of the presence of his tags in the study of zinc binding interaction with recombinant human αB-crystallin.
Collapse
Affiliation(s)
- Srabani Karmakar
- Department of Microbiology, Kingston College of Science, Kolkata, India
| | - K P Das
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
3
|
Somee LR, Barati A, Shahsavani MB, Hoshino M, Hong J, Kumar A, Moosavi-Movahedi AA, Amanlou M, Yousefi R. Understanding the structural and functional changes and biochemical pathomechanism of the cardiomyopathy-associated p.R123W mutation in human αB-crystallin. Biochim Biophys Acta Gen Subj 2024; 1868:130579. [PMID: 38307443 DOI: 10.1016/j.bbagen.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
αB-crystallin, a member of the small heat shock protein (sHSP) family, is expressed in diverse tissues, including the eyes, brain, muscles, and heart. This protein plays a crucial role in maintaining eye lens transparency and exhibits holdase chaperone and anti-apoptotic activities. Therefore, structural and functional changes caused by genetic mutations in this protein may contribute to the development of disorders like cataract and cardiomyopathy. Recently, the substitution of arginine 123 with tryptophan (p.R123W mutation) in human αB-crystallin has been reported to trigger cardiomyopathy. In this study, human αB-crystallin was expressed in Escherichia coli (E. coli), and the missense mutation p.R123W was created using site-directed mutagenesis. Following purification via anion exchange chromatography, the structural and functional properties of both proteins were investigated and compared using a wide range of spectroscopic and microscopic methods. The p.R123W mutation induced significant alterations in the secondary, tertiary, and quaternary structures of human αB-crystallin. This pathogenic mutation resulted in an increased β-sheet structure and formation of protein oligomers with larger sizes compared to the wild-type protein. The mutant protein also exhibited reduced chaperone activity and lower thermal stability. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrated that the p.R123W mutant protein is more prone to forming amyloid aggregates. The structural and functional changes observed in the p.R123W mutant protein, along with its increased propensity for aggregation, could impact its proper functional interaction with the target proteins in the cardiac muscle, such as calcineurin. Our results provide an explanation for the pathogenic intervention of p.R123W mutant protein in the occurrence of hypertrophic cardiomyopathy (HCM).
Collapse
Affiliation(s)
- Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifen, People's Republic of China
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Barati A, Rezaei Somee L, Shahsavani MB, Ghasemi A, Hoshino M, Hong J, Saboury AA, Moosavi-Movahedi AA, Agnetti G, Yousefi R. Insights into the dual nature of αB-crystallin chaperone activity from the p.P39L mutant at the N-terminal region. Sci Rep 2024; 14:7353. [PMID: 38548822 PMCID: PMC10978848 DOI: 10.1038/s41598-024-57651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
The substitution of leucine to proline at position 39 (p.P39L) in human αB-crystallin (αB-Cry) has been associated with conflicting interpretations of pathogenicity in cataracts and cardiomyopathy. This study aimed to investigate the effects of the p.P39L mutation on the structural and functional features of human αB-Cry. The mutant protein was expressed in Escherichia coli (E. coli) and purified using anion exchange chromatography. We employed a wide range of spectroscopic analyses, gel electrophoresis, transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques to investigate the structure, function, stability, and fibrillation propensity of the mutant protein. The p.P39L mutation caused significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry and increased the thermal stability of the protein. The mutant αB-Cry exhibited an increased chaperone activity and an altered oligomeric size distribution, along with an increased propensity to form amyloid aggregates. It is worth mentioning, increased chaperone activity has important positive and negative effects on damaged cells related to cataracts and cardiomyopathy, particularly by interfering in the process of apoptosis. Despite the apparent positive nature of the increased chaperone activity, it is also linked to adverse consequences. This study provides important insights into the effect of proline substitution by leucine at the N-terminal region on the dual nature of chaperone activity in human αB-Cry, which can act as a double-edged sword.
Collapse
Affiliation(s)
- Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng, 475000, People's Republic of China
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Giulio Agnetti
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Khaleghinejad SH, Shahsavani MB, Ghahramani M, Yousefi R. Investigating the role of double mutations R12C/P20R, and R12C/R69C on structure, chaperone-like activity, and amyloidogenic properties of human αB-crystallin. Int J Biol Macromol 2023; 242:124590. [PMID: 37116845 DOI: 10.1016/j.ijbiomac.2023.124590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
α-crystallin is a structurally essential small heat shock protein (sHSP) with a chaperone-like activity which maintains transparency of the lenticular tissues during a period of time that is as long as human life. α-crystallin is a multimeric protein consisting of αA and αB subunits, with 57 % homology. The CRYAB gene on chromosome 11 encodes human αB-crystallin (αB-Cry), which contains 175 amino acid residues. In the current study, the cataractogenic mutations R12C, P20R, R69C, and double mutations R12C/P20R and R12C/P20R were embedded into the human CRYAB gene. Following successful expression in the prokaryotic system and purification, a number of spectroscopic techniques, gel electrophoresis, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to assess the role of these mutations on the structure, amyloidogenicity, and biological function of human αB-Cry. The created mutations caused significant changes in the structure, and oligomeric state of human αB-Cry. These mutations, particularly R12C, R12C/P20R, and R12C/R69C, dramatically enhanced the tendency of this protein for the amyloid fibril formation and reduced its chaperone-like activity. Since double mutations R12C/P20R and R12C/P20R were able to intensely change the protein's structure and chaperone function, it can be suggested that they may play a destructive role in a cumulative manner. Our findings indicated that the simultaneous presence of two pathogenic mutations may have a cumulative destructive impacts on the structure and function of human αB-Cry and this observation is likely related to the disease severity of the mutated proteins.
Collapse
Affiliation(s)
- Seyed Hossein Khaleghinejad
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Khoshaman K, Ghahramani M, Shahsavani MB, Moosavi-Movahedi AA, Kurganov BI, Yousefi R. Myopathy-associated G154S mutation causes important changes in the conformational stability, amyloidogenic properties, and chaperone-like activity of human αB-crystallin. Biophys Chem 2022; 282:106744. [PMID: 34983005 DOI: 10.1016/j.bpc.2021.106744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Glycine to serine substitution at position 154 of human αB-crystallin (αB-Cry) is behind the development of cardiomyopathy and late-onset distal myopathy. The current study was conducted with the aim to investigate the structural and functional features of the G154S mutant αB-Cry using various spectroscopic techniques and microscopic analyses. The secondary and tertiary structures of human αB-Cry were preserved mainly in the presence of G154S mutation, but the mutant protein indicated a reduced chaperone-like activity when γ-Cry as its natural partner in eye lenses was the substrate protein. Moreover, a significant reduction in the enzyme refolding ability and in vivo chaperone activity of the mutant protein were observed. Also, the mutant protein displayed reduced conformational stability upon urea-induced denaturation. Both fluorescence and electron microscopic analyses suggested that G154S mutant protein has an increased susceptibility for amyloid fibril formation. Therefore, the pathomechanism of G154S mutation can be explained by its attenuated chaperone function, decreased conformational stability, and increased amyloidogenic propensity. Some of these important changes may also alter the correct interaction of the mutated αB-Cry with its target proteins in myopathy.
Collapse
Affiliation(s)
- Kazem Khoshaman
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran
| | - Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran
| | | | | | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Moghadam SS, Ghahramani M, Khoshaman K, Oryan A, Moosavi-Movahedi AA, Kurganov BI, Yousefi R. Relationship between the Structure and Chaperone Activity of Human αA-Crystallin after Its Modification with Diabetes-Associated Oxidative Agents and Protective Role of Antioxidant Compounds. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:91-105. [PMID: 35508905 DOI: 10.1134/s000629792202002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The study was aimed to evaluate the impact of peroxynitrite (PON, oxidative stress agent in diabetes), methylglyoxal (MGO, diabetes-associated reactive carbonyl compound), and their simultaneous application on the structural and functional features of human αA-crystallin (αA-Cry) using various spectroscopy techniques. Additionally, the surface tension and oligomer size distribution of the treated and untreated protein were tested using tensiometric analysis and dynamic light scattering, respectively. Our results indicated that the reaction of PON and MGO with human αA-Cry leads to the formation of new chromophores, alterations in the secondary to quaternary protein structure, reduction in the size of protein oligomers, and significant enhancement in the chaperone activity of αA-Cry. To reverse the effects of the tested compounds, ascorbic acid and glutathione (main components of lens antioxidant defense system) were applied. As expected, the two antioxidant compounds significantly prevented formation of high molecular weight aggregates of αA-Cry (according to SDS-PAGE). Our results suggest that the lens antioxidant defense system, in particular, glutathione, may provide a strong protection against rapid incidence and progression of diabetic cataract by preventing the destructive reactions of highly reactive DM-associated metabolites.
Collapse
Affiliation(s)
- Sogand Sasan Moghadam
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Maryam Ghahramani
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Kazem Khoshaman
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Reza Yousefi
- Protein Chemistry Laboratory, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Structural and functional studies of D109A human αB-crystallin contributing to the development of cataract and cardiomyopathy diseases. PLoS One 2021; 16:e0260306. [PMID: 34843556 PMCID: PMC8629256 DOI: 10.1371/journal.pone.0260306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
αB-crystallin (heat shock protein β5/HSPB5) is a member of the family of small heat shock proteins that is expressed in various organs of the human body including eye lenses and muscles. Therefore, mutations in the gene of this protein (CRYAB) might have many pathological consequences. A new mutation has recently been discovered in the α-crystallin domain of this chaperone protein which replaces aspartate 109 with alanine (D109A). This mutation can cause myofibrillar myopathy (MFM), cataracts, and cardiomyopathy. In the current study, several spectroscopic and microscopic analyses, as well as gel electrophoresis assessment were applied to elucidate the pathogenic contribution of human αB-crystallin bearing D109A mutation in development of eye lens cataract and myopathies. The protein oligomerization, chaperone-like activity and chemical/thermal stabilities of the mutant and wild-type protein were also investigated in the comparative assessments. Our results suggested that the D109A mutation has a significant impact on the important features of human αB-crystallin, including its structure, size of the protein oligomers, tendency to form amyloid fibrils, stability, and chaperone-like activity. Given the importance of aspartate 109 in maintaining the proper structure of the α-crystallin domain, its role in the dimerization and chaperone-like activity, as well as preserving protein stability through the formation of salt bridges; mutation at this important site might have critical consequences and can explain the genesis of myopathy and cataract disorders. Also, the formation of large light-scattering aggregates and disruption of the chaperone-like activity by D109A mutation might be considered as important contributing factors in development of the eye lens opacity.
Collapse
|
9
|
Nasiri P, Ghahramani M, Tavaf Z, Niazi A, Moosavi-Movahedi AA, Kurganov BI, Yousefi R. The biochemical association between R157H mutation in human αB-crystallin and development of cardiomyopathy: Structural and functional analyses of the mutant protein. Biochimie 2021; 190:36-49. [PMID: 34237397 DOI: 10.1016/j.biochi.2021.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022]
Abstract
In human αB-crystallin or HspB5, the substitution of arginine residue at position 157 with histidine has been reported to cause cardiomyopathy. In this study, the impact of R157H mutation on the structure, stability and functional properties of human αB-crystallin was investigated using a variety of spectroscopic techniques and microscopic analyses. Our spectroscopic analyses revealed that this mutation has a negligible impact on the secondary and tertiary structures of HspB5 but its quaternary structure underwent fundamental changes. Although the chemical stability of the mutant protein remained largely unchanged, the differential scanning calorimetry (DSC) measurement suggested that its thermal stability was reduced. As examined with transmission electron microscopy, αB-crystallin and its mutant indicated a similar tendency for the amyloid fibril formation under thermochemical stress. Dynamic light scattering (DLS) analysis suggested important changes in the quaternary (oligomeric) structures of the mutant protein as compared with the native protein counterpart. Also, the mutant protein indicated an improved chaperone-like activity under in vitro assessment. In a pH-dependent manner, the side chains of arginine and histidine have different capabilities for establishing hydrogen bonds and electrostatic interaction (salt bridge) and this variation may be sufficient to produce the larger changes that ultimately alter the interaction of this protein with other target proteins. Overall, the pathogenic contribution of this mutation in cardiomyopathy can be explained by its role in quaternary structure/stability alteration of the mutated protein.
Collapse
Affiliation(s)
- Parto Nasiri
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Zohreh Tavaf
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
10
|
Mohammadi S, Khajeh K, Taghdir M, Ranjbar B. An experimental investigation on the influence of various buffer concentrations, osmolytes and gold nanoparticles on lysozyme: Spectroscopic and calorimetric study. Int J Biol Macromol 2021; 172:162-169. [PMID: 33412205 DOI: 10.1016/j.ijbiomac.2020.12.208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/27/2022]
Abstract
Considering importance and several industrial applications of lysozyme, including natural antibiotic and preservative, identifier for the diagnosis of diseases, and extraction purposes, its reversibility and stability studies can be very important. In this paper, the role that buffer and osmolytes concentrations play on the thermodynamic stability of lysozyme denaturation process, that is a new simple and inexpensive method, was evaluated by Nano-DSC III, far- and near-UV CD and fluorescence techniques. In thermal denaturation study, RI and ΔG of protein increased from 25.62% to 58.82% and 48.87 to 63.63 kJ mol-1 with the increment of buffer and osmolytes concentrations, respectively. These changes showed a significant increase of 129.59% in RI and 28.16% in ΔG. The effect of buffer and osmolytes concentrations on the secondary and tertiary structures of protein was also investigated. The results indicated that increment of buffer and osmolytes concentrations increase rigidity and thermodynamic stability of protein. Also, structure of protein may be changed by its interaction with GNPs. Hence, interaction of lysozyme with GNPs was studied at the buffer and osmolytes concentrations that gives the maximum RI and ΔG, respectively. The results showed that molten globule-like state was formed by lysozyme in the presence of GNPs.
Collapse
Affiliation(s)
- Soraya Mohammadi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
11
|
Ghahramani M, Yousefi R, Krivandin A, Muranov K, Kurganov B, Moosavi-Movahedi AA. Structural and functional characterization of D109H and R69C mutant versions of human αB-crystallin: The biochemical pathomechanism underlying cataract and myopathy development. Int J Biol Macromol 2020; 146:1142-1160. [PMID: 31678106 DOI: 10.1016/j.ijbiomac.2019.09.239] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
In human αB-crystallin (αB-Cry), the highly conserved residues arginine 69 (R69) and aspartate 109 (D109) are located within a critical motif of α-crystallin domain (ACD), contributing to the subunit interactions and oligomeric assembly. Recently, two missense mutations (R69C and D109H) in human αB-Cry have been reported to cause congenital cataract and myopathy disorders. We used various spectroscopic techniques, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), gel electrophoresis and transmission electron microscopy (TEM) to show how these mutations cause significant changes in structure, amyloidogenic feature and biological function of human αB-Cry. These pathogenic mutations resulted in the important alterations of the secondary, tertiary and oligomeric (quaternary) structures of human αB-Cry. The missense mutations were also capable to significantly increase the amyloidogenic propensity of human αB-Cry and to diminish the chaperone-like activity of this protein. The above mentioned changes were observed more noticeably after D109H mutation. The detrimental effects of D109H mutation may be due to the loss of salt bridge with R120 in the dimeric interface, flagging the anti-aggregation ability of αB-Cry chaperone. In conclusion, the R69C and D109H mutations displayed a significant damaging effect on the structure and chaperone function of human αB-Cry which could be considered as their biochemical pathomechanisms in development of congenital cataract and myopathy disorders.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Alexey Krivandin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Konstantin Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Boris Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | | |
Collapse
|
12
|
Ghahramani M, Yousefi R, Niazi A, Kurganov B. The congenital cataract-causing mutations P20R and A171T are associated with important changes in the amyloidogenic feature, structure and chaperone-like activity of human αB-crystallin. Biopolymers 2020; 111:e23350. [PMID: 32110827 DOI: 10.1002/bip.23350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Cataract is the major reason for human blindness worldwide. α-Crystallin, as a key chaperone of eye lenses, keeps the lenticular tissues in its transparent state over time. In this study, cataract-causing familial mutations, P20R and A171T, were introduced in CRYАB gene. After successful expression in Escherichia coli and subsequent purification, the recombinant proteins were subjected to extensive structural and functional analyses using various spectroscopic techniques, gel electrophoresis, and electron microscopy. The results of fluorescence and Raman assessments suggest important but discreet conformational changes in human αB-Cry upon these cataractogenic mutations. Furthermore, the mutant proteins exhibited significant secondary structural alteration as revealed by FTIR and Raman spectroscopy. An increase in conformational stability was seen in the human αB-Cry bearing these congenital cataractogenic mutations. The oligomeric size distribution and chaperone-like activity of human αB-Cry were significantly altered by these mutations. The P20R mutant protein was observed to loose most of the chaperone-like activity. Finally, these cataractogenic mutant proteins exhibited an increased propensity to form the amyloid fibrils when incubated under environmental stress. Overall, the structural and functional changes in mutated human αB-Cry proteins can shed light on the pathogenic development of congenital cataracts.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Boris Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Khoshaman K, Yousefi R, Tamaddon AM, Abolmaali SS, Oryan A, Moosavi-Movahedi AA, Kurganov BI. The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human αA-crystallin: The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:604-618. [DOI: 10.1016/j.bbapap.2017.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/01/2017] [Accepted: 02/03/2017] [Indexed: 11/30/2022]
|
14
|
Chae HB, Moon JC, Shin MR, Chi YH, Jung YJ, Lee SY, Nawkar GM, Jung HS, Hyun JK, Kim WY, Kang CH, Yun DJ, Lee KO, Lee SY. Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function. MOLECULAR PLANT 2013; 6:323-36. [PMID: 23024205 DOI: 10.1093/mp/sss105] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°(E)) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrc1) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the protein's biochemical properties and protein structure. NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase, a foldase chaperone, and as a holdase chaperone. The multiple functions of NTRC are closely correlated with protein structure. Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone, while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and foldase chaperone activities. Heat shock converted LMW proteins into HMW complexes. Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions, but conferred only a slight decrease in its holdase chaperone function. The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRC°(E) plants. However, after prolonged incubation under heat shock, NTRC°(E) plants tolerated the stress to a higher degree than C217/454S-NTRC°(E) plants. The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH.
Collapse
Affiliation(s)
- Ho Byoung Chae
- Division of Applied Life Science (BK21 Program) and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharifizadeh A, Saboury AA, Moosavi-Movahedi AA, Salami M, Yousefi R. A new aspect to chaperone-like activity of bovine β-casein by protein–protein interactions study. Int J Biol Macromol 2012; 51:901-7. [DOI: 10.1016/j.ijbiomac.2012.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
|
16
|
Karmakar S, Das KP. Identification of Histidine Residues Involved in Zn2+ Binding to αA- and αB-Crystallin by Chemical Modification and MALDI TOF Mass Spectrometry. Protein J 2012; 31:623-40. [DOI: 10.1007/s10930-012-9439-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Nagaraj RH, Panda AK, Shanthakumar S, Santhoshkumar P, Pasupuleti N, Wang B, Biswas A. Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics. PLoS One 2012; 7:e30257. [PMID: 22272318 PMCID: PMC3260246 DOI: 10.1371/journal.pone.0030257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2–10 µM), R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation.
Collapse
Affiliation(s)
- Ram H. Nagaraj
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (RHN); (AB)
| | - Alok Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Orissa, India
| | - Shilpa Shanthakumar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - NagaRekha Pasupuleti
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Orissa, India
- * E-mail: (RHN); (AB)
| |
Collapse
|
18
|
Hydroimidazolone modification of human alphaA-crystallin: Effect on the chaperone function and protein refolding ability. Biochim Biophys Acta Mol Basis Dis 2010; 1802:432-41. [PMID: 20085807 DOI: 10.1016/j.bbadis.2010.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/21/2009] [Accepted: 01/13/2010] [Indexed: 11/20/2022]
Abstract
AlphaA-crystallin is a molecular chaperone; it prevents aggregation of denaturing proteins. We have previously demonstrated that upon modification by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), alphaA-crystallin becomes a better chaperone. AlphaA-crystallin also assists in refolding of denatured proteins. Here, we have investigated the effect of mild modification of alphaA-crystallin by MGO (with 20-500 microM) on the chaperone function and its ability to refold denatured proteins. Under the conditions used, mildly modified protein contained mostly hydroimidazolone modifications. The modified protein exhibited an increase in chaperone function against thermal aggregation of beta(L)- and gamma-crystallins, citrate synthase (CS), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) and chemical aggregation of insulin. The ability of the protein to assist in refolding of chemically denatured beta(L)- and gamma-crystallins, MDH and LDH, and to prevent thermal inactivation of CS were unchanged after mild modification by MGO. Prior binding of catalytically inactive, thermally denatured MDH or the hydrophobic probe, 2-p-toluidonaphthalene-6-sulfonate (TNS) abolished the ability of alphaA-crystallin to assist in the refolding of denatured MDH. However, MGO modification of chaperone-null TNS-bound alphaA-crystallin resulted in partial regain of the chaperone function. Taken together, these results demonstrate that: 1) hydroimidazolone modifications are sufficient to enhance the chaperone function of alphaA-crystallin but such modifications do not change its ability to assist in refolding of denatured proteins, 2) the sites on the alphaA-crystallin responsible for the chaperone function and refolding are the same in the native alphaA-crystallin and 3) additional hydrophobic sites exposed upon MGO modification, which are responsible for the enhanced chaperone function, do not enhance alphaA-crystallin's ability to refold denatured proteins.
Collapse
|
19
|
Biswas A, Lewis S, Wang B, Miyagi M, Santoshkumar P, Gangadhariah MH, Nagaraj RH. Chemical modulation of the chaperone function of human alphaA-crystallin. J Biochem 2008; 144:21-32. [PMID: 18344542 DOI: 10.1093/jb/mvn037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
alphaA-crystallin is abundant in the lens of the eye and acts as a molecular chaperone by preventing aggregation of denaturing proteins. We previously found that chemical modification of the guanidino group of selected arginine residues by a metabolic alpha-dicarbonyl compound, methylglyoxal (MGO), makes human alphaA-crystallin a better chaperone. Here, we examined how the introduction of additional guanidino groups and modification by MGO influence the structure and chaperone function of alphaA-crystallin. alphaA-crystallin lysine residues were converted to homoarginine by guanidination with o-methylisourea (OMIU) and then modified with MGO. LC-ESI-mass spectrometry identified homoargpyrimidine and homohydroimidazolone adducts after OMIU and MGO treatment. Treatment with 0.25 M OMIU abolished most of the chaperone function. However, subsequent treatment with 1.0 mM MGO not only restored the chaperone function but increased it by approximately 40% and approximately 60% beyond that of unmodified alphaA-crystallin, as measured with citrate synthase and insulin aggregation assays, respectively. OMIU treatment reduced the surface hydrophobicity but after MGO treatment, it was approximately 39% higher than control. FRET analysis revealed that alphaA-crystallin subunit exchange rate was markedly retarded by OMIU modification, but was enhanced after MGO modification. These results indicate a pattern of loss and gain of chaperone function within the same protein that is associated with introduction of guanidino groups and their neutralization. These findings support our hypothesis that positively charged guanidino group on arginine residues keeps the chaperone function of alphaA-crystallin in check and that a metabolic alpha-dicarbonyl compound neutralizes this charge to restore and enhance chaperone function.
Collapse
Affiliation(s)
- Ashis Biswas
- Department of Ophthalmology & Department of Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|