1
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
2
|
|
3
|
Feng CC, Lu WF, Liu YC, Liu TH, Chen YC, Chien HW, Wei Y, Chang HW, Yu J. A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. J Mater Chem B 2022; 10:4878-4888. [PMID: 35698997 DOI: 10.1039/d2tb00898j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrollable bleeding and infection are two of the most common causes of trauma-related death. Yet, developing safe materials with high hemostatic and antibacterial effectiveness remains a challenge. Keratin-based biomaterials have been reported to exhibit the functions of enhancing platelet binding and activating and facilitating fibrinogen polymerization. In this study, we designed a hemostatic material with good biodegradability, biocompatibility, hemostatic ability, and antibacterial function to solve the shortcomings of common hemostatic materials. Methylene blue-loaded keratin/alginate composite scaffolds were prepared by the freeze-gelation method. The composite scaffolds exhibited over 1600% liquid absorption, well-interconnected pores, good biocompatibility, and biodegradability. We find that the keratin/alginate composite scaffolds' synergistic action may significantly reduce hemostasis time. To prevent infection, the drug-loaded scaffolds generated high burst release by absorbing wound exudate in the early stages of wound healing. The results obtained by the antimicrobial photoinactivation assay in vitro suggest that an antimicrobial photodynamic effect might be triggered, thereby preventing the fast growth of colonies.
Collapse
Affiliation(s)
- Ching-Chih Feng
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Chen Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
4
|
Lin CW, Guan ZY, Lu M, Wu TY, Cheng NC, Chen HY, Yu J. Synergistically Enhanced Wound Healing of a Vapor-Constructed Porous Scaffold. ACS APPLIED BIO MATERIALS 2020; 3:5678-5686. [DOI: 10.1021/acsabm.0c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Che-Wei Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Zhen-Yu Guan
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Min Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Ying Wu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei 10031, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Navarro J, Clohessy RM, Holder RC, Gabard AR, Herendeen GJ, Christy RJ, Burnett LR, Fisher JP. In Vivo Evaluation of Three-Dimensional Printed, Keratin-Based Hydrogels in a Porcine Thermal Burn Model. Tissue Eng Part A 2020; 26:265-278. [PMID: 31774034 DOI: 10.1089/ten.tea.2019.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Keratin is a natural material that can be derived from the cortex of human hair. Our group had previously presented a method for the printed, sequential production of three-dimensional (3D) keratin scaffolds. Using a riboflavin-sodium persulfate-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution, we produced 3D keratin-based constructs through ultraviolet crosslinking in a lithography-based 3D printer. In this study, we have used this bioink to produce a keratin-based construct that is capable of delivering small molecules, providing an environment conducive to healing of dermal burn wounds in vivo, and maintaining stability in customized packaging. We characterized the effects of manufacturing steps, such as lyophilization and gamma irradiation sterilization on the properties of 3D printed keratin scaffolds prepared for in vivo testing. Keratin hydrogels are viable for the uptake and release of contracture-inhibiting Halofuginone, a collagen synthesis inhibitor that has been shown to decrease collagen synthesis in fibrosis cases. This small-molecule delivery provides a mechanism to reduce scarring of severe burn wounds in vitro. In vivo data show that the Halofuginone-laden printed keratin is noninferior to other similar approaches reported in literature. This is indicative that the use of 3D printed keratin is not inhibiting the healing processes, and the inclusion of Halofuginone induces a more organized dermal healing after a burn; in other words, this treatment is slower but improves healing. These studies are indicative of the potential of Halofuginone-laden keratin dressings in dermal wound healing. We aim to keep increasing the complexity of the 3D printed constructs toward the production of complex scaffolds for the treatment and topographical reconstruction of severe burn wounds to the face.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissue, University of Maryland, College Park, Maryland
| | | | | | | | | | - Robert J Christy
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, San Antonio, Texas
| | | | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissue, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Bajestani MI, Kader S, Monavarian M, Mousavi SM, Jabbari E, Jafari A. Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels. Int J Biol Macromol 2020; 142:790-802. [DOI: 10.1016/j.ijbiomac.2019.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
7
|
Chen IC, Yu J. Human Hair: Scaffold Materials for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:223-229. [PMID: 32602100 DOI: 10.1007/978-981-15-3258-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter reviews the studies of keratin-based biomaterials in the past and discusses the advancement of it in recent years. Keratin, as a protein-based biopolymer, possesses excellent biocompatibility and biodegradability. In addition, keratin has abundant disulfide bonds, which result in its unique and tough structure. However, the property also results in dissolubility, which causes difficult process ability. Over the past years, much research utilizes different methodologies to extract keratins. Different kinds of extraction methods affect the characteristics of keratins and give a wide variety of application forms. The features of different methods are discussed and summarized in the following.
Collapse
Affiliation(s)
- I-Chun Chen
- Department of Chemical Engineering, National Taiwan University, Taipei City, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
8
|
Lin CW, Chen YK, Tang KC, Yang KC, Cheng NC, Yu J. Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing. J Tissue Eng Regen Med 2019; 13:1044-1058. [PMID: 30938939 DOI: 10.1002/term.2855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 01/31/2023]
Abstract
Keratin, a natural biomaterial derived from wool or human hair, has the intrinsic ability to interact with different types of cells and the potential to serve as a controllable extracellular matrix that can be used a scaffold for tissue engineering. In this study, we demonstrated a simple and fast technique to construct 3D keratin scaffolds for accelerated wound healing using a lyophilization method based on extraction of keratin from human hair. The physical properties of the keratin scaffolds such as water uptake, pore size, and porosity can be adjusted by changing the protein concentrations during the fabrication process. The keratin scaffolds supported human adipose stem cells (hASCs) adhesion, proliferation, and differentiation. In vivo study performed on ICR mice showed that keratin scaffolds with hASCs shortened skin wound healing time, accelerated epithelialization, and promoted wound remodeling. Therefore, keratin scaffolds alone or together with hASCs may serve as therapeutic agents for repairing wounded tissue.
Collapse
Affiliation(s)
- Che-Wei Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Kai Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kao-Chun Tang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Cohen DJ, Hyzy SL, Haque S, Olson LC, Boyan BD, Saul JM, Schwartz Z. Effects of Tunable Keratin Hydrogel Erosion on Recombinant Human Bone Morphogenetic Protein 2 Release, Bioactivity, and Bone Induction. Tissue Eng Part A 2018; 24:1616-1630. [PMID: 29905087 DOI: 10.1089/ten.tea.2017.0471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Recombinant human bone morphogenetic protein 2 (rhBMP-2) delivery from collagen sponges for bone formation is an important clinical example of growth factors in tissue engineering. Side effects from rhBMP-2 burst release and rapid collagen resorption have led to investigation of alternative carriers. Here, keratin carriers with tunable erosion rates were formulated by varying disulfide crosslinking via ratios of oxidatively (keratose) to reductively (kerateine) extracted keratin. In vitro rhBMP-2 bioactivity increased with kerateine content, reaching levels greater than with collagen. Heterotopic bone formation in a mouse model depended on the keratin formulation, highlighting the importance of the growth factor carrier.
Collapse
Affiliation(s)
- David Joshua Cohen
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Sharon L Hyzy
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Salma Haque
- 2 Department of Chemical, Paper and Biomedical Engineering, College of Engineering and Computing, Miami University , Oxford, Ohio
| | - Lucas C Olson
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Barbara D Boyan
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
- 3 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Justin M Saul
- 2 Department of Chemical, Paper and Biomedical Engineering, College of Engineering and Computing, Miami University , Oxford, Ohio
| | - Zvi Schwartz
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
- 4 Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
10
|
Lin CW, Chen YK, Lu M, Lou KL, Yu J. Photo-Crosslinked Keratin/Chitosan Membranes as Potential Wound Dressing Materials. Polymers (Basel) 2018; 10:E987. [PMID: 30960912 PMCID: PMC6403811 DOI: 10.3390/polym10090987] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
In this study, we combined two kinds of natural polymers, chitosan and keratin, to develop a portable composite membrane via UV irradiation. UV-crosslinking without an additional chemical agent makes the fabrication more ideal by reducing reactants and avoiding residual toxic chemicals. This novel composite could perform synergistic functions benefitting from chitosan and keratin; including a strong mechanical strength, biodegradability, biocompatibility, better cell adhesion, and proliferation characteristics. Furthermore, compared with our previous research, this keratin-chitosan composite membrane was improved in that it was made to be portable, enabling it to be versatile and have various applications in vitro and in vivo. Based on these facts, this innovative composite membrane has high potential for serving as an outstanding candidate for wound healing or other biomedical applications.
Collapse
Affiliation(s)
- Che-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Min Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuo-Long Lou
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|