1
|
Gao X, Tie J, Yang X, Yang J, Wang G, Lyu J, Hu L, Yu J. Brassinosteroid-induced S-nitrosylation of fructose-1,6-bisphosphate aldolase increased ATP synthesis under low temperatures in mini Chinese cabbage seedlings. Int J Biol Macromol 2025; 308:142626. [PMID: 40169041 DOI: 10.1016/j.ijbiomac.2025.142626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Low temperature causes an imbalance in plant energy metabolism homeostasis. Brassinosteroids (BRs) are a class of hormones with important regulatory functions in plant responses to low temperature. S-nitrosylation of proteins is a key pathway for nitric oxide-mediated regulation of plant stress. In this study, we investigated whether S-nitrosylation proteins are involved in regulating energy metabolism in mini Chinese cabbage seedlings at low temperature. Low temperature inhibited the transcriptional accumulation of BrFBA2, BrGAPDH, BrPGK, and BrPK. However, applying exogenous BR and S-nitrosoglutathione significantly upregulated the transcription of these genes and accelerated the release of ATP. Exogenous BR significantly upregulated the S-nitrosylation level of fructose-1,6-bisphosphate aldolase 2 (FBA2) at low temperatures. FBA2 protein S-nitrosylation modification occurred in vitro at Cys-197. OE-BrFBA2 lines showed enhanced S-nitrosylation at low temperatures. Applying exogenous BR enhanced the S-nitrosylation of FBA2 and accelerated ATP release in TRV2-BrFBA2 lines. Exogenous BR treatment was conducive to maintaining the homeostasis of cell energy metabolism in mini Chinese cabbage seedlings at low temperature.
Collapse
Affiliation(s)
- Xueqin Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianzhong Tie
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiaojiao Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Linli Hu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Liu T, Zhang Y, Li Y, Xu G, Gao H, Wang P, Tu T, Luo H, Wu N, Yao B, Liu B, Guan F, Huang H, Tian J. Effective Gene Expression Prediction and Optimization from Protein Sequences. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407664. [PMID: 39783932 PMCID: PMC11848636 DOI: 10.1002/advs.202407664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/11/2024] [Indexed: 01/12/2025]
Abstract
High soluble protein expression in heterologous hosts is crucial for various research and applications. Despite considerable research on the impact of codon usage on expression levels, the relationship between protein sequence and expression is often overlooked. In this study, a novel connection between protein expression and sequence is uncovered, leading to the development of SRAB (Strength of Relative Amino Acid Bias) based on AEI (Amino Acid Expression Index). The AEI served as an objective measure of this correlation, with higher AEI values enhancing soluble expression. Subsequently, the pre-trained protein model MP-TRANS (MindSpore Protein Transformer) is developed and fine-tuned using transfer learning techniques to create 88 prediction models (MPB-EXP) for predicting heterologous expression levels across 88 species. This approach achieved an average accuracy of 0.78, surpassing conventional machine learning methods. Additionally, a mutant generation model, MPB-MUT, is devised and utilized to enhance expression levels in specific hosts. Experimental validation demonstrated that the top 3 mutants of xylanase (previously not expressed in Escherichia coli) successfully achieved high-level soluble expression in E. coli. These findings highlight the efficacy of the developed model in predicting and optimizing gene expression based on protein sequences.
Collapse
Affiliation(s)
- Tuoyu Liu
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
- National Key Laboratory of Agricultural MicrobiologyBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- School of Life SciencesTianjin UniversityTianjin300110China
| | - Yiyang Zhang
- National Key Laboratory of Agricultural MicrobiologyBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Yanjun Li
- National Key Laboratory of Agricultural MicrobiologyBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Guoshun Xu
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Han Gao
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Pengtao Wang
- National Key Laboratory of Agricultural MicrobiologyBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Ningfeng Wu
- National Key Laboratory of Agricultural MicrobiologyBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Bo Liu
- National Key Laboratory of Agricultural MicrobiologyBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Feifei Guan
- National Key Laboratory of Agricultural MicrobiologyBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Jian Tian
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
3
|
Nguyen VDH, Huynh TNP, Nguyen TTT, Ho HH, Trinh LTP, Nguyen AQ. Expression and characterization of a lipase EstA from Bacillus subtilis KM-BS for application in bio-hydrolysis of waste cooking oil. Protein Expr Purif 2024; 215:106419. [PMID: 38110109 DOI: 10.1016/j.pep.2023.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
A lipase EstA from Bacillus subtilis KM-BS was expressed in Escherichia coli BL21 (DE3) cells. The recombinant enzyme achieved high activity (49.67 U/mL) with protein concentration of 1.29 mg/mL under optimal conditions at the large-scale expression of 6 h and post-induction time at 30 °C using 0.1 mM isopropyl-β-d-thiogalactopyranoside (IPTG). The optimal temperature and pH of the purified enzyme were at 45-55 °C and pH 8.0 - 9.0, respectively. Activity of the purified enzyme was stable in the presence of 1 mM Ca2+; stimulated by 1 mM Mg2+ and Mn2+, and inhibited by Fe3+. A significant amount of fatty acids was released during the hydrolysis of waste cooking oil under the catalysis of purified lipase, indicating that this recombinant lipase showed promise as a suitable candidate in industrial fields, particularly in biodiesel and detergent sector.
Collapse
Affiliation(s)
- Vinh D H Nguyen
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Trang N P Huynh
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Thao T T Nguyen
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Hai H Ho
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Ly T P Trinh
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Viet Nam; Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Anh Q Nguyen
- Khai Minh Technology Group - KMTG, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Xu C, Fu F, She Y, Yang D, Peng K, Lin Y, Xu C. Development of a new candidate vaccine against piglet diarrhea caused by Escherichia coli. Open Life Sci 2023; 18:20220804. [PMID: 38196514 PMCID: PMC10775170 DOI: 10.1515/biol-2022-0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in humans and young livestock. The pathogen has a high morbidity and mortality rate, resulting in significant economic losses in the pig industry. To effectively prevent piglet diarrhea, we developed a new tetravalent genetically engineered vaccine that specifically targets ETEC. To eliminate the natural toxin activity of ST1 enterotoxin and enhance the preventive effect of the vaccine, the mutated ST 1, K88ac, K99, and LT B genes were amplified by PCR and site-specific mutation techniques. The recombinant strain BL21(DE3)(pXKK3SL) was constructed and achieved high expression. Animal experiments showed that the inactivated vaccine had eliminated the natural toxin activity of ST1. The immune protection test demonstrated that the inclusion body and inactivated vaccine exhibited a positive immune effect. The protection rates of the inclusion body group and inactivated vaccine group were 96 and 98%, respectively, when challenged with 1 minimum lethal dose, indicating that the constructed K88ac-K99-3ST1-LTB vaccine achieved a strong immune effect. Additionally, the minimum immune doses for mice and pregnant sows were determined to be 0.2 and 2 mL, respectively. This study suggests that the novel K88ac-K99-3ST1-LTB vaccine has a wide immune spectrum and can prevent diarrhea caused by ETEC through enterotoxin and fimbrial pathways. The aforementioned research demonstrates that the K88ac-K99-3ST1-LTB vaccine offers a new genetically engineered vaccine that shows potential for preventing diarrhea in newborn piglets.
Collapse
Affiliation(s)
- Chongli Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Danni Yang
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Kun Peng
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing401331, PR China
| | - Yimin Lin
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing400030, PR China
| | - ChongBo Xu
- School of Biology and Agriculture, Shaoguan University, Shaoguan512005, PR China
| |
Collapse
|
5
|
Zhao H, Xu Y, Li X, Yin J, Li G, Zhao H, Li S, Li J, Wang L. Protective efficacy of a recombinant enterotoxin antigen in a maternal immunization model and the inhibition of specific maternal antibodies to neonatal oral vaccination. J Reprod Immunol 2023; 157:103946. [PMID: 37031607 DOI: 10.1016/j.jri.2023.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
ETEC (enterotoxigenic Escherichia coli) infection is the leading cause of profuse watery diarrhea in mammals, especially among pre-weaning and post-weaning piglets in swine industry. Maternal immunization is a current rational strategy for providing protection to susceptive piglets and reducing the incidence of ETEC-associated diarrhea. Here we evaluated the protective efficiency of a recombinant antigen (MBP-SLS) fused by major enterotoxin subunits (STa-LTB-STb) via a maternal immunization model, and the impacts of maternal antibodies to neonatal oral vaccination were also investigated in the neonates. The high titers of specific IgG and sIgA in pups shown that the maternal antibodies could be transferred passively. Furthermore, the increases of IL-6 and IL-10 cytokines in breast milk and pup serum indicated that immunization on mother could effectively boost the immune system of neonates. Newborn rats from immunized mothers showed a 70% survival rate after ETEC infection. However, the mucosal immune responses of neonates were inhibited by the high level of maternal specific antibodies. Among the oral-vaccinated neonates, born from mock-immunized rats reached the highest survival after ETEC challenge. Collectively, the fusion MBP-SLS antigen could effectively induce strong immune responses in rats during pregnancy and the pups could receive passive protection through specific antibodies transferred via milk and placenta. However, the specific maternal antibodies exhibited an inhibition effect on the mucosal immune responses in offspring.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiajun Yin
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Haofei Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Jibin Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Xu C, Peng K, She Y, Fu F, Shi Q, Lin Y, Xu C. Preparation of novel trivalent vaccine against enterotoxigenic Escherichia coli for preventing newborn piglet diarrhea. Am J Vet Res 2023; 84:ajvr.22.10.0183. [PMID: 36576801 DOI: 10.2460/ajvr.22.10.0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To develop a trivalent genetically engineered inactivated Escherichia coli vaccine (K88ac-3STa-LTB) that neutralizes the STa toxin by targeting fimbriae and entertoxins for the treatment of enterotoxigenic E coli. ANIMALS 18- to 22-g mice, rabbits, pregnant sows. PROCEDURES Using PCR, the K88ac gene and LTB gene were cloned separately from the template C83902 plasmid. At the same time, the 3 STa mutant genes were also amplified by using the gene-directed mutation technology. Immune protection experiments were performed, and the minimum immune dose was determined in mice and pregnant sows. RESULTS The ELISA test could be recognized by the STa, LTB, and K88ac antibodies. Intragastric administration in the suckling mouse confirmed that the protein had lost the toxicity of the natural STa enterotoxin. The results of the immune experiments showed that K88ac-3STa-LTB protein could stimulate rabbits to produce serum antibodies and neutralize the toxicity of natural STa enterotoxin. The efficacy test of the K88ac-3STa-LTB-inactivated vaccine showed that the immune protection rate of the newborn piglets could reach 85% on the first day after suckling. At the same time, it was determined that the minimum immunization doses for mice and pregnant sows were 0.2 and 2.5 mL, respectively. CLINICAL RELEVANCE This research indicates that the K88ac-3STa-LTB trivalent genetically engineered inactivated vaccine provides a broad immune spectrum for E coli diarrhea in newborn piglets and prepares a new genetically engineered vaccine candidate strain for prevention of E coli diarrhea in piglets.
Collapse
Affiliation(s)
- ChongLi Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Kun Peng
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Qinhong Shi
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Yimin Lin
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - ChongBo Xu
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, People's Republic of China
| |
Collapse
|
7
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
8
|
Whole Genome Sequencing and CRISPR/Cas9 Gene Editing of Enterotoxigenic Escherichia coli BE311 for Fluorescence Labeling and Enterotoxin Analyses. Int J Mol Sci 2022; 23:ijms23147502. [PMID: 35886856 PMCID: PMC9321511 DOI: 10.3390/ijms23147502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023] Open
Abstract
Some prevention strategies, including vaccines and antibiotic alternatives, have been developed to reduce enterotoxigenic Escherichia coli proliferation in animal production. In this study, a wild-type strain of BE311 with a virulent heat-stable enterotoxin gene identical to E. coli K99 was isolated for its high potential for gene expression ability. The whole genome of E. coli BE311 was sequenced for gene analyses and editing. Subsequently, the fluorescent gene mCherry was successfully knocked into the genome of E. coli BE311 by CRISPR/Cas9. The E. coli BE311−mCherry strain was precisely quantified through the fluorescence intensity and red colony counting. The inflammatory factors in different intestinal tissues all increased significantly after an E. coli BE311−mCherry challenge in Sprague−Dawley rats (p < 0.05). The heat-stable enterotoxin gene of E. coli BE311 was knocked out, and an attenuated vaccine host E. coli BE311-STKO was constructed. Flow cytometry showed apoptotic cell numbers were lower following a challenge of IPEC-J2 cells with E. coli BE311-STKO than with E. coli BE311. Therefore, the E. coli BE311−mCherry and E. coli BE311-STKO strains that were successfully constructed based on the gene knock-in and knock-out technology could be used as ideal candidates in ETEC challenge models and for the development of attenuated vaccines.
Collapse
|
9
|
Ding Z, Guan F, Xu G, Wang Y, Yan Y, Zhang W, Wu N, Yao B, Huang H, Tuller T, Tian J. MPEPE, a predictive approach to improve protein expression in E. coli based on deep learning. Comput Struct Biotechnol J 2022; 20:1142-1153. [PMID: 35317239 PMCID: PMC8913310 DOI: 10.1016/j.csbj.2022.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The expression of proteins in Escherichia coli is often essential for their characterization, modification, and subsequent application. Gene sequence is the major factor contributing expression. In this study, we used the expression data from 6438 heterologous proteins under the same expression condition in E. coli to construct a deep learning classifier for screening high- and low-expression proteins. In conjunction with conserved residue analysis to minimize functional disruption, a mutation predictor for enhanced protein expression (MPEPE) was proposed to identify mutations conducive to protein expression. MPEPE identified mutation sites in laccase 13B22 and the glucose dehydrogenase FAD-AtGDH, that significantly increased both expression levels and activity of these proteins. Additionally, a significant correlation of 0.46 between the predicted high level expression propensity with the constructed models and the protein abundance of endogenous genes in E. coli was also been detected. Therefore, the study provides foundational insights into the relationship between specific amino acid usage, codon usage, and protein expression, and is essential for research and industrial applications.
Collapse
Affiliation(s)
- Zundan Ding
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoshun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchen Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Generation of a transducible version of a bioactive recombinant human TBX5 transcription factor from E. Coli. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|