1
|
Jing Y, Chi W, Zhang W, Qiu Y, Gao M, Yu L, Song L, Wang X, Liu Z, Gao J, Huang J, Li Y, Gao G, Gao Y, Wang Y, Wang N. An innovative functional compatibility strategy for poly (lactic acid) and polypropylene carbonate blends to achieve superior toughness, degradability, and optical properties. Int J Biol Macromol 2024; 280:135702. [PMID: 39304048 DOI: 10.1016/j.ijbiomac.2024.135702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study, for the first time, unveils the potential of dibutyl itaconate (DBI) in enhancing the compatibility between PLA (poly (lactic acid)) and PPC (polypropylene carbonate), systematically investigating the effects of DBI amount on the thermal, optical, rheological, mechanical, and degradation properties and microstructure of the PLA/PPC/DBI blends. The results showed that DBI could chemically react with PLA and PPC, forming a PLA-co-DBI-co-PPC copolymer structure, thereby improving the compatibility between PLA and PPC. When the DBI amount reached 8 wt%, only one Tg was observed in the blend system, and no distinct phase interface was visible in the fracture surface of the blend specimens. This indicated that at this DBI amount, the PLA and PPC had transitioned from a partially compatible system to a fully compatible system. With the increase in DBI amount in the system, the elongation at break and notched impact strength of the blends initially increased and then decreased, while the storage modulus, loss modulus, and complex viscosity showed a gradual downward trend. When the DBI amount increased to 10 wt%, the flexibility of the blends reached its peak, with the values rising to 494.7 % and 8494.1 J/m2, respectively, representing 13.7 times and 2.5 times those of the neat PLA/PPC blends. At this point, the impact specimens exhibited significant plastic flow in the direction of force, showing distinct ductile fracture characteristics. Meanwhile, the degradation performance of the PLA/PPC blends increased with the addition of DBI. The introduction of DBI effectively facilitated the penetration of water molecules into the PLA/PPC molecular chains, enhancing the hydrolysis of ester bonds, leading to a maximum mass loss rate of 84.1 %, which was significantly higher than the 20.3 % of the neat PLA/PPC blends. In addition, the addition of DBI significantly reduced the haze of the blends while maintaining high light transmittance, demonstrating excellent optical properties (light transmittance remained above 92.4 %, and haze decreased from 37.1 % to 11.1 %). In conclusion, this study provides a new approach for the development of high-performance PLA-based biodegradable composites. The resulting blends exhibit excellent toughness, degradation performance, and optical properties, significantly enhancing their application potential in fields such as disposable products, packaging, agriculture, and 3D printing materials.
Collapse
Affiliation(s)
- Ying Jing
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Weihan Chi
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei Zhang
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
| | - Ying Qiu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Meng Gao
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
| | - Lingxiao Yu
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Lixin Song
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Xiangyi Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhe Liu
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jialu Gao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiangting Huang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guangxu Gao
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yujuan Gao
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| |
Collapse
|
2
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Yan C, Hou DF, Zhang K, Yang MB. Effects of PDLA molecular weight on the crystallization behaviors and rheological properties of asymmetric PDLA/PLLA blends. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
Yu K, Wu Y, Zhang X, Hou J, Chen J. Microcellular open-cell poly(l-lactic acid)/poly(d-lactic acid) foams for oil-water separation prepared via supercritical CO2 foaming. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Enhancement in Crystallizability of Poly(L-Lactide) Using Stereocomplex-Polylactide Powder as a Nucleating Agent. Polymers (Basel) 2022; 14:polym14194092. [PMID: 36236039 PMCID: PMC9571414 DOI: 10.3390/polym14194092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
High-molecular-weight poly(L-lactide) (HMW-PLLA) is a promising candidate for use as a bioplastic because of its biodegradability and compostability. However, the applications of HMW-PLLA have been limited due to its poor crystallizability. In this work, stereocomplex polylactide (scPLA) powder was prepared by precipitation of a low-molecular-weight poly(L-lactide)/poly(D-lactide) (LMW-PLLA/LMW-PDLA) blend solution and investigated for use as a fully-biodegradable nucleating agent for HMW-PLLA compared to LMW-PLLA powder. The obtained LMW-PLLA and scPLA powders with a nearly spherical shape showed complete homo- and stereocomplex crystallites, respectively. HMW-PLLA/LMW-PLLA powder and HMW-PLLA/scPLA powder blends were prepared by melt blending. The LMW-PLLA powder was homogeneously melted in the HMW-PLLA matrices, whereas the scPLA powder had good phase compatibility and was well-dispersed in the HMW-PLLA matrices, as detected by scanning electron microscopy (SEM). It was shown that the enthalpies of crystallization (ΔHc) upon cooling scans for HMW-PLLA largely increased and the half crystallization time (t1/2) dramatically decreased as the scPLA powder content increased; however, the LMW-PLLA powder did not exhibit the same behavior, as determined by differential scanning calorimetry (DSC). The crystallinity content of the HMW-PLLA/scPLA powder blends significantly increased as the scPLA powder content increased, as determined by DSC and X-ray diffractometry (XRD). In conclusion, the fully biodegradable scPLA powder showed good potential for use as an effective nucleating agent to improve the crystallization properties of the HMW-PLLA bioplastic.
Collapse
|
6
|
Hybrid micro-composite sheets of Polylactic Acid (PLA)/Carbon Black (CB)/natural kenaf fiber processed by calendering method. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Feng L, Bian X, Li G, Chen X. Compatibility and Thermal and Structural Properties of Poly(l-lactide)/Poly(l-co-d-lactide) Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lidong Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, Jilin, China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, Jilin, China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, Jilin, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, Jilin, China
| |
Collapse
|
8
|
Effect of In-Mold Annealing on the Properties of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends Incorporated with Nanohydroxyapatite. Polymers (Basel) 2021; 13:polym13162835. [PMID: 34451374 PMCID: PMC8398253 DOI: 10.3390/polym13162835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
The proper choice of a material system for bioresorbable synthetic bone graft substitutes imposes strict requirements for mechanical properties, bioactivity, biocompatibility, and osteoconductivity. This study aims to characterize the effect of in-mold annealing on the properties of nanocomposite systems based on asymmetric poly(l-lactide) (PLLA)/Poly(d-lactide) (PDLA) blends at 5 wt.% PDLA loading, which was incorporated with nano-hydroxyapatite (HA) at various concentrations (1, 5, 10, 15 wt.%). Samples were melt-blended and injection molded into “cold” mold (50 °C) and hot mold (100 °C). The results showed that the tensile modulus, crystallinity, and thermal-resistance were enhanced with increasing content of HA and blending with 5 wt.% of PDLA. In-mold annealing further improved the properties mentioned above by achieving a higher degree of crystallinity. In-mold annealed PLLA/5PDLA/15HA samples showed an increase of crystallinity by ~59%, tensile modulus by ~28%, and VST by ~44% when compared to neat hot molded PLLA. On the other hand, the % elongation values at break as well as tensile strength of the PLLA and asymmetric nanocomposites were lowered with increasing HA content and in-mold annealing. Moreover, in-mold annealing of asymmetric blends and related nanocomposites caused the embrittlement of material systems. Impact toughness, when compared to neat cold molded PLLA, was improved by ~44% with in-mold annealing of PLLA/1HA. Furthermore, fracture morphology revealed fine dispersion and distribution of HA at 1 wt.% concentration. On the other hand, HA at a high concentration of 15 wt.% show agglomerates that worked as stress concentrators during impact loading.
Collapse
|
9
|
Su X, Jia S, Cao L, Yu D. High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology. J Appl Polym Sci 2021. [DOI: 10.1002/app.51014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaolong Su
- School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipments Xi'an Jiaotong University Xi'an Shaanxi China
| | - Shikui Jia
- School of Materials Science and Engineering Shaanxi University of Technology Hanzhong Shaanxi China
| | - Le Cao
- School of Materials Science and Engineering Shaanxi University of Technology Hanzhong Shaanxi China
| | - Demei Yu
- School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipments Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
10
|
Zhang T, Han W, Zhang C, Weng Y. Effect of chain extender and light stabilizer on the weathering resistance of PBAT/PLA blend films prepared by extrusion blowing. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109455] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Formation of Stereocomplex Crystal and Its Effect on the Morphology and Property of PDLA/PLLA Blends. Polymers (Basel) 2020; 12:polym12112515. [PMID: 33126708 PMCID: PMC7694064 DOI: 10.3390/polym12112515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Stereocomplex-polylactic acid (SC-PLA) is obtained in poly(D-lactic) acid/poly(L-lactic) acid (PDLA/PLLA) blends under adjusting processing conditions. It is found that the degree of crystallinity of overall SC-PLA is up to 43.7% in PDLA/PLLA blends of 1:1 mass ratio. Formation of stereocomplex (SC) crystals forces molecular chains in the blends to be more closely arranged and further enhances interaction between molecular chains, thus forming a physical cross-linking network in the SC crystals, resulting in the blends having a special microstructure. The mechanism of formation of the SC crystal physical cross-linking network is elucidated by dielectric spectroscopy, and the relationships between homocomplex (HC) crystals, SC crystals, and amorphous regions in the blends are also analyzed. Interestingly, mechanical properties of the blends are significantly improved due to formation of an SC crystal cross-linking network.
Collapse
|
12
|
Sun Z, Wang L, Zhou J, Fan X, Xie H, Zhang H, Zhang G, Shi X. Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams. Polymers (Basel) 2020; 12:polym12102362. [PMID: 33076235 PMCID: PMC7602427 DOI: 10.3390/polym12102362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/27/2022] Open
Abstract
Polylactide foaming materials with promising biocompatibility balance the lightweight and mechanical properties well, and thus they can be desirable candidates for biological scaffolds used in tissue engineering. However, the cells are likely to coalesce and collapse during the foaming process of polylactide (PLA) due to its intrinsic low melt strength. This work introduces a unique PLA stereocomplexation into the microcellular foaming of poly (l-lactide)/poly (butylene succinate) (PLLA/PBS) based on supercritical carbon dioxide. The rheological properties of PLA/PBS with 5 wt% or 10 wt% poly (d-lactide) (PDLA) present enhanced melt strength owing to the formation of PLA stereocomplex crystals (sc-PLA), which act as physical pseudo-cross-link points in the molten blends by virtue of the strong intermolecular interaction between PLLA and the added PDLA. Notably, the introduction of either PBS or PDLA into the PLLA matrix could enhance its crystallization, while introducing both in the blend triggers a decreasing trend in the PLA crystallinity, which it is believed occurs due to the constrained molecular chain mobility by formed sc-PLA. Nevertheless, the enhanced melt strength and decreased crystallinity of PLA/PBS/PDLA blends are favorable for the microcellular foaming behavior, which enhanced the cell stability and provided amorphous regions for gas adsorption and homogeneous nucleation of PLLA cells, respectively. Furthermore, although the microstructure of PLA/PBS presents immiscible sea-island morphology, the miscibility was improved while the PBS domains were also refined by the introduction of PDLA. Overall, with the addition of PDLA into PLA/10PBS blends, the microcellular average cell size decreased from 3.21 to 0.66 μm with highest cell density of 2.23 × 1010 cells cm−3 achieved, confirming a stable growth of cells was achieved and more cell nucleation sites were initiated on the heterogeneous interface.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (Z.S.); (J.Z.)
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, China; (L.W.); (X.F.); (H.X.); (H.Z.)
| | - Long Wang
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, China; (L.W.); (X.F.); (H.X.); (H.Z.)
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jinyang Zhou
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (Z.S.); (J.Z.)
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, China; (L.W.); (X.F.); (H.X.); (H.Z.)
| | - Xun Fan
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, China; (L.W.); (X.F.); (H.X.); (H.Z.)
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hanghai Xie
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, China; (L.W.); (X.F.); (H.X.); (H.Z.)
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Han Zhang
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, China; (L.W.); (X.F.); (H.X.); (H.Z.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Guangcheng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (G.Z.); (X.S.)
| | - Xuetao Shi
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (Z.S.); (J.Z.)
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, China; (L.W.); (X.F.); (H.X.); (H.Z.)
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (G.Z.); (X.S.)
| |
Collapse
|
13
|
Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing. Polymers (Basel) 2020; 12:polym12102300. [PMID: 33050041 PMCID: PMC7600728 DOI: 10.3390/polym12102300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/21/2022] Open
Abstract
3D printing utilized as a direct deposition of conductive polymeric materials onto textiles reveals to be an attractive technique in the development of functional textiles. However, the conductive fillers—filled thermoplastic polymers commonly used in the development of functional textiles through 3D printing technology and most specifically through Fused Deposition Modeling (FDM) process—are not appropriate for textile applications as they are excessively brittle and fragile at room temperature. Indeed, a large amount of fillers is incorporated into the polymers to attain the percolation threshold increasing their viscosity and stiffness. For this reason, this study focuses on enhancing the flexibility, stress and strain at rupture and electrical conductivity of 3D-printed conductive polymer onto textiles by developing various immiscible polymer blends. A phase is composed of a conductive polymer composite (CPC) made of a carbon nanotubes (CNT) and highly structured carbon black (KB)- filled low-density polyethylene (LDPE) and another one of propylene-based elastomer (PBE) blends. Two requirements are essential to create flexible and highly conductive monofilaments for 3D-printed polymers onto textile materials applications. First, the co-continuity of both the thermoplastic and the elastomer phases and the location of the conductive fillers in the thermoplastic phase or at the interface of the two immiscible polymers are necessary to preserve the flexibility of the elastomer while decreasing the global amount of charges in the blends. In the present work based on theoretical models, when using a two-step melt process, the KB and CNT particles are found to be both preferentially located at the LDPE/PBE interface. Moreover, in the case of the two-step extrusion, SEM characterization showed that the KB particles were located in the LDPE while the CNT were mainly at the LDPE/PBE interface and TEM analysis demonstrated that KB and CNT nanoparticles were in LDPE and at the interface. For one-step extrusion, it was found that both KB and CNT are in the PBE and LDPE phases. These selective locations play a key role in extending the co-continuity of the LDPE and PBE phases over a much larger composition range. Therefore, the melt flow index and the electrical conductivity of monofilament, the deformation under compression, the strain and stress and the electrical conductivity of the 3D-printed conducting polymer composite onto textiles were significantly improved with KB and CNT-filled LDPE/PBE blends compared to KB and CNT-filled LDPE separately. The two-step extrusion processed 60%(LDPE16.7% KB + 4.2% CNT)/40 PBE blends presented the best properties and almost similar to the ones of the textile materials and henceforth, could be a better material for functional textile development through 3D printing onto textiles.
Collapse
|
14
|
Maleki H, Semnani Rahbar R, Nazir A. Improvement of physical and mechanical properties of electrospun poly(lactic acid) nanofibrous structures. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00844-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Qi L, Zhu Q, Cao D, Liu T, Zhu KR, Chang K, Gao Q. Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups. Polymers (Basel) 2020; 12:E760. [PMID: 32244536 PMCID: PMC7240496 DOI: 10.3390/polym12040760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
The stereocomplex of poly(lactic acid) containing glucose groups (sc-PLAG) was prepared by solution blending from equal amounts of poly(l-lactic acid) (PLLA) and poly(d-lactic acid-co-glucose) (PDLAG), which were synthesized from l- and d-lactic acid and glucose by melt polycondensation. The methods, including 1H nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), polarizing microscope (POM), scanning electron microscope (SEM), transmission electron microscope (TEM), and contact angle were used to determine the effects of the stereocomplexation of enantiomeric poly(lactic acid) (PLA) units, the amphiphilicity due to glucose residues and lactic acid units, and the interaction of glucose residues with lactic units on the crystallization performance, hydrophilicity, thermal stability, and morphology of samples. The results showed PDLAG was multi-armed, and partial OH groups of glucose residues in PDLAG might remain unreacted. The molecular weight (Mw), dispersity (Ɖ), and glucose proportion in the chain of PDLAG thereby had significant effects on sc-PLAG. There were the stereocomplexation of enantiomeric lactic units and the amphiphilic self-assembly of PDLAG in sc-PLAG, which resulted in glucose groups mainly in the surface phase and lactic units in the bulk phase. The sc-PLAG only possessed the stereocomplex crystal owing to the interaction between nearly equimolar of l-lactic units of PLLA and d-lactic units of PDLAG, and had no homo-crystallites of l- or d-lactic units, which improved the melting temperature (Tm) of sc-PLAG about 50 °C higher than that of PLLA. Glucose groups in sc-PLAG played an important role by forming heterogeneous nucleation, promoting amphiphilic self-assembly, and affecting the ordered arrangement of lactic units. The glass transition temperature (Tg), the melting temperature (Tm), crystallinity, crystallization rate, and water absorption of sc-PLAG showed similar changes with the increased glucose content in feeding. All these parameters increased at first, and the maximum appeared as glucose content in feeding about 2%, such as the maximum crystallinity of 48.8% and the maximum water absorption ratio being 11.7%. When glucose content in feeding continued increasing, all these performances showed a downward trend due to the decrease of arrangement regularity of lactic acid chains caused by glucose groups. Moreover, the contact angle of sc-PLAG decreased gradually with the increased glucose content in feeding to obtain the minimum 77.5° as the glucose content in feeding being 5%, while that of PLLA was 85.0°. The sc-PLAG possessed a regular microsphere structure, and its microspheres with a diameter of about 200 nm could be observed. In conclusion, sc-PLAG containing proper glucose amount could effectively enhance the crystallinity, hydrophilicity, and thermal stability of PLA material, which is useful for drug delivery, a scaffold for tissue engineering, and other applications of biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinwei Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Q.); (Q.Z.); (D.C.); (T.L.); (K.R.Z.); (K.C.)
| |
Collapse
|
16
|
Correa-Pacheco ZN, Black-Solís JD, Ortega-Gudiño P, Sabino-Gutiérrez MA, Benítez-Jiménez JJ, Barajas-Cervantes A, Bautista-Baños S, Hurtado-Colmenares LB. Preparation and Characterization of Bio-Based PLA/PBAT and Cinnamon Essential Oil Polymer Fibers and Life-Cycle Assessment from Hydrolytic Degradation. Polymers (Basel) 2019; 12:E38. [PMID: 31881746 PMCID: PMC7023530 DOI: 10.3390/polym12010038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Nowadays, the need to reduce the dependence on fuel products and to achieve a sustainable development is of special importance due to environmental concerns. Therefore, new alternatives must be sought. In this work, extruded fibers from poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) added with cinnamon essential oil (CEO) were prepared and characterized, and the hydrolytic degradation was assessed. A two-phase system was observed with spherical particles of PBAT embedded in the PLA matrix. The thermal analysis showed partial miscibility between PLA and PBAT. Mechanically, Young's modulus decreased and the elongation at break increased with the incorporation of PBAT and CEO into the blends. The variation in weight loss for the fibers was below 5% during the period of hydrolytic degradation studied with the most important changes at 37 °C and pH 8.50. From microscopy, the formation of cracks in the fiber surface was evidenced, especially for PLA fibers in alkaline medium at 37 °C. This study shows the importance of the variables that influence the performance of polyester-cinnamon essential oil-based fibers in agro-industrial applications for horticultural product preservation.
Collapse
Affiliation(s)
- Zormy Nacary Correa-Pacheco
- CONACYT-Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, km 6, calle CEPROBI, No. 8, San Isidro, Yautepec, Morelos 62731, Mexico
| | - Jaime Daniel Black-Solís
- Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6, calle CEPROBI No. 8, San Isidro, Yautepec, Morelos 62731, Mexico; (J.D.B.-S.); (S.B.-B.)
| | - Pedro Ortega-Gudiño
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco 44430, Mexico; (P.O.-G.); (A.B.-C.)
| | - Marcos Antonio Sabino-Gutiérrez
- Departamento de Química, Grupo B5IDA, Universidad Simón Bolívar, Apartado 89000, Caracas C. P. 1080-A, Venezuela; (M.A.S.-G.); (L.B.H.-C.)
| | - José Jesús Benítez-Jiménez
- Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain;
| | - Alfonso Barajas-Cervantes
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco 44430, Mexico; (P.O.-G.); (A.B.-C.)
| | - Silvia Bautista-Baños
- Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6, calle CEPROBI No. 8, San Isidro, Yautepec, Morelos 62731, Mexico; (J.D.B.-S.); (S.B.-B.)
| | | |
Collapse
|
17
|
Bandelli D, Alex J, Weber C, Schubert US. Polyester Stereocomplexes Beyond PLA: Could Synthetic Opportunities Revolutionize Established Material Blending? Macromol Rapid Commun 2019; 41:e1900560. [DOI: 10.1002/marc.201900560] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/15/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Julien Alex
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
18
|
Promoted crystallization kinetics of biodegradable poly(butylene succinate) by a nucleation agent of green chemical. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1929-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Iguchi Y, Akasaka S, Asai S. Formation of PLA stereocomplex crystals during melt-blending of asymmetric PLLA/PDLA/PMMA blends of varying miscibility. Polym J 2019. [DOI: 10.1038/s41428-019-0256-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Flexible and high heat-resistant stereocomplex PLLA-PEG-PLLA/PDLA blends prepared by melt process: effect of chain extension. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1881-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Shi X, Jing Z, Zhang G. Crystallization and Properties of Poly(lactide)/Poly(δ-valerolactone) Alternating Supramolecular Copolymers Adjusted by Stereocomplexation. ACS OMEGA 2019; 4:11145-11151. [PMID: 31460214 PMCID: PMC6648093 DOI: 10.1021/acsomega.9b00380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
The crystallization behavior of a series of synthesized polylactide (PLA)/poly(δ-valerolactone) (PVL) supramolecular copolymers with 2-ureido-4[1H]-pyrimidinone (UPy) groups is investigated by differential scanning calorimetry and X-ray diffraction. The stereocomplexation of PLA-based supramolecular polymers (SMPs) is strongly related to the block length, L/D ratios, and the UPy groups. Both the increase of the PLA block length and the self-complementary hydrogen bonding of the UPy end groups restrain the crystallization of the PVL blocks. The stereocomplexation of PLA-SMPs is greatly promoted by UPy groups, while the homocrystallization of PLA is constrained. The dynamic mechanical analysis indicated that the enhanced stereocomplexation would lead to higher thermal resistance and mechanical properties of PLA-based SMPs.
Collapse
Affiliation(s)
- Xuetao Shi
- Department
of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi’an 710129, China
| | - Zhanxin Jing
- Department
of Applied Chemistry, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangcheng Zhang
- Department
of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
22
|
Improvement in Mechanical Properties and Heat Resistance of PLLA-b-PEG-b-PLLA by Melt Blending with PDLA-b-PEG-b-PDLA for Potential Use as High-Performance Bioplastics. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/8690650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ecofriendly poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-b-PEG-b-PLLA) are flexible bioplastics. In this work, the blending of poly(D-lactide)-b-poly(ethylene glycol)-b-poly(D-lactide) (PDLA-b-PEG-b-PDLA) with various blend ratios for stereocomplex formation has been proved to be an effective method for improving the mechanical properties and heat resistance of PLLA-b-PEG-b-PLLA films. The PLLA-b-PEG-b-PLLA/PDLA-b-PEG-b-PLDA blend films were prepared by melt blending followed with compression molding. The stereocomplexation of PLLA and PDLA end-blocks were characterized by differential scanning calorimetry and X-ray diffraction (XRD). The content of stereocomplex crystallites of blend films increased with the PDLA-b-PEG-b-PDLA ratio. From XRD, the blend films exhibited only stereocomplex crystallites. The stress and strain at break of blend films obtained from tensile tests were enhanced by melt blending with the PDLA-b-PEG-b-PDLA. The heat resistance of blend films determined from testing of dimensional stability to heat and dynamic mechanical analysis were improved with the PDLA-b-PEG-b-PDLA ratio. The sterecomplex PLLA-b-PEG-b-PLLA/PDL-b-PEG-b-PDLA films prepared by melt processing could be used as flexible and good heat-resistance packaging bioplastics.
Collapse
|
23
|
Ji N, Hu G, Li J, Ren J. Influence of poly(lactide) stereocomplexes as nucleating agents on the crystallization behavior of poly(lactide)s. RSC Adv 2019; 9:6221-6227. [PMID: 35517274 PMCID: PMC9060946 DOI: 10.1039/c8ra09856e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
Abstract
The influence of the addition of linear and four-arm poly(lactide) stereocomplexes on the crystallization behavior of poly(l-lactide) and poly(d-lactide) from the molten state was investigated.
Collapse
Affiliation(s)
- Nuo Ji
- Institute of Nano and Bio-Polymeric Materials
- School of Material Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Guang Hu
- Institute of Nano and Bio-Polymeric Materials
- School of Material Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Jianbo Li
- Institute of Nano and Bio-Polymeric Materials
- School of Material Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Jie Ren
- Institute of Nano and Bio-Polymeric Materials
- School of Material Science and Engineering
- Tongji University
- Shanghai 201804
- China
| |
Collapse
|
24
|
Baimark Y, Kittipoom S. Influence of Chain-Extension Reaction on Stereocomplexation, Mechanical Properties and Heat Resistance of Compressed Stereocomplex-Polylactide Bioplastic Films. Polymers (Basel) 2018; 10:E1218. [PMID: 30961143 PMCID: PMC6290629 DOI: 10.3390/polym10111218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022] Open
Abstract
Stereocomplex polylactide (scPLA) films were prepared by melt blending of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with and without an epoxy-based chain extender before compression molding. The obtained scPLA films were characterized through differential scanning calorimetry, X-ray diffractometry (XRD), tensile testing and dimensional stability to heat. XRD patterns revealed that all the scPLA films had only stereocomplex crystallites. The obtained results showed that the chain-extension reaction improved mechanical properties of the scPLA films, however, it suppressed stereocomplexation and heat resistance.
Collapse
Affiliation(s)
- Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.
| | - Sumet Kittipoom
- Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
25
|
Srisuwan Y, Baimark Y. Controlling stereocomplexation, heat resistance and mechanical properties of stereocomplex polylactide films by using mixtures of low and high molecular weight poly(D-lactide)s. E-POLYMERS 2018. [DOI: 10.1515/epoly-2018-0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStereocomplex polylactide (scPLA) films were prepared by blending poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) solutions before solvent evaporation. The PLLA/PDLA ratios were 80/20 and 60/40 (w/w). PDLAs with low and high molecular weights (M.W.) were used as PDLA mixtures. The scPLA films with different low/high M.W. PDLA ratios were investigated for both the 80/20 and 60/40 (w/w) scPLA film series. Stereocomplexation, heat resistance and the mechanical properties of the scPLA films were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and tensile testing, respectively. The results indicated that low M.W. PDLA can enhance the stereocomplexation and heat resistance of scPLA films while the high M.W. PDLA can improve tensile properties of scPLA films. It was concluded that the stereocomplexation, heat resistance and tensile properties of scPLA films could be controlled by adjusting the low/high M.W. PDLA ratio in PDLA fraction.
Collapse
Affiliation(s)
- Yaowalak Srisuwan
- Biodegradable Polymers Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| |
Collapse
|
26
|
Rocha DB, Souza de Carvalho J, de Oliveira SA, dos Santos Rosa D. A new approach for flexible PBAT/PLA/CaCO3films into agriculture. J Appl Polym Sci 2018. [DOI: 10.1002/app.46660] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Belchior Rocha
- Environmentally Friendly Polymer Laboratory, Centro de Engenharia; Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Avenida dos Estados; Santo André SP 5001 Brazil
| | - Jéssika Souza de Carvalho
- Environmentally Friendly Polymer Laboratory, Centro de Engenharia; Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Avenida dos Estados; Santo André SP 5001 Brazil
| | - Sueli Aparecida de Oliveira
- Environmentally Friendly Polymer Laboratory, Centro de Engenharia; Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Avenida dos Estados; Santo André SP 5001 Brazil
| | - Derval dos Santos Rosa
- Environmentally Friendly Polymer Laboratory, Centro de Engenharia; Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Avenida dos Estados; Santo André SP 5001 Brazil
| |
Collapse
|