1
|
Rai A, Saha SP, Sarkar P, Nath R, Hui M, Sarkar P, Gazmer S, Bhattacharjee A. Bioprospecting amylase from Samiti Lake, situated in the eastern Himalayas. Int J Biol Macromol 2025; 307:137353. [PMID: 39515722 DOI: 10.1016/j.ijbiomac.2024.137353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Enzymes, especially amylases, have been an economic boon to the industrial sector, their bioprospective and biotechnological use is an added advantage. Our primary focus of the study was to isolate the most potent amylase producer and to optimize its production parameters through One Factor At A Time (OFAT), Central Composite Rotatable Design Response Surface Methodology (CCRD RSM) and Artificial Neural Network (ANN). Based on the qualitative and quantitative analysis, SLAB1 was selected as the most potent amylase producer out of the potential isolates. Further SLAB1 was identified as Priestia flexa via 16SrRNA identification. Optimization of the production parameters showed the best carbon, nitrogen sources, temperature and pH to be fructose, peptone, 20 °C and pH 8.0 respectively. Further, the enzyme was purified using ammonium sulphate precipitation followed by dialysis. Later, DEAE Sepharose (Sigma) resin was used for ion exchange chromatography and the protein was eluted using NaCl gradients from 0.1 M - 0.6 M. Enzyme kinetics assessment of the purified amylase with the Lineweaver Burk plot showed values of maximum rate; Vmax (10.869 μmoL/min), and Michaelis-Menten constant Km to be around (14.91 mg/ml). To determine its potential application, analysis of this purified amylase in cleaning the tomato and chocolate stained cotton fabrics after comparing its compatibility with different detergents were executed. Further analysis of the washed stained fabrics via Scanning Electron Microscopy was carried out.
Collapse
Affiliation(s)
- Aditi Rai
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Pratima Sarkar
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Madhushree Hui
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Payel Sarkar
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Smriti Gazmer
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India.
| |
Collapse
|
2
|
Xie X, Guo Z, Chen B, Lin L, Liu H, Xiao G, Wang Q. Surface display and characterization of recombinant α-l-Rhamnosidase from Emiliania huxleyi on Pichia pastoris. Bioorg Chem 2025; 155:108121. [PMID: 39764918 DOI: 10.1016/j.bioorg.2025.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/21/2025]
Abstract
An α-l-Rhamnosidase gene with an open reading frame of 3192 bp encoding a 1036-amino acid protein (EhRha) was cloned from Emiliania huxleyi for flavonoid hydrolysis on the cell surface of Pichia pastoris (P. pastoris) strain GS115 by fusing with the anchor protein (AGα1) from Saccharomyces cerevisiae. Fluorescence microscopy and flow cytometry assays revealed that EhRha was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity assay and substrate specificity analysis showed that the enzyme activity of displayed EhRha was 78 U/g (cell wet weight). EhRha demonstrated a preference for the α-1,6 linkage l-rhamnose in hesperidin and rutin as its optimal substrates, while showing low activity towards the α-1,2 linkage l-rhamnose in naringin. Furthermore, EhRha demonstrated optimal activity at pH 7.0 and 30 °C, maintaining stability within a pH range of 4.5-9.0 at temperatures below 50 °C, and remained functional at temperatures ranging from 15 °C-30 °C. The enzyme activity was significantly enhanced by the presence of 10 mM Mn2+ and Fe3+, whereas 10 mM Ca2+ and 1 mM Fe3+ had an inhibitory effect. These findings suggested that displayed EhRha holds promise for enhancing the bioavailability of health-beneficial polyphenols in low-temperature processing applications.
Collapse
Affiliation(s)
- Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Department of Education of Medicinal and Edible Food Intensive Processing Engineering Technology Research Center, Guangzhou 510225, China.
| | - Ziwei Guo
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
| | - Bihan Chen
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Huifan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Department of Education of Medicinal and Edible Food Intensive Processing Engineering Technology Research Center, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Ghosh M, Heo Y, Pulicherla KK, Ha MW, Do K, Son YO. Cold-active enzymes from deep marine psychrophiles: harnessing their potential in enhanced food production and sustainability. Crit Rev Biotechnol 2025:1-25. [PMID: 39757008 DOI: 10.1080/07388551.2024.2435974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Exploring the untapped potential of deep-sea microorganisms, particularly their cold-active enzymes, or psychrozymes, offers exciting possibilities for revolutionizing various aspects of the food processing industry. This review focuses on these enzymes, derived from the largely unexplored depths of the deep ocean, where microorganisms have developed unique adaptations to extreme conditions. Psychrozymes, as bioactive molecules, hold significant promise for food industry applications. However, despite their potential, the understanding and industrial utilization of psychrozymes remains limited. This review provides an in-depth analysis of how psychrozymes can: improve processing efficiency, enhance sensory qualities, extend product shelf life, and reduce energy consumption across the food production chain. We explore the cryodefense strategies and cold-adaptation mechanisms that support these enzymes, shedding light on the most extensively studied psychrozymes and assessing their journey from theoretical applications to practical use in food production. The key properties, such as stability, substrate specificity, and catalytic efficiency in cold environments, are also discussed. Although psychrozymes show considerable promise, their large-scale application in the food industry remains largely unexplored. This review emphasizes the need for further research to unlock the full potential of psychrozymes, encouraging their broader integration into the food sector to contribute to more sustainable food production processes.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Krishna Kanth Pulicherla
- Department of Science and Technology, Ministry of Science and Technology, Govt. of India, Technology Bhavan, New Delhi, India
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju-si, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si, Republic of Korea
| |
Collapse
|
4
|
Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S. Advances in cold-adapted enzymes derived from microorganisms. Front Microbiol 2023; 14:1152847. [PMID: 37180232 PMCID: PMC10169661 DOI: 10.3389/fmicb.2023.1152847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Cold-adapted enzymes, produced in cold-adapted organisms, are a class of enzyme with catalytic activity at low temperatures, high temperature sensitivity, and the ability to adapt to cold stimulation. These enzymes are largely derived from animals, plants, and microorganisms in polar areas, mountains, and the deep sea. With the rapid development of modern biotechnology, cold-adapted enzymes have been implemented in human and other animal food production, the protection and restoration of environments, and fundamental biological research, among other areas. Cold-adapted enzymes derived from microorganisms have attracted much attention because of their short production cycles, high yield, and simple separation and purification, compared with cold-adapted enzymes derived from plants and animals. In this review we discuss various types of cold-adapted enzyme from cold-adapted microorganisms, along with associated applications, catalytic mechanisms, and molecular modification methods, to establish foundation for the theoretical research and application of cold-adapted enzymes.
Collapse
Affiliation(s)
- Yehui Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Na Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Jie Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Yuqi Zhou
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Qiang Wei
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rongzhen Zhong
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Mukhia S, Kumar A, Kumari P, Kumar R, Kumar S. Multilocus sequence based identification and adaptational strategies of Pseudomonas sp. from the supraglacial site of Sikkim Himalaya. PLoS One 2022; 17:e0261178. [PMID: 35073328 PMCID: PMC8786180 DOI: 10.1371/journal.pone.0261178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms inhabiting the supraglacial ice are biotechnologically significant as they are equipped with unique adaptive features in response to extreme environmental conditions of high ultraviolet radiations and frequent freeze-thaw. In the current study, we obtained eleven strains of Pseudomonas from the East Rathong supraglacial site in Sikkim Himalaya that showed taxonomic ambiguity in terms of species affiliation. Being one of the most complex and diverse genera, deciphering the correct taxonomy of Pseudomonas species has always been challenging. So, we conducted multilocus sequence analysis (MLSA) using five housekeeping genes, which concluded the taxonomic assignment of these strains to Pseudomonas antarctica. This was further supported by the lesser mean genetic distances with P. antarctica (0.73%) compared to P. fluorescens (3.65%), and highest ANI value of ~99 and dDDH value of 91.2 of the representative strains with P. antarctica PAMC 27494. We examined the multi-tolerance abilities of these eleven Pseudomonas strains. Indeed the studied strains displayed significant tolerance to freezing for 96 hours compared to the mesophilic control strain, while except for four strains, seven strains exhibited noteworthy tolerance to UV-C radiations. The genome-based findings revealed many cold and radiation resistance-associated genes that supported the physiological findings. Further, the bacterial strains produced two or more cold-active enzymes in plate-based assays. Owing to the polyadaptational attributes, the strains ERGC3:01 and ERGC3:05 could be most promising for bioprospection.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Poonam Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
6
|
Rego A, Fernandez-Guerra A, Duarte P, Assmy P, Leão PN, Magalhães C. Secondary metabolite biosynthetic diversity in Arctic Ocean metagenomes. Microb Genom 2021; 7. [PMID: 34904945 PMCID: PMC8767328 DOI: 10.1099/mgen.0.000731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are mega enzymes responsible for the biosynthesis of a large fraction of natural products (NPs). Molecular markers for biosynthetic genes, such as the ketosynthase (KS) domain of PKSs, have been used to assess the diversity and distribution of biosynthetic genes in complex microbial communities. More recently, metagenomic studies have complemented and enhanced this approach by allowing the recovery of complete biosynthetic gene clusters (BGCs) from environmental DNA. In this study, the distribution and diversity of biosynthetic genes and clusters from Arctic Ocean samples (NICE-2015 expedition), was assessed using PCR-based strategies coupled with high-throughput sequencing and metagenomic analysis. In total, 149 KS domain OTU sequences were recovered, 36 % of which could not be assigned to any known BGC. In addition, 74 bacterial metagenome-assembled genomes were recovered, from which 179 BGCs were extracted. A network analysis identified potential new NP families, including non-ribosomal peptides and polyketides. Complete or near-complete BGCs were recovered, which will enable future heterologous expression efforts to uncover the respective NPs. Our study represents the first report of biosynthetic diversity assessed for Arctic Ocean metagenomes and highlights the potential of Arctic Ocean planktonic microbiomes for the discovery of novel secondary metabolites. The strategy employed in this study will enable future bioprospection, by identifying promising samples for bacterial isolation efforts, while providing also full-length BGCs for heterologous expression.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Duarte
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Philipp Assmy
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- *Correspondence: Pedro N. Leão,
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, 4150-179 Porto, Portugal
- *Correspondence: Catarina Magalhães,
| |
Collapse
|
7
|
A Novel Digestive α-Amylase from Blue Crab ( Portunus segnis) Viscera: Purification, Biochemical Characterization and Application for the Improvement of Antioxidant Potential of Oat Flour. Int J Mol Sci 2021; 22:ijms22031070. [PMID: 33499004 PMCID: PMC7865747 DOI: 10.3390/ijms22031070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
This study reports on the purification and characterization of a digestive α-amylase from blue crab (Portunussegnis) viscera designated Blue Crab Amylase (BCA). The enzyme was purified to homogeneity by ultrafiltration, Sephadex G-100 gel filtration and Sepharose mono Q anion exchange chromatography, with the final purification fold of 424.02, specific activity of 1390.8 U mg−1 and 27.8% recovery. BCA, showing a molecular weight of approximately 45 kDa, possesses desirable biotechnological features, such as optimal temperature of 50 °C, interesting thermal stability which is enhanced in the presence of starch, high stability towards surfactants (Tween 20, Tween 80 and Triton X-100), high specific activity, quite high storage and broad pH range stability. The enzyme displayed Km and Vmax values, of 7.5 ± 0.25 mg mL−1 and 2000 ± 23 μmol min−1 mg−1 for potato starch, respectively. It hydrolyzed various carbohydrates and produced maltose, maltotriose and maltotetraose as the major end products of starch hydrolysis. In addition, the purified enzyme was successfully utilized for the improvement of the antioxidant potential of oat flour, which could be extended to other cereals. Interestingly, besides its suitability for application in different industrial sectors, especially food industries, the biochemical properties of BCA from the blue crab viscera provide novel features with other marine-derived enzymes and better understanding of the biodegradability of carbohydrates in marine environments, particularly in invasive alien crustaceans.
Collapse
|
8
|
Production and characterization of psychrophilic α-amylase from a psychrophilic bacterium, Shewanella sp. ISTPL2. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/amylase-2020-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA psychrophilic and halophilic bacterial isolate, Shewanella sp. ISTPL2, procured from the pristine Pangong Lake, Ladakh, Jammu and Kashmir, India, was used for the production and characterization of the psychrophilic and alkalophilic α-amylase enzyme. The α-amylase is a critical enzyme that catalyses the hydrolysis of α-1,4-glycosidic bonds of starch molecules and is predominately utilized in biotechnological applications. The highest enzyme activity of partially purified extracellular α-amylase was 10,064.20 U/mL after 12 h of incubation in a shake flask at pH 6.9 and 10 °C. Moreover, the maximum intracellular α-amylase enzyme activity (259.62 U/mL) was also observed at 6 h of incubation. The extracellular α-amylase was refined to the homogeneity with the specific enzyme activity of 36,690.47 U/mg protein corresponding to 6.87-fold purification. The optimized pH and temperature for the α-amylase were found to be pH 8 and 4 °C, respectively, suggesting its stability at alkaline conditions and low or higher temperatures. The amylase activity was highly activated by Cu2+, Fe2+ and Ca2+, while inhibited by Cd2+, Co2+ and Na2+. As per our knowledge, the current study reports the highest activity of a psychrophilic α-amylase enzyme providing prominent biotechnological potential.
Collapse
|
9
|
Tanaka Y, Konno N, Suzuki T, Habu N. Starch-degrading enzymes from the brown-rot fungus Fomitopsis palustris. Protein Expr Purif 2020; 170:105609. [PMID: 32070765 DOI: 10.1016/j.pep.2020.105609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Brown-rot fungi preferentially degrade softwood and cause severe breakdown of wooden structures. At the initial stage of the brown-rot decay, penetrating hyphae of the fungi are observed in ray parenchyma. Since starch grains are known to be present in the ray parenchyma of sapwood, investigation of the functions and roles of the starch-degrading enzymes is important to understand the initial stage of brown-rot decay. We purified and characterized two starch-degrading enzymes, an α-amylase (FpAmy13A) and a glucoamylase (FpGLA15A), from the brown-rot fungus, Fomitopsis palustris, and cloned the corresponding genes. The optimal temperature for both enzymes was 60 °C. FpAmy13A showed higher activity at a broad range of pH from 2.0 to 5.0, whereas FpGLA15A was most active at pH 5.0-6.0. Notable thermal stability was found for FpGLA15A. Approximately 25% of the activity remained even after treatment at 100 °C for 30 min in sodium phosphate buffer at pH 7.0. These different characteristics imply the different roles of these enzymes in the starch degradation of wood.
Collapse
Affiliation(s)
- Yuki Tanaka
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Naotake Konno
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Naoto Habu
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
10
|
Cloning, Expression and Characterization of a Novel α-Amylase from Salinispora arenicola CNP193. Protein J 2019; 38:716-722. [DOI: 10.1007/s10930-019-09870-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Wang X, Kan G, Shi C, Xie Q, Ju Y, Wang R, Qiao Y, Ren X. Purification and characterization of a novel wild-type α-amylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175. Protein Expr Purif 2019; 164:105444. [PMID: 31200017 DOI: 10.1016/j.pep.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
A novel wild-type α-amylase named wtAmy175 from Pseudoalteromonas sp. M175 strain was purified through ammonium sulphate precipitation, DEAE cellulose, and Sephadex G-75 sequentially (25.83-fold, 7.67%-yield) for biochemical characterization. SDS-PAGE and zymographic activity staining of purified enzyme showed a single band with a predicted molecular mass of about 61 kDa. The optimum temperature and pH for enzyme activity were 30 °C and 7.5, respectively. Additionally, the enzyme exhibited high activity and remarkable stability in 0-10 mM SDS. The values of Km and Vmax for soluble starch as substrate were 2.47 mg/ml and 0.103 mg/ml/min, respectively. Analysis of hydrolysis products of soluble starch and maltooligosaccharides showed that wtAmy175 cleaved the interior and the terminal α-1,4-glycosidic linkage in starch, and had transglycosylation activity. The result of fluorescence spectroscopy showed that wtAmy175 had strong binding affinity with soluble starch. In brief, this study discovered the first wild-type α-amylase so far with several distinctive properties of cold activity, SDS-resistance, and the mixed activity of α-amylase and α-glucosidase, suggesting that wtAmy175 possess high adaptive capability to endure harsh industrial conditions and would be an excellent candidate in detergent and textile industries.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China.
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Qiuju Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Ruiqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Yongping Qiao
- Wendeng Osteopath Hospital, Wendeng, 264400, PR China
| | - Xiulian Ren
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China.
| |
Collapse
|
12
|
Fang W, Xue S, Deng P, Zhang X, Wang X, Xiao Y, Fang Z. AmyZ1: a novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:95. [PMID: 31044008 PMCID: PMC6477751 DOI: 10.1186/s13068-019-1432-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/12/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Starch is an inexpensive and renewable raw material for numerous industrial applications. However, most starch-based products are not cost-efficient due to high-energy input needed in traditional enzymatic starch conversion processes. Therefore, α-amylase with high efficiency to directly hydrolyze high concentration raw starches at a relatively lower temperature will have a profound impact on the efficient application of starch. RESULTS A novel raw starch digesting α-amylase (named AmyZ1) was screened and cloned from a deep-sea bacterium Pontibacillus sp. ZY. Phylogenetic analysis showed that AmyZ1 was a member of subfamily 5 of glycoside hydrolase family 13. When expressed in Escherichia coli, the recombinant AmyZ1 showed high activity at pH 6.0-7.5 and 25-50 °C. Its optimal pH and temperature were 7.0 and 35 °C, respectively. Similar to most α-amylases, AmyZ1 activity was enhanced (2.4-fold) by 1.0 mM Ca2+. Its half-life time at 35 °C was also extended from about 10 min to 100 min. In comparison, AmyZ1 showed a broad substrate specificity toward raw starches, including those derived from rice, corn, and wheat. The specific activity of AmyZ1 towards raw rice starch was 12,621 ± 196 U/mg, much higher than other reported raw starch hydrolases. When used in raw starch hydrolyzing process, AmyZ1 hydrolyzed 52%, 47% and 38% of 30% (w/v) rice, corn, and wheat starch after 4 h incubation. It can also hydrolyze marine raw starch derived from Chlorella pyrenoidosa, resulting in 50.9 mg/g DW (dry weight of the biomass) of reducing sugars after 4 h incubation at 35 °C. Furthermore, when hydrolyzing raw corn starch using the combination of AmyZ1 and commercial glucoamylase, the hydrolysis rate reached 75% after 4.5 h reaction, notably higher than that obtained in existing starch-processing industries. CONCLUSIONS As a novel raw starch-digesting α-amylase with high specific activity, AmyZ1 efficiently hydrolyzed raw starches derived from both terrestrial and marine environments at near ambient temperature, suggesting its application potential in starch-based industrial processes.
Collapse
Affiliation(s)
- Wei Fang
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Saisai Xue
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Pengjun Deng
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Xiaotang Wang
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199 USA
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601 Anhui China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601 Anhui China
| |
Collapse
|
13
|
Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA. Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expr Purif 2018; 155:78-85. [PMID: 30496815 DOI: 10.1016/j.pep.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 11/27/2022]
Abstract
α-Amylase is an endo-acting enzyme which catalyzes random hydrolysis of starch. These enzymes are used in various biotechnological processes including the textile, paper, food, biofuels, detergents and pharmaceutical industries. The use of active enzymes at low temperatures has a high potential because these enzymes would avoid the demand for heating during the process thereby reducing costs. In this work, the gene of α-amylase from Pseudoalteromonas sp. 2-3 (Antarctic bacteria) has been sequenced and expressed in Escherichia coli BL21(DE3). The ORF of the α-amylase gene cloned into pET22b(+) is 1824 bp long and codes for a protein of 607 amino acid residues including a His6-tag. The mature protein has a calculated molecular mass of 68.8 kDa. Recombinant α-amylase was purified with Ni-NTA affinity chromatography. The purified enzyme is active on potato starch with a Km of 6.94 mg/ml and Vmax of 0.27 mg/ml*min. The pH optimum is 8.0 and the optimal temperature is 20 °C. This enzyme was strongly activated by Ca2+; results consistent with other α-amylases. To the best of our knowledge, this enzyme has the lowest temperature optimum so far reported for α-amylases.
Collapse
Affiliation(s)
- Anamaria C Sanchez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| | - María Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia, Chile.
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
14
|
Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 2018; 201:1-16. [PMID: 30478730 DOI: 10.1007/s00203-018-1602-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.
Collapse
|
15
|
Gao B, He L, Wei D, Zhang L. Identification and magnetic immobilization of a pyrophilous aspartic protease from Antarctic psychrophilic fungus. J Food Biochem 2018. [DOI: 10.1111/jfbc.12691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bei Gao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Lei He
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Molecular Engineering East China Normal University Shanghai China
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai Shanghai China
| |
Collapse
|
16
|
Molecular Cloning and Characterization of a Novel α-Amylase from Antarctic Sea Ice Bacterium Pseudoalteromonas sp. M175 and Its Primary Application in Detergent. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3258383. [PMID: 30050926 PMCID: PMC6040283 DOI: 10.1155/2018/3258383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022]
Abstract
A novel cold-adapted and salt-tolerant α-amylase gene (amy175) from Antarctic sea ice bacterium Pseudoalteromonas sp. M175 was successfully cloned and expressed. The open reading frame (ORF) of amy175 had 1722 bp encoding a protein of 573 amino acids residues. Multiple alignments indicated Amy175 had seven highly conserved sequences and the putative catalytic triad (Asp244, Glu286, and Asp372). It was the first identified member of GH13_36 subfamily which contained QPDLN in the CSR V. The recombinant enzyme (Amy175) was purified to homogeneity with a molecular mass of about 62 kDa on SDS-PAGE. It had a mixed enzyme specificity of α-amylase and α-glucosidase. Amy175 displayed highest activity at pH 8.0 and 25°C and exhibited extreme salt-resistance with the maximum activity at 1 M NaCl. Amy175 was strongly stimulated by Mg2+, Ni2+, K+, 1 mM Ca2+, 1 mM Ba2+, 1 mM Pb2+, 1 mM sodium dodecyl sulphate (SDS), and 10% dimethyl sulfoxide (DMSO) but was significantly inhibited by Cu2+, Mn2+, Hg2+, 10 mM β-mercaptoethanol (β-ME), and 10% Tween 80. Amy175 demonstrated excellent resistance towards all the tested commercial detergents, and wash performance analysis displayed that the addition of Amy175 improved the stain removal efficiency. This study demonstrated that Amy175 would be proposed as a novel α-amylase source for industrial application in the future.
Collapse
|
17
|
Molecular cloning, expression, and biochemical characterization of a novel cold-active α-amylase from Bacillus sp. dsh19-1. Extremophiles 2018; 22:739-749. [DOI: 10.1007/s00792-018-1034-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
|
18
|
Arabacı N, Arıkan B. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8. Prep Biochem Biotechnol 2018; 48:419-426. [PMID: 29561221 DOI: 10.1080/10826068.2018.1452256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205 kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0-12.0) and retained 96% of its original activity at low temperatures (10-40°C) for 24 hr. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba2+, Ca2+, Na+, Zn2+, Mn2+, H2O2, and Triton X-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65, and 42%, respectively). N8 α-amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α-amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.
Collapse
Affiliation(s)
- Nihan Arabacı
- a Department of Biology , Çukurova University , Adana , Turkey
| | - Burhan Arıkan
- a Department of Biology , Çukurova University , Adana , Turkey
| |
Collapse
|
19
|
Zhang Y, Ji F, Wang J, Pu Z, Jiang B, Bao Y. Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124. Extremophiles 2018; 22:287-300. [DOI: 10.1007/s00792-018-0997-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/23/2017] [Indexed: 01/17/2023]
|
20
|
Dynamics of the Bacterial Community Associated with Phaeodactylum tricornutum Cultures. Processes (Basel) 2017. [DOI: 10.3390/pr5040077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Wu S, Lu M, Fang Y, Wu L, Xu Y, Wang S. Degradation of Potato Starch and the Antioxidant Activity of the Hydrolysates. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Shengjun Wu
- Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Marine Resources Development Research Institute; Lianyungang Jiangsu 222005 China
- School of Marine Science and Technology; Huaihai Institute of Technology; 59 Cangwu Road Xinpu 222005 China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening; Huaihai Institute of Technology; Lianyungang 222005 China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology; Lianyungang 222005 China
| | - Mingsheng Lu
- Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Marine Resources Development Research Institute; Lianyungang Jiangsu 222005 China
- School of Marine Science and Technology; Huaihai Institute of Technology; 59 Cangwu Road Xinpu 222005 China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening; Huaihai Institute of Technology; Lianyungang 222005 China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology; Lianyungang 222005 China
| | - Yaowei Fang
- Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Marine Resources Development Research Institute; Lianyungang Jiangsu 222005 China
- School of Marine Science and Technology; Huaihai Institute of Technology; 59 Cangwu Road Xinpu 222005 China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening; Huaihai Institute of Technology; Lianyungang 222005 China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology; Lianyungang 222005 China
| | - Leilei Wu
- Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Marine Resources Development Research Institute; Lianyungang Jiangsu 222005 China
| | - Yan Xu
- Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Marine Resources Development Research Institute; Lianyungang Jiangsu 222005 China
| | - Shujun Wang
- Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Marine Resources Development Research Institute; Lianyungang Jiangsu 222005 China
- School of Marine Science and Technology; Huaihai Institute of Technology; 59 Cangwu Road Xinpu 222005 China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening; Huaihai Institute of Technology; Lianyungang 222005 China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology; Lianyungang 222005 China
| |
Collapse
|
22
|
Wu YR, Mao A, Sun C, Shanmugam S, Li J, Zhong M, Hu Z. Catalytic hydrolysis of starch for biohydrogen production by using a newly identified amylase from a marine bacterium Catenovulum sp. X3. Int J Biol Macromol 2017. [PMID: 28647525 DOI: 10.1016/j.ijbiomac.2017.06.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An identified cold-adaptive, organic solvents-tolerant alkaline α-amylase (HP664) from Catenovulum sp. strain X3 was heterologously expressed and characterized in E. coli, and it was further applied to starch saccharification for biohydrogen production. The recombinant HP664 belongs to a member of glycoside hydrolase family 13 (GH13), with a molecular weight of 69.6kDa without signal peptides, and also shares a relatively low similarity (49%) to other reported amylases. Biochemical characterization demonstrated that the maximal enzymatic activity of HP664 was observed at 35°C and pH 9.0. Most metal ions inhibited its activity; however, low polar organic solvents (e.g., benzene and n-hexane) could enhance the activity by 35-50%. Additionally, HP664 also exhibited the catalytic capability on various polysaccharides, including potato starch, amylopectin, dextrin and agar. In order to increase the bioavailability of starch for H2 production, HP664 was utilized to elevate fermentable oligosaccharide level, and the results revealed that the maximal hydrolytic percentage of starch was up to 44% with 12h of hydrolysis using 5.63U of HP664. Biohydrogen fermentation of the starch hydrolysate by Clostridium sp. strain G1 yielded 297.7mL of H2 after 84h of fermentation, which is 3.73-fold higher than the control without enzymatic treatment of HP664.
Collapse
Affiliation(s)
- Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Chongran Sun
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | | | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Mingqi Zhong
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China.
| |
Collapse
|
23
|
He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, Wei D. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol 2017; 17:22. [PMID: 28245836 PMCID: PMC5331696 DOI: 10.1186/s12896-017-0343-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/23/2017] [Indexed: 12/05/2022] Open
Abstract
Background α-Amylase plays a pivotal role in a broad range of industrial processes. To meet increasing demands of biocatalytic tasks, considerable efforts have been made to isolate enzymes produced by extremophiles. However, the relevant data of α-amylases from cold-adapted fungi are still insufficient. In addition, bread quality presents a particular interest due to its high consummation. Thus developing amylases to improve textural properties could combine health benefits with good sensory properties. Furthermore, iron oxide nanoparticles provide an economical and convenient method for separation of biomacromolecules. In order to maximize the catalytic efficiency of α-amylase and support further applications, a comprehensive characterization of magnetic immobilization of α-amylase is crucial and needed. Results A novel α-amylase (AmyA1) containing an open reading frame of 1482 bp was cloned from Antarctic psychrotolerant fungus G. pannorum and then expressed in the newly constructed Aspergillus oryzae system. The purified recombinant AmyA1 was approximate 52 kDa. AmyA1 was optimally active at pH 5.0 and 40 °C, and retained over 20% of maximal activity at 0–20 °C. The Km and Vmax values toward soluble starch were 2.51 mg/mL and 8.24 × 10−2 mg/(mL min) respectively, with specific activity of 12.8 × 103 U/mg. AmyA1 presented broad substrate specificity, and the main hydrolysis products were glucose, maltose, and maltotetraose. The influence of AmyA1 on the quality of bread was further investigated. The application study shows a 26% increase in specific volume, 14.5% increase in cohesiveness and 14.1% decrease in gumminess in comparison with the control. AmyA1 was immobilized on magnetic nanoparticles and characterized. The immobilized enzyme showed improved thermostability and enhanced pH tolerance under neutral conditions. Also, magnetically immobilized AmyA1 can be easily recovered and reused for maximum utilization. Conclusions A novel α-amylase (AmyA1) from Antarctic psychrotolerant fungus was cloned, heterologous expression in Aspergillus oryzae, and characterized. The detailed report of the enzymatic properties of AmyA1 gives new insights into fungal cold-adapted amylase. Application study showed potential value of AmyA1 in the food and starch fields. In addition, AmyA1 was immobilized on magnetic nanoparticles and characterized. The improved stability and longer service life of AmyA1 could potentially benefit industrial applications. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0343-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei He
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Youzhi Mao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Lujia Zhang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Hualei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308 Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
24
|
Roohi, Kuddus M. Strain improvement studies on Microbacterium foliorum GA2 for production of α-amylase in solid state fermentation: Biochemical characteristics and wash performance analysis at low temperatures. J GEN APPL MICROBIOL 2017; 63:347-354. [DOI: 10.2323/jgam.2017.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Roohi
- Protein Research Laboratory, Department of Bioengineering, Integral University
| | | |
Collapse
|
25
|
Latip W, Raja Abd Rahman RNZ, Chor Leow AT, Mohd Shariff F, Mohamad Ali MS. Expression and characterization of thermotolerant lipase with broad pH profiles isolated from an Antarctic Pseudomonas sp strain AMS3. PeerJ 2016; 4:e2420. [PMID: 27781152 PMCID: PMC5075702 DOI: 10.7717/peerj.2420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022] Open
Abstract
A gene encoding a thermotolerant lipase with broad pH was isolated from an Antarctic Pseudomonas strain AMS3. The recombinant lipase AMS3 was purified by single-step purification using affinity chromatography, yielding a purification fold of approximately 1.52 and a recovery of 50%. The molecular weight was approximately ∼60 kDa including the strep and affinity tags. Interestingly, the purified Antarctic AMS3 lipase exhibited broad temperature profile from 10-70 °C and stable over a broad pH range from 5.0 to pH 10.0. Various mono and divalent metal ions increased the activity of the AMS3 lipase, but Ni2+ decreased its activity. The purified lipase exhibited the highest activity in the presence of sunflower oil. In addition, the enzyme activity in 25% v/v solvents at 50 °C particularly to n-hexane, DMSO and methanol could be useful for catalysis reaction in organic solvent and at broad temperature.
Collapse
Affiliation(s)
- Wahhida Latip
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Kim SM, Park H, Choi JI. Cloning and Characterization of Cold-Adapted α-Amylase from Antarctic Arthrobacter agilis. Appl Biochem Biotechnol 2016; 181:1048-1059. [PMID: 27714640 DOI: 10.1007/s12010-016-2267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
In this study, the gene encoding an α-amylase from a psychrophilic Arthrobacter agilis PAMC 27388 strain was cloned into a pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3). The recombinant α-amylase with a molecular mass of about 80 kDa was purified by using Ni2+-NTA affinity chromatography. This recombinant α-amylase exhibited optimal activity at pH 3.0 and 30 °C and was highly stable at varying temperatures (30-60 °C) and within the pH range of 4.0-8.0. Furthermore, α-amylase activity was enhanced in the presence of FeCl3 (1 mM) and β-mercaptoethanol (5 mM), while CoCl2 (1 mM), ammonium persulfate (5 mM), SDS (10 %), Triton X-100 (10 %), and urea (1 %) inhibited the enzymatic activity. Importantly, the presence of Ca2+ ions and phenylmethylsulfonyl fluoride (PMSF) did not affect enzymatic activity. Thin layer chromatography (TLC) analysis showed that recombinant A. agilis α-amylase hydrolyzed starch, maltotetraose, and maltotriose, producing maltose as the major end product. These results make recombinant A. agilis α-amylase an attractive potential candidate for industrial applications in the textile, paper, detergent, and pharmaceutical industries.
Collapse
Affiliation(s)
- Su-Mi Kim
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyun Park
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
27
|
Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects. Mar Drugs 2016; 14:md14100171. [PMID: 27669268 PMCID: PMC5082319 DOI: 10.3390/md14100171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.
Collapse
|
28
|
Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol 2016; 92:1266-1276. [PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li+, Na+, K+, Rb+ and Cs+ after 30min treatment. Heavy metal ions such as Cu2+, Fe3+ and Zn2+ inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
Collapse
|
29
|
Wu S, Lu M, Wang S. Effect of oligosaccharides derived from Laminaria japonica-incorporated pullulan coatings on preservation of cherry tomatoes. Food Chem 2016; 199:296-300. [PMID: 26775974 DOI: 10.1016/j.foodchem.2015.12.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 12/08/2015] [Indexed: 11/25/2022]
Abstract
Laminaria japonica-derived oligosaccharides (LJOs) exhibit antibacterial and antioxidant activities, and pullulan is a food thickener that can form impermeable films. The ability of pullulan coatings with various LJO concentrations (1% pullulan+0.1%, 0.2% or 0.3% LJOs) to preserve cherry tomatoes during storage at room temperature was investigated. The LJO-incorporated pullulan coatings were found to effectively reduce respiratory intensity, vitamin C loss, weight loss and softening, as well as to increase the amount of titratable acid and the overall likeness of fruit compared with the control. These effects were observed to be dose-dependent. Therefore, using LJO-incorporated pullulan coatings can extend the shelf life of cherry tomatoes.
Collapse
Affiliation(s)
- Shengjun Wu
- Jiangsu Marine Resources Development Research Institute, Lianyungang, Jiangsu 222005, China; School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Mingsheng Lu
- Jiangsu Marine Resources Development Research Institute, Lianyungang, Jiangsu 222005, China; School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Marine Resources Development Research Institute, Lianyungang, Jiangsu 222005, China; School of Marine Science and Technology, Huaihai Institute of Technology, 59 Cangwu Road, Xinpu, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
30
|
Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans. Int J Biol Macromol 2016; 82:740-3. [DOI: 10.1016/j.ijbiomac.2015.09.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/27/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
|
31
|
Gao B, Mao Y, Zhang L, He L, Wei D. A novel saccharifying α-amylase of Antarctic psychrotolerant fungiGeomyces pannorum: Gene cloning, functional expression, and characterization. STARCH-STARKE 2015. [DOI: 10.1002/star.201500077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bei Gao
- State Key Lab of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai P.R. China
| | - Youzhi Mao
- State Key Lab of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai P.R. China
| | - Lujia Zhang
- State Key Lab of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai P.R. China
| | - Lei He
- State Key Lab of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai P.R. China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering; New World Institute of Biotechnology; East China University of Science and Technology; Shanghai P.R. China
| |
Collapse
|
32
|
Mao Y, Yin Y, Zhang L, Alias SA, Gao B, Wei D. Development of a novel Aspergillus uracil deficient expression system and its application in expressing a cold-adapted α-amylase gene from Antarctic fungi Geomyces pannorum. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Wu G, Qin Y, Cheng Q, Liu Z. Characterization of a novel alkali-stable and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 2014; 99:717-27. [PMID: 25038927 DOI: 10.1007/s00253-014-5931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
A cold-active α-amylase, AmyI3C6, identified by a functional metagenomics approach was expressed in Escherichia coli and purified to homogeneity. Sequence analysis showed that the AmyI3C6 amylase was similar to α-amylases from the class Clostridia and revealed classical characteristics of cold-adapted enzymes, as did comparison of the kinetic parameters K m and k cat to a mesophilic α-amylase. AmyI3C6 was shown to be heat-labile. Temperature optimum was at 10-15 °C, and more than 70 % of the relative activity was retained at 1 °C. The pH optimum of AmyI3C6 was at pH 8-9, and the enzyme displayed activity in two commercial detergents tested, suggesting that the AmyI3C6 α-amylase may be useful as a detergent enzyme in environmentally friendly, low-temperature laundry processes.
Collapse
|
36
|
Qin Y, Huang Z, Liu Z. A novel cold-active and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 2013; 18:271-81. [PMID: 24318109 DOI: 10.1007/s00792-013-0614-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
A novel gene (amyZ) encoding a cold-active and salt-tolerant α-amylase (AmyZ) was cloned from marine bacterium Zunongwangia profunda (MCCC 1A01486) and the protein was expressed in Escherichia coli. The gene has a length of 1785 bp and encodes an α-amylase of 594 amino acids with an estimated molecular mass of 66 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 13 and shows the highest identity (25%) to the characterized α-amylase TVA II from thermoactinomyces vulgaris R-47. The recombinant α-amylase showed the maximum activity at 35 °C and pH 7.0, and retained about 39% activity at 0 °C. AmyZ displayed extreme salt tolerance, with the highest activity at 1.5 M NaCl and 93% activity even at 4 M NaCl. The catalytic efficiency (k cat/K m) of AmyZ increased from 115.51 (with 0 M NaCl) to 143.30 ml mg(-1) s(-1) (with 1.5 M NaCl) at 35 °C and pH 7.0, using soluble starch as substrate. Besides, the thermostability of the enzyme was significantly improved in the presence of 1.5 M NaCl or 1 mM CaCl2. AmyZ is one of the very few α-amylases that tolerate both high salinity and low temperatures, making it a potential candidate for research in basic and applied biology.
Collapse
Affiliation(s)
- Yongjun Qin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | |
Collapse
|
37
|
Cold-adapted RTX lipase from antarctic Pseudomonas sp. strain AMS8: isolation, molecular modeling and heterologous expression. Protein J 2013; 32:317-25. [PMID: 23645400 DOI: 10.1007/s10930-013-9488-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S(207), D(255) and H(313), based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 °C and retained almost 50 % of its activity at 10 °C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 °C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5.
Collapse
|
38
|
Ramli ANM, Azhar MA, Shamsir MS, Rabu A, Murad AMA, Mahadi NM, Illias RM. Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 2013; 19:3369-83. [PMID: 23686283 DOI: 10.1007/s00894-013-1861-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/18/2013] [Indexed: 12/29/2022]
Abstract
A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template-the thermostable α-amylase from Bacillus stearothermophilus (BSTA)-the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.
Collapse
Affiliation(s)
- Aizi Nor Mazila Ramli
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
39
|
Lakshmi HP, Prasad UV, Yeswanth S, Swarupa V, Prasad OH, Narasu ML, Sarma PVGK. Molecular characterization of α-amylase from Staphylococcus aureus. Bioinformation 2013; 9:281-5. [PMID: 23559746 PMCID: PMC3607186 DOI: 10.6026/97320630009281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is one of the prominent Gram positive human pathogen secretes many surface and secretary proteins including various enzymes and pathogenic factors that favour the successful colonization and infection of host tissue. α-amylase is one of the enzymes secreted by S. aureus which catalyses the breakdown of complex sugars to monosaccharides, which are required for colonization and survival of this pathogen in any anatomical locales. In the present study we have cloned, sequenced, expressed and characterized α-amylase gene from S. aureus ATCC12600. The recombinant enzyme has a molecular weight of 58kDa and the kinetics showed Vmax 0.0208±0.033 (mg/ml)/mg/min and Km 10.633±0.737mg/ml. The multiple sequence analysis showed α- amylase of S. aureus exhibited large differences with Bacillus subtilis and Streptococcus bovis. As the crystal structure of S. aureus α- amylase was unavailable, we used homology modelling method to build the structure. The built structure was validated by Ramachandran plot which showed 90% of the residues in the allowed region while no residue was found in the disallowed region and the built structure was close to the crystal structure with Z-Score: -6.85. The structural superimposition studies with α- amylases of Bacillus subtilis and Streptococcus bovis showed distinct differences with RMSD values of 18.158Åand 7.091Å respectively which correlated with enzyme kinetics, indicating α-amylase is different among these bacteria.
Collapse
Affiliation(s)
| | - Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | - Osuru Hari Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati-517 507, AP, India
| | | | | |
Collapse
|
40
|
Suzuki T, Yamamoto K, Tada H, Uda K. Cold-adapted features of arginine kinase from the deep-sea clam Calyptogena kaikoi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:294-303. [PMID: 22016076 DOI: 10.1007/s10126-011-9411-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
The heterodont clam Calyptogena kaikoi, which inhabits depths exceeding 3,500 m where low ambient temperatures prevail, has an unusual two-domain arginine kinase (AK) with molecular mass of 80 kDa, twice that of typical AKs. The purpose of this work is to investigate the nature of the adaptations of this AK for functioning at low temperatures. Recombinant C. kaikoi AK constructs were expressed, and their two-substrate kinetic constants (k(cat), K(a), and K(ia)) were determined at 10°C and 25°C, respectively. When measured at 25°C, the K(ia) values were tenfold larger than those for corresponding K(a) values, while at 10°C, the K(ia) values decreased remarkably, but the K (a) values were almost unchanged. The Calyptogena two-domain enzyme has threefold higher catalytic efficiency, calculated by k (cat)/(K(a)(ARG)·K(ia)(ATP) ), at 10°C, than that at 25°C, reflecting adaptation for function at reduced ambient temperatures. The activation energy (E(a)) and thermodynamic parameters were determined for Calyptogena two-domain enzyme and compared with those of two-domain enzymes from mesophilic Corbicula and Anthopleura. The value for E(a) of Calyptogena enzyme were about half of those for mesophilic enzymes, and a larger decrease in entropy was observed in Calyptogena AK reaction. Although large decrease in entropy increases the ΔG(o‡) value and consequently lowers the k(cat) value, this is compensated with its lower E(a) value thereby minimizing the reduction in its k(cat) value. These thermodynamic properties, together with the kinetic ones, are also present in the separated domain 2 of the Calyptogena two-domain enzyme.
Collapse
Affiliation(s)
- Tomohiko Suzuki
- Laboratory of Biochemistry, Faculty of Science, Kochi University, Kochi 780-8520, Japan.
| | | | | | | |
Collapse
|
41
|
Kuddus M, Roohi, Saima, Ahmad I. Cold-active extracellular α-amylase production from novel bacteria Microbacterium foliorum GA2 and Bacillus cereus GA6 isolated from Gangotri glacier, Western Himalaya. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
de Pascale D, De Santi C, Fu J, Landfald B. The microbial diversity of Polar environments is a fertile ground for bioprospecting. Mar Genomics 2012. [PMID: 23199876 DOI: 10.1016/j.margen.2012.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The term bioprospecting has been adopted for systematic searches in nature for new bioactive compounds, genes, proteins, microorganisms and other products with potential for commercial use. Much effort has been focused on microorganisms able to thrive under harsh conditions, including the Polar environments. Both the lipid and protein cellular building blocks of Polar microorganisms are shaped by their adaptation to the permanently low temperatures. In addition, strongly differing environments, such as permafrost, glaciers and sea ice, have contributed to additional functional diversity. Emerging massive-parallel sequencing technologies have revealed the existence of a huge, hitherto unseen diversity of low-abundance phylotypes--the rare biosphere--even in the Polar environments. This realization has further strengthened the need to employ cultivation-independent approaches, including metagenomics and single-cell genomic sequencing, to get comprehensive access to the genetic diversity of microbial communities for bioprospecting purposes. In this review, we present an updated snapshot of recent findings on the molecular basis for adaptation to the cold and the phylogenetic diversities of different Polar environments. Novel approaches in bioprospecting are presented and we conclude by showing recent bioprospecting outcomes in terms of new molecules patented or applied by some biotech companies.
Collapse
Affiliation(s)
- Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, I-80134 Naples, Italy.
| | | | | | | |
Collapse
|