1
|
Abidli A, Ben Rejeb Z, Zaoui A, Naguib HE, Park CB. Comprehensive insights into the application of graphene-based aerogels for metals removal from aqueous media: Surface chemistry, mechanisms, and key features. Adv Colloid Interface Sci 2024; 335:103338. [PMID: 39577338 DOI: 10.1016/j.cis.2024.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Efficient removal of heavy metals and other toxic metal pollutants from wastewater is essential to protect human health and the surrounding vulnerable ecosystems. Therefore, significant efforts have been invested in developing practical and sustainable tools to address this issue, including high-performance adsorbents. In this respect, within the last few years, graphene-based aerogels/xerogels/cryogels (GBAs) have emerged and drawn significant attention as excellent materials for removing and recovering harmful and valuable metals from different aqueous media. Such an upward trend is mainly due to the features of the aerogel materials combined with the properties of the graphene derivatives within the aerogel's network, including the GBAs' unique three-dimensional (3D) porous structure, high porosity, low density, large specific surface area, exceptional electron mobility, adjustable and rich surface chemistry, remarkable mechanical features, and tremendous stability. This review offers a comprehensive analysis of the fundamental and practical aspects and phenomena related to the application of GBAs for metals removal. Herein, we cover all types of (bottom-up) synthesized GBAs, including true microporous graphene-based aerogels as well as other 3D graphene-based open-cell interconnected mesoporous and macroporous aerogels, foams, and sponges. Indeed, we provide insights into the fundamental understanding of the GBAs' suitability for such an important application by revealing the mechanisms involved in metals removal and the factors inducing and controlling the highly selective behavior of these distinctive adsorbents. Besides conventional adsorptive pathways, we critically analyzed the ability of GBAs to electrochemically capture metal pollutants (i.e., electrosorption) as well as their efficiency in metals detoxification through reductive mechanisms (i.e., adsorption-reduction-readsorption). We also covered the reusability aspect of graphene aerogels (GAs)-based adsorbents, which is strongly linked to the GBAs' outstanding stability and efficient desorption of captured metals. Furthermore, in view of their numerous practical and environmental benefits, the development and application of magnetically recoverable GAs for metals removal is also highlighted. Moreover, we shed light on the potential practical and scalable implementation of GBAs by evaluating their performance in continuous metals removal processes while highlighting the GBAs' versatility demonstrated by their ability to remove multiple contaminants along with metal pollutants from wastewater media. Finally, this review provides readers with an accessible overview and critical discussion of major recent achievements regarding the development and applications of GAs-based adsorbents for metal ions removal. Along with our recommendations and suggestions for potential future work and new research directions and opportunities, this review aims to serve as a valuable resource for researchers in the field of wastewater treatment and inspire further progress towards developing next-generation high-performance GBAs and expanding their application.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Hani E Naguib
- Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
2
|
Laxmi V, Agarwal S, Khan S. Advanced nanoribbons in water purification: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122645. [PMID: 39342836 DOI: 10.1016/j.jenvman.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The increasing scarcity of clean water, coupled with the environmental repercussions of municipal and industrial wastewater, underscores the imperative for advancing novel technologies aimed at clean water production and effectively removing impurities and toxic contaminants. Research focusing on ribbon-based technologies has garnered substantial attention in recent years due to their promising applications in various fields. This article presents a comprehensive review of the diverse applications of ribbon in water and wastewater treatment. It delves into the various types of ribbon employed for water purification, elucidating their effectiveness in removing contaminants such as heavy metals, dyes, pesticides, medical waste, oil pollutants, and radioactive waste. We will also discuss methods such as adsorption, membrane separation, and advanced oxidation processes, which help to understand how ribbons remove pollutants from water. This review summarizes the recent progress in the field of water purification and discusses the current state-of-the-art research on the use of ribbons in wastewater treatment. The end of this article gives information about the regeneration and reusability of ribbons and about challenges and prospects.
Collapse
Affiliation(s)
- Vijay Laxmi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Swati Agarwal
- Drumlins Water Technologies Pvt. Ltd., Jaipur, Rajasthan, 302005, India
| | - Suphiya Khan
- Shriram Institute for Industrial Research, Gurugram, Haryana, 122015, India.
| |
Collapse
|
3
|
Jabbar AA, Hussain DH, Latif KH, Jasim AK, Al-aqbi ZT, Alghannami HS, Albishri A. High-Efficiency Adsorption of Uranium from Wastewater Using Graphene Oxide/Graphene Oxide Nanoribbons/Chitosan Nanocomposite Aerogels. ACS OMEGA 2024; 9:27260-27268. [PMID: 38947775 PMCID: PMC11209705 DOI: 10.1021/acsomega.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
A chemical exfoliation and freeze-drying technique was used to create graphene oxide/graphene oxide nanoribbons/chitosan aerogels (GO/GONRs/CS). Aerogels were utilized to study uranium adsorption through batch experiments. Environmental influences on U(VI) adsorption were studied, including the starting concentration of U(VI), contact time, pH, and temperature. In order to characterize the composite, FTIR, SEM, XRD, and TEM analyses were used. A pseudo-second-order kinetic model may adequately represent the kinetics of U(VI) adsorption onto the surface of aerogels. The Freundlich model can explain the adsorption isotherm; the maximal adsorption capacity for U(VI) was determined to be 1208.85 mg/g; the adsorption process for U(VI) was endothermic, spontaneous, and pH-dependent; and the mechanism of adsorption is the chemisorption process. Chemisorption typically involves strong chemical interactions between the adsorbate (uranium ions) and the functional groups present on the surface of the adsorbent (the aerogel). Graphene oxide and graphene oxide nanoribbons contain oxygen-containing functional groups such as carboxyl (-COOH), hydroxyl (-OH), and epoxy (-O-) groups, which can act as active sites for chemical bonding. Chitosan, a polysaccharide derived from chitin, also possesses functional groups like amino (-NH2) and hydroxyl groups. Uranium ions, in their U(VI) form, can form chemical bonds with these functional groups through various mechanisms such as electrostatic interactions, complexation, and coordination bonds. The combination of graphene oxide-based materials and chitosan in the nanocomposite aerogel offers several advantages, including a large specific surface area, chemical stability, and the presence of functional groups for effective uranium adsorption.
Collapse
Affiliation(s)
- Ali A. Jabbar
- College
of Science/Chemistry Department, Mustansiriyah
University, Baghdad 10052, Iraq
| | - Dhia H. Hussain
- College
of Science/Chemistry Department, Mustansiriyah
University, Baghdad 10052, Iraq
| | - Kamal H. Latif
- The
Iraqi Authority for the Control of Radioactive SourcesBaghdad 10052, Iraq
| | - Adel Kareem Jasim
- Department
of Chemistry, College of Science, University
of Misan, Amarah 62001, Maysan, Iraq
| | - Zaidon T. Al-aqbi
- Department
of Chemistry, College of Science, University
of Misan, Amarah 62001, Maysan, Iraq
| | - Hussein S. Alghannami
- Department
of Physics, College of Science, University
of Misan, Amarah 62001, Maysan, Iraq
| | - Abdulkarim Albishri
- Department
of Chemistry, Rabigh College of Arts and Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Zhao C, Wang R, Fang B, Liang H, Li R, Li S, Xiong Y, Shao Y, Ni B, Wang R, Xu B, Feng S, Mo R. Macroscopic assembly of 2D materials for energy storage and seawater desalination. iScience 2023; 26:108436. [PMID: 38077149 PMCID: PMC10709067 DOI: 10.1016/j.isci.2023.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Since the discovery of graphene in 2004, two-dimensional (2D) materials have attracted widespread attention due to their excellent physical and chemical properties in the fields of energy, environment, catalysis, and optoelectronics. However, there are still many key problems in the process of practical application. To further promote the potential of 2D materials for practical applications, macroscopic assembly of 2D materials is crucial for the continued development of 2D materials, especially in the fields of energy storage and seawater desalination. Therefore, this review focuses on the latest progress and current status related to the macroscopic assembly of 2D materials, including 1D fibers, 2D films, and 3D architectures. In addition, the application of macroscopic bodies assembled based on 2D materials in the fields of energy storage and seawater desalination is also introduced. Finally, future directions for the macroscopic assembly of 2D materials and their applications are prospected.
Collapse
Affiliation(s)
- Chenpeng Zhao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Rui Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Biao Fang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Han Liang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Ruqing Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Shuaifei Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Yuhui Xiong
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Yuye Shao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Biyuan Ni
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Ruyi Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Biao Xu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Songyang Feng
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Runwei Mo
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200030, China
| |
Collapse
|
5
|
Petrounias P, Rogkala A, Giannakopoulou PP, Pyrgaki K, Lampropoulou P, Koutsovitis P, Tsikos H, Pomonis P, Koukouzas N. Sustainable removal of uranium from acidic wastewater using various mineral raw materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117159. [PMID: 36586366 DOI: 10.1016/j.jenvman.2022.117159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Various types of plutonic and volcanic rocks and their alteration products from Greece (serpentinite, magnesite and andesite), have been used for sustainable removal of Uranium (U) from the acidic drainage of Kirki mine, as well as for the pH increase of the polluted solutions. In this light, this study aims at the further understanding and improvement of the ecofriendly reuse of sterile, natural raw materials (including those remaining through industrial processing and engineering testing of aggregate rocks), for remediation of acid mine drainage. The selected rocks constitute such residues of sterile materials were used as filters in experimental continuous flow devices in the form of batch-type columns, in order to investigate acidic remediation properties with special focus on U removal. The initial pH of the wastewater was 2.90 and increased after seven (7) days of experimental application and more specifically from the fourth day onwards. Uranium removal became quantitatively significant once pH reached the value of 5.09. The volcanic rocks appeared to be more effective for U removal than the plutonic ones because of microtextural differences. However, optimum U removal was mainly achieved by serpentinite: while the raw materials rich in Mg strongly reacted and remediated the pH of the drainage water waste. Furthermore, the increase of pH values due to the presence of mineral raw materials, provided increased oxidation potential which deactivated the toxic load of metals, particularly U. Consequently, batch-type serpentinite reaction with the tailing fluid caused a drop in U concentration from an initial value of 254 ppb to the one of 8 ppb, which corresponds to 97% of removal. Andesite presented the second best reactant for experimental remediation, especially when it was mixed with magnetically separated mineral fractions. Despite the fact that the proposed methodology is currently at a relatively low Technology Readiness Level (TRL), it carries the potential to become an extremely effective and low-cost alternative to conventional environmental restoration technologies.
Collapse
Affiliation(s)
- Petros Petrounias
- Section of Earth Materials, Department of Geology, University of Patras, 265 04, Patras, Greece; Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Greece.
| | - Aikaterini Rogkala
- Section of Earth Materials, Department of Geology, University of Patras, 265 04, Patras, Greece
| | | | - Konstantina Pyrgaki
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Greece
| | - Paraskevi Lampropoulou
- Section of Earth Materials, Department of Geology, University of Patras, 265 04, Patras, Greece
| | - Petros Koutsovitis
- Section of Earth Materials, Department of Geology, University of Patras, 265 04, Patras, Greece
| | - Harilaos Tsikos
- Section of Earth Materials, Department of Geology, University of Patras, 265 04, Patras, Greece
| | - Panagiotis Pomonis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784, Athens, Greece
| | - Nikolaos Koukouzas
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Greece
| |
Collapse
|
6
|
Liu Y, Wang Y, Xia H, Wang Q, Chen X, Lv J, Li Y, Zhao J, Liu Y, Yuan D. Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Verma S, Kim KH. Graphene-based materials for the adsorptive removal of uranium in aqueous solutions. ENVIRONMENT INTERNATIONAL 2022; 158:106944. [PMID: 34689036 DOI: 10.1016/j.envint.2021.106944] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/19/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ground water contamination by radioactive elements has become a critical issue that can pose significant threats to human health. Adsorption is the most promising approach for the removal of radioactive elements owing to its simplicity, effectiveness, and easy operation. Among the plethora of functional adsorbents, graphene oxide and its derivatives are recognized for their excellent potential as adsorbent with the unique 2D structure, high surface area, and intercalated functional groups. To learn more about their practical applicability, the procedures involved in their preparation and functionalization are described with the microscopic removal mechanism by GO functionalities across varying solution pH. The performance of these adsorbents is assessed further in terms of the basic performance metrics such as partition coefficient. Overall, this article is expected to provide valuable insights into the current status of graphene-based adsorbents developed for uranium removal with a guidance for the future directions in this research field.
Collapse
Affiliation(s)
- Swati Verma
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea.
| |
Collapse
|
8
|
Davarazar M, Kamali M, Lopes I. Engineered nanomaterials for (waste)water treatment - A scientometric assessment and sustainability aspects. NANOIMPACT 2021; 22:100316. [PMID: 35559973 DOI: 10.1016/j.impact.2021.100316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/15/2023]
Abstract
Application of nanomaterials for the treatment of effluents originated from various industrial and non-industrial sources, has been rapidly developed in recent decades. In this situation, there is a need for conclusive studies to identify the current status of the knowledge in this field and to promote the commercialization of such technologies by providing recommendations for future studies. In the present manuscript, a scientometric assessment on the progress made in this field has been performed and the results have been organized and discussed in terms of science statistics, research hotspots and trends, as well as the relevant sustainability aspects. Based on a set of keywords, identified through a pre-literature analysis, a total of 6539 documents were retrieved from the Web of Science (WoS) database and analyzed to achieve the main goals of this study. The results demonstrate that the studies in this field have been initiated since the beginning of the 2000s but were mainly performed in lab and pilot scales. Also, China and Iran were identified as the most contributing countries in this scientific area in terms of the number of publications. Among various types of engineered nanomaterials (ENMs), there has been especial attention for the application of iron-based nanomaterials as well as carbonaceous structures (such as graphene oxide and biochar). Besides, there are not still strong collaborations formed among researchers in this area worldwide. Regarding the research hotspots, the synthesis of green and sustainable nanomaterials (e.g., biosynthesis approaches) has received attention in recent years. The results can also demonstrate that the most widely studied pathway for the removal of pollutants from (waste)waters involves the adsorption of the pollutants using ENMs. Treatment of contaminants of emerging concern (CECs) as well as exploring the mechanisms involved in the treatment of contaminated (waste)waters using ENMs and the possible by-products are considered the current trends in the literature. Regarding the sustainability aspects of ENMs for (waste)water treatment, the results achieved in this study calls for in-depth sustainability studies, which consider parameters such as economic, environmental, and social aspects of nanomaterials utilization for (waste)water treatment purposes, besides the technical parameters, to push transferring such technologies from lab and pilot scales to large and real-scale applications.
Collapse
Affiliation(s)
- Mahsa Davarazar
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Mohammadreza Kamali
- Process and Environmental Technology Lab, Department of Chemical Engineering, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium; CESAM - Center of Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM - Center of Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
|