1
|
Shi YB, Cheng L, Lyu Y, Shi ZJ. The new perspective of gasotransmitters in cancer metastasis. Nitric Oxide 2025; 156:1-8. [PMID: 40010686 DOI: 10.1016/j.niox.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Cancer metastasis is the leading cause of death in cancer patients, which renders heavy burdens to family and society. Cancer metastasis is a complicated process in which a large variety of biological molecules, cells and signaling pathways are involved. Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are common air pollutants which are harmful to human bodies and environments. However, recent studies show that these gases, which are collectively termed gasotransmitters, play significant roles in physiological homeostasis and pathogenesis including immunological responses, neuronal regulations, respiratory as well as cardiovascular diseases, metabolic disorders and cancers. These gases are abnormally expressed in cancer cells or tissues, along with the gas-producing enzymes. They have been demonstrated to participate in cancer metastasis intensively by modulating diverse signaling axes. This review introduces the nature of gasotransmitters, summaries novel research progression in gasotransmitters-induced cancer metastasis and elucidates multifaceted mechanisms how the process is modulated, with an effort to bring new therapeutic targets for cancer management in the future.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Lin Cheng
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Lyu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of General Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Ze-Jing Shi
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China
| |
Collapse
|
2
|
Baba RA, Mir HA, Mokhdomi TA, Bhat HF, Ahmad A, Khanday FA. Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas. Front Pharmacol 2024; 15:1318797. [PMID: 38362155 PMCID: PMC10867961 DOI: 10.3389/fphar.2024.1318797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
P66Shc and Rac1 proteins are responsible for tumor-associated inflammation, particularly in brain tumors characterized by elevated oxidative stress and increased reactive oxygen species (ROS) production. Quercetin, a natural polyphenolic flavonoid, is a well-known redox modulator with anticancer properties. It has the capacity to cross the blood-brain barrier and, thus, could be a possible drug against brain tumors. In this study, we explored the effect of quercetin on Rac1/p66Shc-mediated tumor cell inflammation, which is the principal pathway for the generation of ROS in brain cells. Glioma cells transfected with Rac1, p66Shc, or both were treated with varying concentrations of quercetin for different time points. Quercetin significantly reduced the viability and migration of cells in an ROS-dependent manner with the concomitant inhibition of Rac1/p66Shc expression and ROS production in naïve and Rac1/p66Shc-transfected cell lines, suggestive of preventing Rac1 activation. Through molecular docking simulations, we observed that quercetin showed the best binding compared to other known Rac1 inhibitors and specifically blocked the GTP-binding site in the A-loop of Rac1 to prevent GTP binding and, thus, Rac1 activation. We conclude that quercetin exerts its anticancer effects via the modulation of Rac1-p66Shc signaling by specifically inhibiting Rac1 activation, thus restraining the production of ROS and tumor growth.
Collapse
Affiliation(s)
- Rafia A. Baba
- Department of Biotechnology, University of Kashmir, Srinagar, India
- Cancer Diagnostic & Research Centre, Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Hilal A. Mir
- Department of Biotechnology, University of Kashmir, Srinagar, India
- Departments of Ophthalmology, Columbia University, New York, NY, United States
| | | | - Hina F. Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
3
|
Ribeiro R, Costa L, Pinto E, Sousa E, Fernandes C. Therapeutic Potential of Marine-Derived Cyclic Peptides as Antiparasitic Agents. Mar Drugs 2023; 21:609. [PMID: 38132930 PMCID: PMC10745025 DOI: 10.3390/md21120609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Parasitic diseases still compromise human health. Some of the currently available therapeutic drugs have limitations considering their adverse effects, questionable efficacy, and long treatment, which have encouraged drug resistance. There is an urgent need to find new, safe, effective, and affordable antiparasitic drugs. Marine-derived cyclic peptides have been increasingly screened as candidates for developing new drugs. Therefore, in this review, a systematic analysis of the scientific literature was performed and 25 marine-derived cyclic peptides with antiparasitic activity (1-25) were found. Antimalarial activity is the most reported (51%), followed by antileishmanial (27%) and antitrypanosomal (20%) activities. Some compounds showed promising antiparasitic activity at the nM scale, being active against various parasites. The mechanisms of action and targets for some of the compounds have been investigated, revealing different strategies against parasites.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| | - Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
| | - Eugénia Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| |
Collapse
|
4
|
He S, Liu R, Luo Q, Song G. Tensile Overload Injures Human Alveolar Epithelial Cells through YAP/F-Actin/MAPK Signaling. Biomedicines 2023; 11:1833. [PMID: 37509472 PMCID: PMC10376431 DOI: 10.3390/biomedicines11071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Explosion shockwaves can generate overloaded mechanical forces and induce lung injuries. However, the mechanism of lung injuries caused by tensile overload is still unclear. METHODS Flow cytometry was used to detect the apoptosis of human alveolar epithelial cells (BEAS-2B) induced by tensile overload, and cell proliferation was detected using 5-ethynyl-2'-deoxyuridine (EdU). Immunofluorescence and Western blot analysis were used to identify the tensile overload on the actin cytoskeleton, proteins related to the mitogen-activated protein kinase (MAPK) signal pathway, and the Yes-associated protein (YAP). RESULTS Tensile overload reduced BEAS-2B cell proliferation and increased apoptosis. In terms of the mechanism, we found that tensile overload led to the depolymerization of the actin cytoskeleton, the activation of c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase 1/2 (ERK1/2), and the upregulation of YAP expression. Jasplakinolide (Jasp) treatment promoted the polymerization of the actin cytoskeleton and reduced the phosphorylation of tension-overload-activated JNK and ERK1/2 and the apoptosis of BEAS-2B cells. Moreover, the inhibition of the JNK and ERK1/2 signaling pathways, as well as the expression of YAP, also reduced apoptosis caused by tensile overload. CONCLUSION Our study establishes the role of the YAP/F-actin/MAPK axis in tensile-induced BEAS-2B cell injury and proposes new strategies for the treatment and repair of future lung injuries.
Collapse
Affiliation(s)
| | | | | | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (S.H.); (R.L.); (Q.L.)
| |
Collapse
|
5
|
Li M, Peng L, Wang Z, Liu L, Cao M, Cui J, Wu F, Yang J. Roles of the cytoskeleton in human diseases. Mol Biol Rep 2023; 50:2847-2856. [PMID: 36609753 DOI: 10.1007/s11033-022-08025-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/12/2022] [Indexed: 01/08/2023]
Abstract
Recently, researches have revealed the key roles of the cytoskeleton in the occurrence and development of multiple diseases, suggesting that targeting the cytoskeleton is a viable approach for treating numerous refractory diseases. The cytoskeleton is a highly structured and complex network composed of actin filaments, microtubules, and intermediate filaments. In normal cells, these three cytoskeleton components are highly integrated and coordinated. However, the cytoskeleton undergoes drastic remodeling in cytoskeleton-related diseases, causing changes in cell polarity, affecting the cell cycle, leading to senescent diseases, and influencing cell migration to accelerate cancer metastasis. Additionally, mutations or abnormalities in cytoskeletal proteins and their related proteins are closely associated with several congenital diseases. Therefore, this review summarizes the roles of the cytoskeleton in cytoskeleton-related diseases as well as its potential roles in disease treatment to provide insights regarding the physiological functions and pathological roles of the cytoskeleton.
Collapse
Affiliation(s)
- Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China.
| |
Collapse
|
6
|
Syed MA, Bhat B, Wali A, Saleem A, Ahmad Dar L, Gugjoo MB, Bhat S, Saleem Bhat S. Epithelial to mesenchymal transition in mammary gland tissue fibrosis and insights into drug therapeutics. PeerJ 2023; 11:e15207. [PMID: 37187521 PMCID: PMC10178283 DOI: 10.7717/peerj.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/19/2023] [Indexed: 05/17/2023] Open
Abstract
Background The epithelial-mesenchymal transition (EMT) is a multi-step morphogenetic process in which epithelial cells lose their epithelial properties and gain mesenchymal characteristics. The process of EMT has been shown to mediate mammary gland fibrosis. Understanding how mesenchymal cells emerge from an epithelial default state will aid in unravelling the mechanisms that control fibrosis and, ultimately, in identifying therapeutic targets to alleviate fibrosis. Methods The effects of EGF and high glucose (HG) on EMT in mammary epithelial cells, MCF10A and GMECs, as well as their pathogenic role, were studied. In-silico analysis was used to find interacting partners and protein-chemical/drug molecule interactions. Results On treatment with EGF and/or HG, qPCR analysis showed a significant increase in the gene expression of EMT markers and downstream signalling genes. The expression of these genes was reduced on treatment with EGF+HG combination in both cell lines. The protein expression of COL1A1 increased as compared to the control in cells treated with EGF or HG alone, but when the cells were treated with EGF and HG together, the protein expression of COL1A1 decreased. ROS levels and cell death increased in cells treated with EGF and HG alone, whereas cells treated with EGF and HG together showed a decrease in ROS production and apoptosis. In-silico analysis of protein-protein interactions suggest the possible role of MAPK1, actin alpha 2 (ACTA2), COL1A1, and NFκB1 in regulating TGFβ1, ubiquitin C (UBC), specificity protein 1 (SP1) and E1A binding protein P300 (EP300). Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment suggests advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signalling pathway, relaxin signalling pathway and extra cellular matrix (ECM) receptor interactions underlying fibrosis mechanism. Conclusion This study demonstrates that EGF and HG induce EMT in mammary epithelial cells and may also have a role in fibrosis.
Collapse
Affiliation(s)
- Mudasir Ahmad Syed
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Abiza Wali
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Lateef Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Surgery, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India, Srinagar, Jammu and Kashmir, India
| | - Shakil Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| |
Collapse
|
7
|
Baltes C, Thalla DG, Kazmaier U, Lautenschläger F. Actin stabilization in cell migration. Front Cell Dev Biol 2022; 10:931880. [PMID: 36035985 PMCID: PMC9403840 DOI: 10.3389/fcell.2022.931880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is a cytoskeletal filament involved in numerous biological tasks, such as providing cells a shape or generating and transmitting forces. Particularly important for these tasks is the ability of actin to grow and shrink. To study the role of actin in living cells this dynamic needs to be targeted. In the past, such alterations were performed by destabilizing actin. In contrast, we used the natural compound miuraenamide A in living retinal pigmented epithelial (RPE-1) cells to stabilize actin filaments and show that it decreases actin filament dynamics and elongates filament length. Cells treated with miuraenamide A increased their adhesive area and express more focal adhesion sites. These alterations result in a lower migration speed as well as a shift of nuclear position. We therefore postulate that miuraenamide A is a promising new tool to stabilize actin polymerization and study cellular behavior such as migration.
Collapse
Affiliation(s)
- Carsten Baltes
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Uli Kazmaier
- Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Centre for Biophysics, Saarland University, Saarbrücken, Germany
- *Correspondence: Franziska Lautenschläger,
| |
Collapse
|
8
|
Ali R, Mir HA, Hamid R, Bhat B, Shah RA, Khanday FA, Bhat SS. Actin Modulation Regulates the Alpha-1-Syntrophin/p66Shc Mediated Redox Signaling Contributing to the RhoA GTPase Protein Activation in Breast Cancer Cells. Front Oncol 2022; 12:841303. [PMID: 35273919 PMCID: PMC8904154 DOI: 10.3389/fonc.2022.841303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
SNTA1 signaling axis plays an essential role in cytoskeletal organization and is also implicated in breast cancers. In this study, we aimed to investigate the involvement of actin cytoskeleton in the propagation of SNTA1/p66shc mediated pro-metastatic cascade in breast cancer cells.The effect of actin filament depolymerization on SNTA1-p66Shc interaction and the trimeric complex formation was analyzed using co-immunoprecipitation assays. Immunofluorescence and RhoA activation assays were used to show the involvement of SNTA1-p66Shc interaction in RhoA activation and F-actin organization. Cellular proliferation and ROS levels were assessed using MTT assay and Amplex red catalase assay. The migratory potential was evaluated using transwell migration assay and wound healing assay.We found that cytochalasin D mediated actin depolymerization significantly declines endogenous interaction between SNTA1 and p66Shc protein in MDA-MB-231 cells. Results indicate that SNTA1 and p66Shc interact with RhoA protein under physiological conditions. The ROS generation and RhoA activation were substantially enhanced in cells overexpressing SNTA1 and p66Shc, promoting proliferation and migration in these cells. In addition, we found that loss of SNTA1-p66Shc interaction impaired actin organization, proliferation, and migration in breast cancer cells. Our results demonstrate a novel reciprocal regulatory mechanism between actin modulation and SNTA1/p66Shc/RhoA signaling cascade in human metastatic breast cancer cells.
Collapse
Affiliation(s)
- Roshia Ali
- Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Hilal Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Basharat Bhat
- National Agricultural Higher Education Project (NAHEP) Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, India
| | - Riaz A Shah
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| | | | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| |
Collapse
|
9
|
Vlassakis J, Hansen LL, Higuchi-Sanabria R, Zhou Y, Tsui CK, Dillin A, Huang H, Herr AE. Measuring expression heterogeneity of single-cell cytoskeletal protein complexes. Nat Commun 2021; 12:4969. [PMID: 34404787 PMCID: PMC8371148 DOI: 10.1038/s41467-021-25212-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.
Collapse
Affiliation(s)
- Julea Vlassakis
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Louise L Hansen
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yun Zhou
- Division of Biostatistics, University of California Berkeley, Berkeley, CA, USA
| | - C Kimberly Tsui
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Haiyan Huang
- Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|