1
|
Dobson L, Gerdán C, Tusnády S, Szekeres L, Kuffa K, Langó T, Zeke A, Tusnády GE. UniTmp: unified resources for transmembrane proteins. Nucleic Acids Res 2024; 52:D572-D578. [PMID: 37870462 PMCID: PMC10767979 DOI: 10.1093/nar/gkad897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
The UNIfied database of TransMembrane Proteins (UniTmp) is a comprehensive and freely accessible resource of transmembrane protein structural information at different levels, from localization of protein segments, through the topology of the protein to the membrane-embedded 3D structure. We not only annotated tens of thousands of new structures and experiments, but we also developed a new system that can serve these resources in parallel. UniTmp is a unified platform that merges TOPDB (Topology Data Bank of Transmembrane Proteins), TOPDOM (database of conservatively located domains and motifs in proteins), PDBTM (Protein Data Bank of Transmembrane Proteins) and HTP (Human Transmembrane Proteome) databases and provides interoperability between the incorporated resources and an easy way to keep them regularly updated. The current update contains 9235 membrane-embedded structures, 9088 sequences with 536 035 topology-annotated segments and 8692 conservatively localized protein domains or motifs as well as 5466 annotated human transmembrane proteins. The UniTmp database can be accessed at https://www.unitmp.org.
Collapse
Affiliation(s)
- László Dobson
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, Tűzoltó u. 7, H-1094, Hungary
| | - Csongor Gerdán
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - Simon Tusnády
- Department of Bioinformatics, Semmelweis University, Budapest, Tűzoltó u. 7, H-1094, Hungary
| | - Levente Szekeres
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - Katalin Kuffa
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Pázmány P. stny. 1/C, H-1117, Hungary
| | - Tamás Langó
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - András Zeke
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
| | - Gábor E Tusnády
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Magyar Tudósok körútja 2, H-1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, Tűzoltó u. 7, H-1094, Hungary
| |
Collapse
|
2
|
Jambrich MA, Tusnady GE, Dobson L. How AlphaFold2 shaped the structural coverage of the human transmembrane proteome. Sci Rep 2023; 13:20283. [PMID: 37985809 PMCID: PMC10662385 DOI: 10.1038/s41598-023-47204-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
AlphaFold2 (AF2) provides a 3D structure for every known or predicted protein, opening up new prospects for virtually every field in structural biology. However, working with transmembrane protein molecules pose a notorious challenge for scientists, resulting in a limited number of experimentally determined structures. Consequently, algorithms trained on this finite training set also face difficulties. To address this issue, we recently launched the TmAlphaFold database, where predicted AlphaFold2 structures are embedded into the membrane plane and a quality assessment (plausibility of the membrane-embedded structure) is provided for each prediction using geometrical evaluation. In this paper, we analyze how AF2 has improved the structural coverage of membrane proteins compared to earlier years when only experimental structures were available, and high-throughput structure prediction was greatly limited. We also evaluate how AF2 can be used to search for (distant) homologs in highly diverse protein families. By combining quality assessment and homology search, we can pinpoint protein families where AF2 accuracy is still limited, and experimental structure determination would be desirable.
Collapse
Affiliation(s)
- Márton A Jambrich
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - Gabor E Tusnady
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest, 1094, Hungary.
| | - Laszlo Dobson
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest, 1094, Hungary
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| |
Collapse
|
3
|
Genomics-based strategies toward the identification of a Z-ISO carotenoid biosynthetic enzyme suitable for structural studies. Methods Enzymol 2022; 671:171-205. [PMID: 35878977 DOI: 10.1016/bs.mie.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Over the past 20years, structural genomics efforts have proven enormously successful for the determination of integral membrane protein structures, particularly for those of prokaryotic origin. However, traditional genomic expansion screens have included up to hundreds of targets, necessitating the use of robotics and other automation not available to most laboratories. Moreover, such large-scale screens of eukaryotic targets are not easily performed at such a scale. To have broader appeal, traditional structural genomic approaches need to be modified and improved such that they are feasible for most laboratories and especially so for proteins from eukaryotic organisms. One such refinement, termed "microgenomic expansion," has been recently described. This approach improves the process of target selection by making target screening a two-step process, with a minimal number of targets tested at each step. Microgenomic expansion methods are applied here theoretically to a project that has the objective of acquiring a structure for the plant 15-cis-ζ-carotene isomerase, Z-ISO.
Collapse
|
4
|
Ashraf KU, Nygaard R, Vickery ON, Erramilli SK, Herrera CM, McConville TH, Petrou VI, Giacometti SI, Dufrisne MB, Nosol K, Zinkle AP, Graham CLB, Loukeris M, Kloss B, Skorupinska-Tudek K, Swiezewska E, Roper DI, Clarke OB, Uhlemann AC, Kossiakoff AA, Trent MS, Stansfeld PJ, Mancia F. Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature 2022; 604:371-376. [PMID: 35388216 PMCID: PMC9884178 DOI: 10.1038/s41586-022-04555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.
Collapse
Affiliation(s)
- Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas H McConville
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Vasileios I Petrou
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Kamil Nosol
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael Loukeris
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - David I Roper
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Bruni R, Laguerre A, Kaminska A, McSweeney S, Hendrickson WA, Liu Q. High-throughput cell-free screening of eukaryotic membrane protein expression in lipidic mimetics. Protein Sci 2022; 31:639-651. [PMID: 34910339 PMCID: PMC8862427 DOI: 10.1002/pro.4259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
Membrane proteins play essential roles in cellular function and metabolism. Nonetheless, biophysical and structural studies of membrane proteins are impeded by the difficulty of their expression in and purification from heterologous cell-based systems. As an alternative to these cell-based systems, cell-free protein synthesis has proven to be an exquisite method for screening membrane protein targets in a variety of lipidic mimetics. Here we report a high-throughput screening workflow and apply it to screen 61 eukaryotic membrane protein targets. For each target, we tested its expression in lipidic mimetics: two detergents, two liposomes, and two nanodiscs. We show that 35 membrane proteins (57%) can be expressed in a soluble fraction in at least one of the mimetics with the two detergents performing significantly better than nanodiscs and liposomes, in that order. Using the established cell-free workflow, we studied the production and biophysical assays for mitochondrial pyruvate carrier (MPC) complexes. Our studies show that the complexes produced in cell-free are functionally competent in complex formation and substrate binding. Our results highlight the utility of using cell-free systems for screening and production of eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA
| | - Aisha Laguerre
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
Roche DiagnosticsSanta ClaraCaliforniaUSA
| | - Anna‐Maria Kaminska
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
New York Blood CenterNew YorkNew YorkUSA
| | | | - Wayne A. Hendrickson
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| | - Qun Liu
- NSLS‐II, Brookhaven National LaboratoryUptonNew YorkUSA,Biology DepartmentBrookhaven National LaboratoryUptonNew YorkUSA
| |
Collapse
|
6
|
Fine Sampling of Sequence Space for Membrane Protein Structural Biology. J Mol Biol 2021; 433:167055. [PMID: 34022208 DOI: 10.1016/j.jmb.2021.167055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
We describe an enhancement of traditional genomics-based approaches to improve the success of structure determination of membrane proteins. Following a broad screen of sequence space to identify initial expression-positive targets, we employ a second step to select orthologs with closely related sequences to these hits. We demonstrate that a greater percentage of these latter targets express well and are stable in detergent, increasing the likelihood of identifying candidates that will ultimately yield structural information.
Collapse
|
7
|
High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies on membrane proteins can help to develop new drug targets and treatments for a variety of diseases. However, membrane proteins continue to be among the most challenging targets in structural biology. This uphill endeavor can be even harder for membrane proteins from Mycobacterium species, which are notoriously difficult to express in heterologous systems. Arabinofuranosyltransferases are involved in mycobacterial cell wall synthesis and thus potential targets for antituberculosis drugs. A set of 96 mycobacterial genes coding for Arabinofuranosyltransferases was selected, of which 17 were successfully expressed in E. coli and purified by metal-affinity chromatography. We herein present an efficient high-throughput strategy to screen in microplates a large number of targets from Mycobacteria and select the best conditions for large-scale protein production to pursue functional and structural studies. This methodology can be applied to other targets, is cost and time effective and can be implemented in common laboratories.
Collapse
|
8
|
Preisler SS, Wiuf AD, Friis M, Kjaergaard L, Hurd M, Becares ER, Nurup CN, Bjoerkskov FB, Szathmáry Z, Gourdon PE, Calloe K, Klaerke DA, Gotfryd K, Pedersen PA. Saccharomyces cerevisiae as a superior host for overproduction of prokaryotic integral membrane proteins. Curr Res Struct Biol 2021; 3:51-71. [PMID: 34235486 PMCID: PMC8244417 DOI: 10.1016/j.crstbi.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Integral membrane proteins (IMPs) constitute ~30% of all proteins encoded by the genome of any organism and Escherichia coli remains the first-choice host for recombinant production of prokaryotic IMPs. However, the expression levels of prokaryotic IMPs delivered by this bacterium are often low and overproduced targets often accumulate in inclusion bodies. The targets are therefore often discarded to avoid an additional and inconvenient refolding step in the purification protocol. Here we compared expression of five prokaryotic (bacterial and archaeal) IMP families in E. coli and Saccharomyces cerevisiae. We demonstrate that our S. cerevisiae-based production platform is superior in expression of four investigated IMPs, overall being able to deliver high quantities of active target proteins. Surprisingly, in case of the family of zinc transporters (Zrt/Irt-like proteins, ZIPs), S. cerevisiae rescued protein expression that was undetectable in E. coli. We also demonstrate the effect of localization of the fusion tag on expression yield and sample quality in detergent micelles. Lastly, we present a road map to achieve the most efficient expression of prokaryotic IMPs in our yeast platform. Our findings demonstrate the great potential of S. cerevisiae as host for high-throughput recombinant overproduction of bacterial and archaeal IMPs for downstream biophysical characterization. S. cerevisiae is superior to E. coli in expressing correctly folded and active IMPs. S. cerevisiae completely rescues the expression of the family of zinc transporters. Localization of the fusion tag affects expression yields and protein quality. We provide a roadmap to efficient expression of prokaryotic IMPs in S. cerevisiae.
Collapse
Affiliation(s)
- Sarah Spruce Preisler
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Anders Drabaek Wiuf
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Marc Friis
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Lasse Kjaergaard
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Molly Hurd
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Eva Ramos Becares
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Casper Normann Nurup
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | | | - Zsófia Szathmáry
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Pontus Emanuel Gourdon
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Kirstine Calloe
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Dan A Klaerke
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Kamil Gotfryd
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| |
Collapse
|
9
|
Niesen MJM, Zimmer MH, Miller TF. Dynamics of Co-translational Membrane Protein Integration and Translocation via the Sec Translocon. J Am Chem Soc 2020; 142:5449-5460. [PMID: 32130863 PMCID: PMC7338273 DOI: 10.1021/jacs.9b07820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An important aspect of cellular function is the correct targeting and delivery of newly synthesized proteins. Central to this task is the machinery of the Sec translocon, a transmembrane channel that is involved in both the translocation of nascent proteins across cell membranes and the integration of proteins into the membrane. Considerable experimental and computational effort has focused on the Sec translocon and its role in nascent protein biosynthesis, including the correct folding and expression of integral membrane proteins. However, the use of molecular simulation methods to explore Sec-facilitated protein biosynthesis is hindered by the large system sizes and long (i.e., minute) time scales involved. In this work, we describe the development and application of a coarse-grained simulation approach that addresses these challenges and allows for direct comparison with both in vivo and in vitro experiments. The method reproduces a wide range of experimental observations, providing new insights into the underlying molecular mechanisms, predictions for new experiments, and a strategy for the rational enhancement of membrane protein expression levels.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Matthew H Zimmer
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F Miller
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Schafferhans A, O'Donoghue SI, Heinzinger M, Rost B. Dark Proteins Important for Cellular Function. Proteomics 2019; 18:e1800227. [PMID: 30318701 DOI: 10.1002/pmic.201800227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Indexed: 01/08/2023]
Abstract
Despite substantial and successful projects for structural genomics, many proteins remain for which neither experimental structures nor homology-based models are known for any part of the amino acid sequence. These have been called "dark proteins," in contrast to non-dark proteins, in which at least part of the sequence has a known or inferred structure. It has been hypothesized that non-dark proteins may be more abundantly expressed than dark proteins, which are known to have much fewer sequence relatives. Surprisingly, the opposite has been observed: human dark and non-dark proteins had quite similar levels of expression, in terms of both mRNA and protein abundance. Such high levels of expression strongly indicate that dark proteins-as a group-are important for cellular function. This is remarkable, given how carefully structural biologists have focused on proteins crucial for function, and highlights the important challenge posed by dark proteins in future research.
Collapse
Affiliation(s)
- Andrea Schafferhans
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr. 3, 85748 Garching, Germany.,Department of Bioengineering Sciences, University of Applied Sciences, Freising, Germany
| | - Seán I O'Donoghue
- CSIRO Data61, Sydney, Australia.,Division of Genomics & Epigenetics, Garvan Institute of Medical Research, Sydney, Australia.,School of Biotechnology & Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr. 3, 85748 Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology - i12, TUM (Technical University of Munich), Boltzmannstr. 3, 85748 Garching, Germany.,Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748 Garching, Germany.,TUM School of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany
| |
Collapse
|
11
|
Assur Sanghai Z, Liu Q, Clarke OB, Belcher-Dufrisne M, Wiriyasermkul P, Giese MH, Leal-Pinto E, Kloss B, Tabuso S, Love J, Punta M, Banerjee S, Rajashankar KR, Rost B, Logothetis D, Quick M, Hendrickson WA, Mancia F. Structure-based analysis of CysZ-mediated cellular uptake of sulfate. eLife 2018; 7:27829. [PMID: 29792261 PMCID: PMC5967866 DOI: 10.7554/elife.27829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/11/2018] [Indexed: 01/25/2023] Open
Abstract
Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues.
Collapse
Affiliation(s)
- Zahra Assur Sanghai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, United States
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Meagan Belcher-Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Pattama Wiriyasermkul
- Center for Molecular Recognition, Department of Psychiatry, Columbia University, New York, United States
| | - M Hunter Giese
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Edgar Leal-Pinto
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, United States
| | - Brian Kloss
- New York Structural Biology Center, New York, United States
| | | | - James Love
- New York Structural Biology Center, New York, United States
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, United States
| | | | - Burkhard Rost
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Diomedes Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, United States
| | - Matthias Quick
- Center for Molecular Recognition, Department of Psychiatry, Columbia University, New York, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States
| | - Wayne A Hendrickson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,New York Structural Biology Center, New York, United States
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| |
Collapse
|
12
|
Saladi SM, Javed N, Müller A, Clemons WM. A statistical model for improved membrane protein expression using sequence-derived features. J Biol Chem 2018; 293:4913-4927. [PMID: 29378850 PMCID: PMC5880134 DOI: 10.1074/jbc.ra117.001052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Indexed: 11/06/2022] Open
Abstract
The heterologous expression of integral membrane proteins (IMPs) remains a major bottleneck in the characterization of this important protein class. IMP expression levels are currently unpredictable, which renders the pursuit of IMPs for structural and biophysical characterization challenging and inefficient. Experimental evidence demonstrates that changes within the nucleotide or amino acid sequence for a given IMP can dramatically affect expression levels, yet these observations have not resulted in generalizable approaches to improve expression levels. Here, we develop a data-driven statistical predictor named IMProve that, using only sequence information, increases the likelihood of selecting an IMP that expresses in Escherichia coli The IMProve model, trained on experimental data, combines a set of sequence-derived features resulting in an IMProve score, where higher values have a higher probability of success. The model is rigorously validated against a variety of independent data sets that contain a wide range of experimental outcomes from various IMP expression trials. The results demonstrate that use of the model can more than double the number of successfully expressed targets at any experimental scale. IMProve can immediately be used to identify favorable targets for characterization. Most notably, IMProve demonstrates for the first time that IMP expression levels can be predicted directly from sequence.
Collapse
Affiliation(s)
- Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Nauman Javed
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
13
|
Dosztányi Z. Prediction of protein disorder based on IUPred. Protein Sci 2017; 27:331-340. [PMID: 29076577 DOI: 10.1002/pro.3334] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Many proteins contain intrinsically disordered regions (IDRs), functional polypeptide segments that in isolation adopt a highly flexible conformational ensemble instead of a single, well-defined structure. Disorder prediction methods, which can discriminate ordered and disordered regions from the amino acid sequence, have contributed significantly to our current understanding of the distinct properties of intrinsically disordered proteins by enabling the characterization of individual examples as well as large-scale analyses of these protein regions. One popular method, IUPred provides a robust prediction of protein disorder based on an energy estimation approach that captures the fundamental difference between the biophysical properties of ordered and disordered regions. This paper reviews the energy estimation method underlying IUPred and the basic properties of the web server. Through an example, it also illustrates how the prediction output can be interpreted in a more complex case by taking into account the heterogeneous nature of IDRs. Various applications that benefited from IUPred to provide improved disorder predictions, complementing domain annotations and aiding the identification of functional short linear motifs are also described here. IUPred is freely available for noncommercial users through the web server (http://iupred.enzim.hu and http://iupred.elte.hu) . The program can also be downloaded and installed locally for large-scale analyses.
Collapse
Affiliation(s)
- Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| |
Collapse
|
14
|
Structural basis for conductance through TRIC cation channels. Nat Commun 2017; 8:15103. [PMID: 28524849 PMCID: PMC5477506 DOI: 10.1038/ncomms15103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
Mammalian TRICs function as K+-permeable cation channels that provide counter ions for Ca2+ handling in intracellular stores. Here we describe the structures of two prokaryotic homologues, archaeal SaTRIC and bacterial CpTRIC, showing that TRIC channels are symmetrical trimers with transmembrane pores through each protomer. Each pore holds a string of water molecules centred at kinked helices in two inverted-repeat triple-helix bundles (THBs). The pores are locked in a closed state by a hydrogen bond network at the C terminus of the THBs, which is lost when the pores assume an open conformation. The transition between the open and close states seems to be mediated by cation binding to conserved residues along the three-fold axis. Electrophysiology and mutagenesis studies show that prokaryotic TRICs have similar functional properties to those of mammalian TRICs and implicate the three-fold axis in the allosteric regulation of the channel. Trimeric intracellular cation channels (TRICs) elicit K+ currents to counteract luminal negative potential during Ca2+ release from intracellular stores. Here the authors present structures of prokaryotic TRICs in their open and closed states, obtaining molecular insight into TRICs' function.
Collapse
|
15
|
Love JD. Expression of Prokaryotic Integral Membrane Proteins in E. coli. Methods Mol Biol 2017; 1586:265-278. [PMID: 28470611 DOI: 10.1007/978-1-4939-6887-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Production of prokaryotic membrane proteins for structural and functional studies in E. coli can be parallelized and miniaturized. All stages from cloning, expression, purification to detergent selection can be investigated using high-throughput techniques to rapidly and economically find tractable targets.
Collapse
Affiliation(s)
- James D Love
- Department of Biochemistry, Albert Einstein College of Medicine at Yeshiva University, Bronx, NY, USA.
- ATUM, 37950 Central Court, Newark, CA, 94560, USA.
| |
Collapse
|
16
|
Varga J, Dobson L, Reményi I, Tusnády GE. TSTMP: target selection for structural genomics of human transmembrane proteins. Nucleic Acids Res 2016; 45:D325-D330. [PMID: 27924015 PMCID: PMC5210638 DOI: 10.1093/nar/gkw939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/14/2022] Open
Abstract
The TSTMP database is designed to help the target selection of human transmembrane proteins for structural genomics projects and structure modeling studies. Currently, there are only 60 known 3D structures among the polytopic human transmembrane proteins and about a further 600 could be modeled using existing structures. Although there are a great number of human transmembrane protein structures left to be determined, surprisingly only a small fraction of these proteins have 'selected' (or above) status according to the current version the TargetDB/TargetTrack database. This figure is even worse regarding those transmembrane proteins that would contribute the most to the structural coverage of the human transmembrane proteome. The database was built by sorting out proteins from the human transmembrane proteome with known structure and searching for suitable model structures for the remaining proteins by combining the results of a state-of-the-art transmembrane specific fold recognition algorithm and a sequence similarity search algorithm. Proteins were searched for homologues among the human transmembrane proteins in order to select targets whose successful structure determination would lead to the best structural coverage of the human transmembrane proteome. The pipeline constructed for creating the TSTMP database guarantees to keep the database up-to-date. The database is available at http://tstmp.enzim.ttk.mta.hu.
Collapse
Affiliation(s)
- Julia Varga
- Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H1111 Hungary
| | - László Dobson
- 'Momentum' Membrane Protein Bioinformatics Research Group, Institute of Enzymology, RCNS, HAS, Budapest PO Box 7, H-1518 Hungary
| | - István Reményi
- 'Momentum' Membrane Protein Bioinformatics Research Group, Institute of Enzymology, RCNS, HAS, Budapest PO Box 7, H-1518 Hungary
| | - Gábor E Tusnády
- 'Momentum' Membrane Protein Bioinformatics Research Group, Institute of Enzymology, RCNS, HAS, Budapest PO Box 7, H-1518 Hungary
| |
Collapse
|
17
|
Bernhofer M, Kloppmann E, Reeb J, Rost B. TMSEG: Novel prediction of transmembrane helices. Proteins 2016; 84:1706-1716. [PMID: 27566436 DOI: 10.1002/prot.25155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/18/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Transmembrane proteins (TMPs) are important drug targets because they are essential for signaling, regulation, and transport. Despite important breakthroughs, experimental structure determination remains challenging for TMPs. Various methods have bridged the gap by predicting transmembrane helices (TMHs), but room for improvement remains. Here, we present TMSEG, a novel method identifying TMPs and accurately predicting their TMHs and their topology. The method combines machine learning with empirical filters. Testing it on a non-redundant dataset of 41 TMPs and 285 soluble proteins, and applying strict performance measures, TMSEG outperformed the state-of-the-art in our hands. TMSEG correctly distinguished helical TMPs from other proteins with a sensitivity of 98 ± 2% and a false positive rate as low as 3 ± 1%. Individual TMHs were predicted with a precision of 87 ± 3% and recall of 84 ± 3%. Furthermore, in 63 ± 6% of helical TMPs the placement of all TMHs and their inside/outside topology was correctly predicted. There are two main features that distinguish TMSEG from other methods. First, the errors in finding all helical TMPs in an organism are significantly reduced. For example, in human this leads to 200 and 1600 fewer misclassifications compared to the second and third best method available, and 4400 fewer mistakes than by a simple hydrophobicity-based method. Second, TMSEG provides an add-on improvement for any existing method to benefit from. Proteins 2016; 84:1706-1716. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Bernhofer
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany.
| | - Edda Kloppmann
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany.,New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York, 10027
| | - Jonas Reeb
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany
| | - Burkhard Rost
- Department of Informatics & Center for Bioinformatics & Computational Biology - i12, Technische Universität München (TUM), Boltzmannstr. 3, Garching/Munich, 85748, Germany.,New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York, 10027.,Institute of Advanced Study (TUM-IAS), Lichtenbergstr. 2a, Garching/Munich, 85748, Germany.,Institute for Food and Plant Sciences WZW - Weihenstephan, Alte Akademie 8, Freising, Germany
| |
Collapse
|
18
|
Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, Tomasek D, Banerjee S, Rajashankar KR, Belcher Dufrisne M, Kloss B, Kloppmann E, Rost B, Klug CS, Trent MS, Shapiro L, Mancia F. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 2016; 351:608-12. [PMID: 26912703 DOI: 10.1126/science.aad1172] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.
Collapse
Affiliation(s)
- Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jérémie Vendome
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Kanagalaghatta R Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany. Institute for Advanced Study (TUM-IAS), Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Abstract
The ease of use, robustness, cost-effectiveness, and posttranslational machinery make baculovirus expression system a popular choice for production of eukaryotic membrane proteins. This system can be readily adapted for high-throughput operations. This chapter outlines the techniques and procedures for cloning, transfection, small-scale production, and purification of membrane protein samples in a high-throughput manner.
Collapse
|
20
|
Abstract
We surveyed the "dark" proteome-that is, regions of proteins never observed by experimental structure determination and inaccessible to homology modeling. For 546,000 Swiss-Prot proteins, we found that 44-54% of the proteome in eukaryotes and viruses was dark, compared with only ∼14% in archaea and bacteria. Surprisingly, most of the dark proteome could not be accounted for by conventional explanations, such as intrinsic disorder or transmembrane regions. Nearly half of the dark proteome comprised dark proteins, in which the entire sequence lacked similarity to any known structure. Dark proteins fulfill a wide variety of functions, but a subset showed distinct and largely unexpected features, such as association with secretion, specific tissues, the endoplasmic reticulum, disulfide bonding, and proteolytic cleavage. Dark proteins also had short sequence length, low evolutionary reuse, and few known interactions with other proteins. These results suggest new research directions in structural and computational biology.
Collapse
|
21
|
Guo Y, Kalathur RC, Liu Q, Kloss B, Bruni R, Ginter C, Kloppmann E, Rost B, Hendrickson WA. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science 2015; 347:551-5. [PMID: 25635100 DOI: 10.1126/science.aaa1534] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 Å resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.
Collapse
Affiliation(s)
- Youzhong Guo
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ravi C Kalathur
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Qun Liu
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Brian Kloss
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Renato Bruni
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Christopher Ginter
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Edda Kloppmann
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Garching 85748, Germany
| | - Burkhard Rost
- The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Garching 85748, Germany
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
A critical evaluation of in silico methods for detection of membrane protein intrinsic disorder. Biophys J 2014; 106:1638-49. [PMID: 24739163 DOI: 10.1016/j.bpj.2014.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered regions in proteins possess important biological roles including transcriptional regulation, molecular recognition, and provision of sites for posttranslational modification. In three-dimensional crystallization of both soluble and membrane proteins, identification and removal of disordered regions is often necessary for obtaining crystals possessing sufficient long-range order for structure determination. Disordered regions can be identified experimentally, with techniques such as limited proteolysis coupled with mass spectrometry, or computationally, by using disorder prediction programs, of which many are available. Although these programs use various methods to predict disorder from a protein's primary sequence, they all were developed using information derived from soluble protein structures. Therefore, their performance and accuracy when applied to integral membrane proteins remained an open question. We evaluated the performance of 13 disorder prediction programs on a dataset containing 343 membrane proteins, and upon subdatasets containing only α-helical or β-barrel proteins. These programs were ranked using multiple metrics, including metrics specifically created for membrane proteins. Analysis of these data shows a clear distinction between programs that accurately predict disordered regions in membrane proteins and programs which perform poorly, and allows for the robust integration of in silico disorder prediction into our PSI:Biology membrane protein structural genomics pipeline.
Collapse
|
23
|
Yang T, Liu Q, Kloss B, Bruni R, Kalathur RC, Guo Y, Kloppmann E, Rost B, Colecraft HM, Hendrickson WA. Structure and selectivity in bestrophin ion channels. Science 2014; 346:355-9. [PMID: 25324390 DOI: 10.1126/science.1259723] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human bestrophin-1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where mutations are associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a sensitive control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the cytoplasmic exit. A homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Qun Liu
- New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Ravi C Kalathur
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Youzhong Guo
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edda Kloppmann
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, TUM (Technische Universität München), Garching 85748, Germany
| | - Burkhard Rost
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, TUM (Technische Universität München), Garching 85748, Germany
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Chang Y, Bruni R, Kloss B, Assur Z, Kloppmann E, Rost B, Hendrickson WA, Liu Q. Structural basis for a pH-sensitive calcium leak across membranes. Science 2014; 344:1131-5. [PMID: 24904158 DOI: 10.1126/science.1252043] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcium homeostasis balances passive calcium leak and active calcium uptake. Human Bax inhibitor-1 (hBI-1) is an antiapoptotic protein that mediates a calcium leak and is representative of a highly conserved and widely distributed family, the transmembrane Bax inhibitor motif (TMBIM) proteins. Here, we present crystal structures of a bacterial homolog and characterize its calcium leak activity. The structure has a seven-transmembrane-helix fold that features two triple-helix sandwiches wrapped around a central C-terminal helix. Structures obtained in closed and open conformations are reversibly interconvertible by change of pH. A hydrogen-bonded, pKa (where Ka is the acid dissociation constant)-perturbed pair of conserved aspartate residues explains the pH dependence of this transition, and biochemical studies show that pH regulates calcium influx in proteoliposomes. Homology models for hBI-1 provide insights into TMBIM-mediated calcium leak and cytoprotective activity.
Collapse
Affiliation(s)
- Yanqi Chang
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Zahra Assur
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edda Kloppmann
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Bioinformatics and Computational Biology, Fakultät für Informatik, Technische Universität München, Garching, Germany
| | - Burkhard Rost
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Bioinformatics and Computational Biology, Fakultät für Informatik, Technische Universität München, Garching, Germany
| | - Wayne A Hendrickson
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Qun Liu
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
25
|
Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative. Proc Natl Acad Sci U S A 2014; 111:3733-8. [PMID: 24567391 DOI: 10.1073/pnas.1321614111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins--including proteins for which reliable homology models can be generated--on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long.
Collapse
|
26
|
Bruni R, Kloss B. High-throughput cloning and expression of integral membrane proteins in Escherichia coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2013; 74:29.6.1-29.6.34. [PMID: 24510647 PMCID: PMC3920300 DOI: 10.1002/0471140864.ps2906s74] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high-throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression, and screening of membrane proteins using high-throughput methodologies developed in the laboratory. Basic Protocol 1 describes cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that do express on the miniscale, Basic Protocols 3 and 4 outline the methods employed for the expression and purification of targets on a midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable.
Collapse
Affiliation(s)
- Renato Bruni
- New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center (NYSBC), New York
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center (NYSBC), New York
| |
Collapse
|
27
|
Pieper U, Schlessinger A, Kloppmann E, Chang GA, Chou JJ, Dumont ME, Fox BG, Fromme P, Hendrickson WA, Malkowski MG, Rees DC, Stokes DL, Stowell MHB, Wiener MC, Rost B, Stroud RM, Stevens RC, Sali A. Coordinating the impact of structural genomics on the human α-helical transmembrane proteome. Nat Struct Mol Biol 2013; 20:135-8. [PMID: 23381628 DOI: 10.1038/nsmb.2508] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kloppmann E, Punta M, Rost B. Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 2012; 22:326-32. [PMID: 22622032 DOI: 10.1016/j.sbi.2012.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/28/2012] [Accepted: 05/01/2012] [Indexed: 01/21/2023]
Abstract
Recent years have seen the establishment of structural genomics centers that explicitly target integral membrane proteins. Here, we review the advances in targeting these extremely high-hanging fruits of structural biology in high-throughput mode. We observe that the experimental determination of high-resolution structures of integral membrane proteins is increasingly successful both in terms of getting structures and of covering important protein families, for example, from Pfam. Structural genomics has begun to contribute significantly toward this progress. An important component of this contribution is the set up of robotic pipelines that generate a wealth of experimental data for membrane proteins. We argue that prediction methods for the identification of membrane regions and for the comparison of membrane proteins largely suffice to meet the challenges of target selection for structural genomics of membrane proteins. In contrast, we need better methods to prioritize the most promising members in a family of closely related proteins and to annotate protein function from sequence and structure in absence of homology.
Collapse
Affiliation(s)
- Edda Kloppmann
- Department of Bioinformatics and Computational Biology, Technical University Munich, Germany.
| | | | | |
Collapse
|
29
|
Overton IM, Barton GJ. Computational approaches to selecting and optimising targets for structural biology. Methods 2011; 55:3-11. [PMID: 21906678 PMCID: PMC3202631 DOI: 10.1016/j.ymeth.2011.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022] Open
Abstract
Selection of protein targets for study is central to structural biology and may be influenced by numerous factors. A key aim is to maximise returns for effort invested by identifying proteins with the balance of biophysical properties that are conducive to success at all stages (e.g. solubility, crystallisation) in the route towards a high resolution structural model. Selected targets can be optimised through construct design (e.g. to minimise protein disorder), switching to a homologous protein, and selection of experimental methodology (e.g. choice of expression system) to prime for efficient progress through the structural proteomics pipeline. Here we discuss computational techniques in target selection and optimisation, with more detailed focus on tools developed within the Scottish Structural Proteomics Facility (SSPF); namely XANNpred, ParCrys, OB-Score (target selection) and TarO (target optimisation). TarO runs a large number of algorithms, searching for homologues and annotating the pool of possible alternative targets. This pool of putative homologues is presented in a ranked, tabulated format and results are also visualised as an automatically generated and annotated multiple sequence alignment. The target selection algorithms each predict the propensity of a selected protein target to progress through the experimental stages leading to diffracting crystals. This single predictor approach has advantages for target selection, when compared with an approach using two or more predictors that each predict for success at a single experimental stage. The tools described here helped SSPF achieve a high (21%) success rate in progressing cloned targets to diffraction-quality crystals.
Collapse
Affiliation(s)
- Ian M Overton
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom.
| | | |
Collapse
|
30
|
High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol 2011; 21:517-22. [PMID: 21807498 DOI: 10.1016/j.sbi.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules.
Collapse
|
31
|
Cao Y, Jin X, Levin EJ, Huang H, Zong Y, Quick M, Weng J, Pan Y, Love J, Punta M, Rost B, Hendrickson WA, Javitch JA, Rajashankar KR, Zhou M. Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 2011; 473:50-4. [PMID: 21471968 PMCID: PMC3201810 DOI: 10.1038/nature09939] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/11/2011] [Indexed: 01/07/2023]
Abstract
Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.
Collapse
Affiliation(s)
- Yu Cao
- Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Xiangshu Jin
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, 1130 St. Nicholas Ave, Room 815, New York, NY 10032
| | - Elena J. Levin
- Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hua Huang
- Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yinong Zong
- Sanford-Burnham Institute, La Jolla, CA 92037
| | - Matthias Quick
- Department of Psychiatry and Center for Molecular Recognition, Columbia University, 630 West 168th Street, New York, NY 10032, USA,New York State Psychiatric Institute, Division of Molecular Therapeutics; 1051 Riverside Drive, New York, NY 10032
| | - Jun Weng
- Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yaping Pan
- Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - James Love
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Marco Punta
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA,Department of Computer Science and Institute for Advanced Study, Technical University of Munich, D-85748 Munich, Germany
| | - Burkhard Rost
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA,Department of Computer Science and Institute for Advanced Study, Technical University of Munich, D-85748 Munich, Germany
| | - Wayne A. Hendrickson
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, 630 West 168th Street, New York, NY 10032
| | - Jonathan A. Javitch
- Department of Psychiatry and Center for Molecular Recognition, Columbia University, 630 West 168th Street, New York, NY 10032, USA,New York State Psychiatric Institute, Division of Molecular Therapeutics; 1051 Riverside Drive, New York, NY 10032,Department of Pharmacology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Kanagalaghatta R. Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Advanced Photon Source, Argonne, Illinois 60439, USA
| | - Ming Zhou
- Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
32
|
Abstract
The TrkH/TrkG/KtrB proteins mediate K+ uptake in bacteria and likely evolved from simple K+ channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K+ channels but significantly shorter, is lined by backbone and side chain oxygen atoms. Functional studies showed that the TrkH allows permeation of K+ and Rb+ but not smaller ions such as Na+ or Li+. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K+ flux. These results reveal the molecular basis of K+ selectivity and suggest a novel gating mechanism by this large and important family of membrane transport proteins.
Collapse
|
33
|
Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu G, Maglaqui M, Ma L, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang Y, Tong S, Wang D, Wang H, Zhao L, Montelione GT. Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol 2011; 493:21-60. [PMID: 21371586 DOI: 10.1016/b978-0-12-381274-2.00002-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this chapter, we concentrate on the production of high-quality protein samples for nuclear magnetic resonance (NMR) studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium and outline our high-throughput strategies for producing high-quality protein samples for NMR studies. Our strategy is based on the cloning, expression, and purification of 6×-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6×-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (>97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this chapter describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are suitable for implementation in a large individual laboratory or by a small group of collaborating investigators for structural biology, functional proteomics, ligand screening, and structural genomics research.
Collapse
Affiliation(s)
- Thomas B Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen YH, Hu L, Punta M, Bruni R, Hillerich B, Kloss B, Rost B, Love J, Siegelbaum SA, Hendrickson WA. Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 2010; 467:1074-80. [PMID: 20981093 PMCID: PMC3548404 DOI: 10.1038/nature09487] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 09/10/2010] [Indexed: 01/17/2023]
Abstract
The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating exchange of water vapor and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. We determined the crystal structure of a bacterial homolog of SLAC1 at 1.20Å resolution, and we have used structure-inspired mutagenesis to analyze the conductance properties of SLAC1 channels. SLAC1 is a symmetric trimer composed from quasi-symmetric subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features suggest a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics suggest that selectivity among different anions is largely a function of the energetic cost of ion dehydration.
Collapse
Affiliation(s)
- Yu-Hang Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L. Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. ACTA ACUST UNITED AC 2010; 26:i489-96. [PMID: 20823312 PMCID: PMC2935446 DOI: 10.1093/bioinformatics/btq373] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Motivation: Intrinsically disordered proteins play a crucial role in numerous regulatory processes. Their abundance and ubiquity combined with a relatively low quantity of their annotations motivate research toward the development of computational models that predict disordered regions from protein sequences. Although the prediction quality of these methods continues to rise, novel and improved predictors are urgently needed. Results: We propose a novel method, named MFDp (Multilayered Fusion-based Disorder predictor), that aims to improve over the current disorder predictors. MFDp is as an ensemble of 3 Support Vector Machines specialized for the prediction of short, long and generic disordered regions. It combines three complementary disorder predictors, sequence, sequence profiles, predicted secondary structure, solvent accessibility, backbone dihedral torsion angles, residue flexibility and B-factors. Our method utilizes a custom-designed set of features that are based on raw predictions and aggregated raw values and recognizes various types of disorder. The MFDp is compared at the residue level on two datasets against eight recent disorder predictors and top-performing methods from the most recent CASP8 experiment. In spite of using training chains with ≤25% similarity to the test sequences, our method consistently and significantly outperforms the other methods based on the MCC index. The MFDp outperforms modern disorder predictors for the binary disorder assignment and provides competitive real-valued predictions. The MFDp's outputs are also shown to outperform the other methods in the identification of proteins with long disordered regions. Availability:http://biomine.ece.ualberta.ca/MFDp.html Supplementary information:Supplementary data are available at Bioinformatics online. Contact:lkurgan@ece.ualberta.ca
Collapse
Affiliation(s)
- Marcin J Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Lin W, Chai J, Love J, Fu D. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB. J Biol Chem 2010; 285:39013-20. [PMID: 20876577 DOI: 10.1074/jbc.m110.180620] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstrated that ZIPB is selective for two group 12 transition metal ions, Zn(2+) and Cd(2+), whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.
Collapse
Affiliation(s)
- Wei Lin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | |
Collapse
|
37
|
Love J, Mancia F, Shapiro L, Punta M, Rost B, Girvin M, Wang DN, Zhou M, Hunt JF, Szyperski T, Gouaux E, MacKinnon R, McDermott A, Honig B, Inouye M, Montelione G, Hendrickson WA. The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. ACTA ACUST UNITED AC 2010; 11:191-9. [PMID: 20690043 DOI: 10.1007/s10969-010-9094-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
The New York Consortium on Membrane Protein Structure (NYCOMPS) was formed to accelerate the acquisition of structural information on membrane proteins by applying a structural genomics approach. NYCOMPS comprises a bioinformatics group, a centralized facility operating a high-throughput cloning and screening pipeline, a set of associated wet labs that perform high-level protein production and structure determination by x-ray crystallography and NMR, and a set of investigators focused on methods development. In the first three years of operation, the NYCOMPS pipeline has so far produced and screened 7,250 expression constructs for 8,045 target proteins. Approximately 600 of these verified targets were scaled up to levels required for structural studies, so far yielding 24 membrane protein crystals. Here we describe the overall structure of NYCOMPS and provide details on the high-throughput pipeline.
Collapse
Affiliation(s)
- James Love
- New York Structural Biology Center, New York, 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB. The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 2010; 172:21-33. [PMID: 20688167 DOI: 10.1016/j.jsb.2010.07.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/24/2010] [Accepted: 07/28/2010] [Indexed: 11/15/2022]
Abstract
We describe the core Protein Production Platform of the Northeast Structural Genomics Consortium (NESG) and outline the strategies used for producing high-quality protein samples. The platform is centered on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems. The 6X-His tag allows for similar purification procedures for most targets and implementation of high-throughput (HTP) parallel methods. In most cases, the 6X-His-tagged proteins are sufficiently purified (>97% homogeneity) using a HTP two-step purification protocol for most structural studies. Using this platform, the open reading frames of over 16,000 different targeted proteins (or domains) have been cloned as>26,000 constructs. Over the past 10 years, more than 16,000 of these expressed protein, and more than 4400 proteins (or domains) have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html). Using these samples, the NESG has deposited more than 900 new protein structures to the Protein Data Bank (PDB). The methods described here are effective in producing eukaryotic and prokaryotic protein samples in E. coli. This paper summarizes some of the updates made to the protein production pipeline in the last 5 years, corresponding to phase 2 of the NIGMS Protein Structure Initiative (PSI-2) project. The NESG Protein Production Platform is suitable for implementation in a large individual laboratory or by a small group of collaborating investigators. These advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are of broad value to the structural biology, functional proteomics, and structural genomics communities.
Collapse
Affiliation(s)
- Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Robert Wood Johnson Medical School, and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mancia F, Love J. High-throughput expression and purification of membrane proteins. J Struct Biol 2010; 172:85-93. [PMID: 20394823 DOI: 10.1016/j.jsb.2010.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 11/17/2022]
Abstract
High-throughput (HT) methodologies have had a tremendous impact on structural biology of soluble proteins. High-resolution structure determination relies on the ability of the macromolecule to form ordered crystals that diffract X-rays. While crystallization remains somewhat empirical, for a given protein, success is proportional to the number of conditions screened and to the number of variants trialed. HT techniques have greatly increased the number of targets that can be trialed and the rate at which these can be produced. In terms of number of structures solved, membrane proteins appear to be lagging many years behind their soluble counterparts. Likewise, HT methodologies for production and characterization of these hydrophobic macromolecules are only now emerging. Presented here is an HT platform designed exclusively for membrane proteins that has processed over 5000 targets.
Collapse
Affiliation(s)
- Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | |
Collapse
|