1
|
Geyer N, Diszházi G, Magyar ZÉ, Dienes B, Csáki R, Enyedi P, Madácsy T, Maléth J, Almássy J. Ca 2+ signaling of pancreatic acinar cells in malignant hyperthermia susceptibility. Pancreatology 2024; 24:1257-1264. [PMID: 39523163 DOI: 10.1016/j.pan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Malignant hyperthermia susceptibility (MHS) and acute pancreatitis (AP) share a common cellular pathomechanism that is Ca2+-overload of the muscle fiber and the pancreatic acinar cell (PAC). In the muscle, gain-of-function mutations of the ryanodine receptor (RyR1) make the Ca2+-release mechanism hypersensitive to certain ligands, including Ca2+, volatile anaesthetics and succinylcholine, creating a medical emergency when the patient is exposed to these drugs. As RyR1 was shown to contribute to Ca2+-overload in PAC, we presumed that pancreata of MHS individuals are more prone to AP. Accordingly, a recent case study reported coincidence of MHS with recurrent AP, indicating a pathological link between the two diseases. METHODS We tested if MHS poses a risk for AP in mice carrying the Y522S MHS mutation. Fluorescent Ca2+ imaging was performed in PACs. Conventional histopathological analysis and plazma amylase measurement was performed using a cerulein-induced pancreatitis mouse model. RESULTS The intracellular Ca2+-signals of PACs from MHS mice were slightly bigger then in wild type when stimulated with 0.2 and 2 μM carbachol (cch) or with 1 and 5 mM bile acid (taurocholic acid). Store-operated-Ca2+-entry was also higher in PACs from MHS mice. Nevertheless, histopathological analysis and plasma amylase levels did not indicate more severe AP in MHS. CONCLUSIONS These results suggest that the Y522S RyR1 mutation alter the Ca2+-homeostasis in PACs, but not as much as to cause or aggravate AP.
Collapse
Affiliation(s)
- Nikolett Geyer
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Diszházi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Réka Csáki
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Tamara Madácsy
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary; Department of Medicine, University of Szeged, Szeged, Hungary; ELKH-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - József Maléth
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary; Department of Medicine, University of Szeged, Szeged, Hungary; ELKH-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - János Almássy
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Wolf AT, Klawe J, Liu B, Ahmad S. Association Between Serum Vitamin D Levels and Myopia in the National Health and Nutrition Examination Survey (2001-2006). Ophthalmic Epidemiol 2024; 31:229-239. [PMID: 37415384 DOI: 10.1080/09286586.2023.2232460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To assess the relationship between serum vitamin D levels and myopia in people aged 12-50 years using the National Health and Nutrition Examination Survey (NHANES) database. METHODS Demographics, vision, and serum vitamin D levels from NHANES (2001-2006) were analyzed. Multivariate analyses were performed to examine the relationship between serum vitamin D levels and myopia while controlling for sex, age, ethnicity, education level, serum vitamin A, and poverty status. The main outcome was presence or absence of myopia, defined as a spherical equivalent of -1 diopters or more. RESULTS Of the 11669 participants, 5,310 (45.5%) had myopia. The average serum vitamin D concentration was 61.6 ± 0.9 nmol/L for the myopic group and 63.1 ± 0.8 nmol/L for the non-myopic group (p = .01). After adjusting for all covariates, having higher serum vitamin D was associated with lower odds of having myopia (odds ratio 0.82 [0.74-0.92], p = .0007). In linear regression modeling that excluded hyperopes (spherical equivalent > +1 diopters), there was a positive relationship between spherical equivalent and serum vitamin D levels. Specifically, as serum vitamin D doubled, spherical equivalent increased by 0.17 (p = .02) indicating a positive dose-response relationship between vitamin D and myopia. CONCLUSIONS Participants with myopia, on average, had lower serum concentrations of vitamin D compared to those without myopia. While further studies are needed to determine the mechanism, this study suggests that higher vitamin D levels are associated with lower incidence of myopia.
Collapse
Affiliation(s)
- Amber T Wolf
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janek Klawe
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bian Liu
- Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sumayya Ahmad
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Protasi F, Girolami B, Serano M, Pietrangelo L, Paolini C. Ablation of Calsequestrin-1, Ca 2+ unbalance, and susceptibility to heat stroke. Front Physiol 2022; 13:1033300. [PMID: 36311237 PMCID: PMC9598425 DOI: 10.3389/fphys.2022.1033300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.
Collapse
Affiliation(s)
- Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Barbara Girolami
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Abstract
PURPOSE The purpose of this study is to investigate the effects of vitamin D (vit D) deficiency on contrast sensitivity (CS) function and retinal layers. MATERIALS AND METHODS Group 1 consisted of 42 patients aged between 18 and 50 years with vit D deficiency and Group 2 consisted of sex- and age-matched 34 healthy subjects with normal vit D levels. Functional acuity contrast testing (FACT) was performed using the Optec 6500 vision testing system. The average retinal nerve fiber layer (RNFL) thickness and macular thickness (MT) obtained from nine macular areas in the Early Treatment Diabetic Retinopathy Study were evaluated using SD-OCT (RS-3000; Nidek Inc., Fremont, CA, USA) following a detailed ophthalmologic examination. Measurements were performed on both eyes. RESULTS A lower CS was found in Group 1 compared to Group 2 in all spatial frequencies. A statistically significant difference was observed between the groups in 6, 12 and 18 cpd spatial frequencies, respectively. (p = .004, p = .001, p = .042, respectively). There was no statistically significant difference between groups in terms of RNFL thicknesses (p = .200). There was an increase in MT in Group 1. However, this increase was statistically significant in the inferior inner area in the right eye, and in the inferior inner, temporal inner and outer macular areas in the left eye (p = .018, p = .003, p = .033, p = .040, respectively). CONCLUSION It was observed that vit D deficiency had negative effects on CS function and also caused thickness difference in certain segments of retinal layers.
Collapse
Affiliation(s)
- Emrah Ozturk
- Department of Ophthalmology, Inonu University School of Medicine , Malatya, Turkey
| | - Cem Cankaya
- Department of Ophthalmology, Inonu University School of Medicine , Malatya, Turkey
| |
Collapse
|
6
|
Paolini C, Quarta M, Wei-LaPierre L, Michelucci A, Nori A, Reggiani C, Dirksen RT, Protasi F. Oxidative stress, mitochondrial damage, and cores in muscle from calsequestrin-1 knockout mice. Skelet Muscle 2015; 5:10. [PMID: 26075051 PMCID: PMC4464246 DOI: 10.1186/s13395-015-0035-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Mutations in the gene encoding ryanodine receptor type-1 (RYR1), the calcium ion (Ca2+) release channel in the sarcoplasmic reticulum (SR) of skeletal muscle, are linked to central core disease (CCD) and malignant hyperthermia (MH) susceptibility. We recently reported that mice lacking the skeletal isoform of calsequestrin (CASQ1-null), the primary Ca2+ buffer in the SR of skeletal muscle and a modulator of RYR1 activity, exhibit lethal heat- and anesthetic-induced hypermetabolic episodes that resemble MH events in humans. Methods We compared ultrastructure, oxidative status, and contractile function in skeletal fibers of extensor digitorum longus (EDL) muscles in wild type (WT) and CASQ1-null mice at different ages (from 4 to 27 months) using structural, biochemical, and functional assays. Results About 25% of fibers in EDL muscles from CASQ1-null mice of 14 to 27 months of age exhibited large areas of structural disarray (named core-like regions), which were rarely observed in muscle from age-matched WT mice. To determine early events that may lead to the formation of cores, we analyzed EDL muscles from adult mice: at 4 to 6 months of age, CASQ1-null mice (compared to WT) displayed significantly reduced grip strength (40 ± 1 vs. 86 ± 1 mN/gr) and exhibited an increase in the percentage of damaged mitochondria (15.1% vs. 2.6%) and a decrease in average cross-sectional fiber area (approximately 37%) in EDL fibers. Finally, oxidative stress was also significantly increased (25% reduction in ratio between reduced and oxidized glutathione, or GSH/GSSG, and 35% increase in production of mitochondrial superoxide flashes). Providing ad libitum access to N-acetylcysteine in the drinking water for 2 months normalized GSH/GSSG ratio, reduced mitochondrial damage (down to 8.9%), and improved grip strength (from 46 ± 3 to 59 ± 2 mN/gr) in CASQ1-null mice. Conclusions Our findings: 1) demonstrate that ablation of CASQ1 leads to enhanced oxidative stress, mitochondrial damage, and the formation of structural cores in skeletal muscle; 2) provide new insights in the pathogenic mechanisms that lead to damage/disappearance of mitochondria in cores; and 3) suggest that antioxidants may provide some therapeutic benefit in reducing mitochondrial damage, limiting the development of cores, and improving muscle function. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0035-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia Paolini
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| | - Marco Quarta
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy ; Department of Neurology and Neurological Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305 USA
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642 USA
| | - Antonio Michelucci
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642 USA
| | - Feliciano Protasi
- CeSI - Center for Research on Ageing & DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Via L. Polacchi, 11, I-66013 Chieti, Italy
| |
Collapse
|
7
|
Reins RY, McDermott AM. Vitamin D: Implications for ocular disease and therapeutic potential. Exp Eye Res 2015; 134:101-10. [PMID: 25724179 DOI: 10.1016/j.exer.2015.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022]
Abstract
Vitamin D is a multifunctional hormone that is now known to play a significant role in a variety of biological functions in addition to its traditional role in regulating calcium homeostasis. There are a large number of studies demonstrating that adequate vitamin D levels are important in maintaining health and show that vitamin D is able to be utilized at local tissue sites. In the eye, we have increasing evidence of the association between disease and vitamin D. In this narrative review, we summarize recent findings on vitamin D and its relationship to various ocular pathologies and the therapeutic potential for some of these, as well as examine the basic science studies that demonstrate that vitamin D is biologically relevant in the eye.
Collapse
Affiliation(s)
- Rose Y Reins
- The Ocular Surface Institute, University of Houston College of Optometry, 4901 Calhoun Road, Houston, TX 77204-2020, USA.
| | - Alison M McDermott
- The Ocular Surface Institute, University of Houston College of Optometry, 4901 Calhoun Road, Houston, TX 77204-2020, USA.
| |
Collapse
|
8
|
Mapping domains and mutations on the skeletal muscle ryanodine receptor channel. Trends Mol Med 2012; 18:644-57. [DOI: 10.1016/j.molmed.2012.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/14/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
|
9
|
Protasi F, Paolini C, Canato M, Reggiani C, Quarta M. Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all. J Muscle Res Cell Motil 2011; 32:257-70. [PMID: 22130610 DOI: 10.1007/s10974-011-9277-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Calsequestrin type-1 (CASQ1), the main sarcoplasmic reticulum (SR) Ca(2+) binding protein, plays a dual role in skeletal fibers: a) it provides a large pool of rapidly-releasable Ca(2+) during excitation-contraction (EC) coupling; and b) it modulates the activity of ryanodine receptors (RYRs), the SR Ca(2+) release channels. We have generated a mouse lacking CASQ1 in order to further characterize the role of CASQ1 in skeletal muscle. Contrary to initial expectations, CASQ1 ablation is compatible with normal motor activity, in spite of moderate muscle atrophy. However, CASQ1 deficiency results in profound remodeling of the EC coupling apparatus: shrinkage of junctional SR lumen; proliferation of SR/transverse-tubule contacts; and increased density of RYRs. While force development during a twitch is preserved, it is nevertheless characterized by a prolonged time course, likely reflecting impaired Ca(2+) re-uptake by the SR. Finally, lack of CASQ1 also results in increased rate of SR Ca(2+) depletion and inability of muscle to sustain tension during a prolonged tetani. All modifications are more pronounced (or only found) in fast-twitch extensor digitorum longus muscle compared to slow-twitch soleus muscle, likely because the latter expresses higher amounts of calsequestrin type-2 (CASQ2). Surprisingly, male CASQ1-null mice also exhibit a marked increased rate of spontaneous mortality suggestive of a stress-induced phenotype. Consistent with this idea, CASQ1-null mice exhibit an increased susceptibility to undergo a hypermetabolic syndrome characterized by whole body contractures, rhabdomyolysis, hyperthermia and sudden death in response to halothane- and heat-exposure, a phenotype remarkably similar to human malignant hyperthermia and environmental heat-stroke. The latter findings validate the CASQ1 gene as a candidate for linkage analysis in human muscle disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CeSI-Center for Research on Ageing & DNI-Department of Neuroscience and Imaging, University Gabriele d’Annunzioof Chieti, Via Colle dell’Ara, 66100 Chieti, Italy.
| | | | | | | | | |
Collapse
|
10
|
Annamaneni S, Bindu CH, Reddy KP, Vishnupriya S. Association of vitamin D receptor gene start codon (Fok1) polymorphism with high myopia. Oman J Ophthalmol 2011; 4:57-62. [PMID: 21897619 PMCID: PMC3160070 DOI: 10.4103/0974-620x.83654] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: High myopia caused primarily due to abnormal emmetropization and excessive axial ocular elongation is associated with sight-threatening ocular pathology. Muscular dysfunction of ocular ciliary muscles due to altered intracellular calcium levels can result in defective mechanotransduction of the eye and retinal defocus. The vitamin D3 receptor (VDR; a intracellular hormone receptor) is known to mediate calcium homeostasis, influencing the development of myopia. Materials and Methods: In the present study, a total of 206 high myopia, 98 low myopia and 250 control samples were analyzed for VDR gene Fok1 (exon 2 start codon) polymorphism using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Results: High myopia patients revealed decrease in the frequency of ff homozygotes (8.3%) as compared to control group (14.0%), with a corresponding increase in frequency of FF homozygotes (68.9% in high myopia vs. 62.8% in controls). The frequency of f allele carriers (Ff and ff) was increased in females of high myopia (35.6%) and low myopia cases (45.4%). Elevated frequency of f allele was found only in early age at onset cases of high myopia (0.227) and later age at onset (10–20 years) cases of low myopia (0.273) as well as in low myopia cases with parental consanguinity (0.458) (P 0.035; χ2 = 6.692*). Conclusion: The results suggest that VDR gene might not be playing a direct role in the development of myopia, but might contribute indirectly to the risk conferred by mechanical stress factors or growth/development related factors through its role in calcium homeostasis and regulation of ciliary muscle function.
Collapse
|
11
|
Haché S, Takser L, LeBellego F, Weiler H, Leduc L, Forest JC, Giguère Y, Masse A, Barbeau B, Lafond J. Alteration of calcium homeostasis in primary preeclamptic syncytiotrophoblasts: effect on calcium exchange in placenta. J Cell Mol Med 2011; 15:654-67. [PMID: 20178461 PMCID: PMC3922387 DOI: 10.1111/j.1582-4934.2010.01039.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is characterized by maternal hypertension, proteinuria, oedema and, in 30% of cases, by intrauterine growth retardation. Causes are still unknown; however, epidemiological and clinical studies have suggested alterations in maternal calcium metabolism. We suggested that in PE, calcium transport by the syncytiotrophoblast (ST) is disturbed. From total placental tissues, we studied the expression of: calcium channels (TRPV5, TRPV6 [transient receptor potential vanilloid]), calcium binding proteins (CaBP-9K, CaBP-28K), plasma membrane calcium ATPase (PMCA)1,2,3,4 pumps, ATP synthase, genes implicated in Ca2+ release [inositol-1,4,5-triphosphate receptor (IP3R)1,2,3; Ryanodine receptor (RyR)1,2,3] and replenishment (SERCA1,2,3 [sarcoendoplasmic reticulum Ca2+ ATPases]) from endoplasmic reticulum, channels implicated in mitochondrial Ca2+ accumulation (VDAC1,2,3 [voltage-dependent anion channels]) and a marker of oxidative stress (hOGG1 [Human 8-oxoguanine-DNA glycosylase 1]), as well as the influence of these variations on calcium transport in primary ST cultures. The mRNA and protein levels were thereby examined by real-time PCR and Western blot analysis, respectively, in two different groups of pregnant women with similar gestational age: a normal group (n= 16) and a PE group (n= 8), diagnosed by a clinician. Our study showed a significant decrease in calcium transport by the ST cultured from preeclamptic placentas. We found a significant (P < 0.05) decrease in mRNA levels of TRPV5, TRPV6, CaBP-9K, CaBP-28K, PMCA1, PMCA4, ATP synthase, IP3R1, IP3R2, RyR1, RyR2 and RyR3 in PE group compared to normal one. We also noted a significant decrease in protein levels of TRPV5, TRPV6, CaBP-9K, CaBP-28K and PMCA1/4 in PE group. In contrast, SERCA1, SERCA2, SERCA3, VDAC3 and hOGG1 mRNA expressions were significantly increased in PE placentas. Calcium homeostasis and transport through placenta is compromised in preeclamptic pregnancies and it appears to be affected by a lack of ATP and an excess of oxidative stress.
Collapse
Affiliation(s)
- S Haché
- Biomed Research Center, Department of Biological Sciences, University of Quebec at Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Henry BA, Andrews ZB, Rao A, Clarke IJ. Central leptin activates mitochondrial function and increases heat production in skeletal muscle. Endocrinology 2011; 152:2609-18. [PMID: 21558317 DOI: 10.1210/en.2011-0143] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin acts on the brain to increase postprandial heat production in skeletal muscle of sheep. To determine a mechanism for this effect, we examined the role of mitochondrial uncoupling and AMP-activated protein kinase (AMPK). Ovariectomized ewes (n=4/group) received infusion lines into the lateral cerebral ventricle, and leptin (10 μg/h) was infused to increase heat production in skeletal muscle. In animals that were program fed (1100-1600 h), skeletal muscle biopsies were taken after either central infusion of leptin or vehicle to measure the expression of uncoupling protein (UCP) mRNA and the phosphorylation status of AMPK. Respiratory function was also quantified in mitochondria isolated from skeletal muscle. Leptin infusion increased the expression of UCP2 and UCP3 mRNA as well as UCP3 protein but not UCP1 mRNA in muscle. Leptin also increased substrate-driven, coupled (ADP-driven), and uncoupled (oligomycin) respiration but had no effect on the total respiratory capacity. The respiratory control ratio was lower in leptin-treated (vs. vehicle-treated) animals, indicating a predominant effect on uncoupled respiration. There was no effect of central leptin treatment on AMPK phosphorylation. We then infused 5-aminoimidazole-4-carboxamide-1β-riboside (AICAR) (10 mg/h for 6 h) directly into the femoral artery and measured skeletal muscle temperature; muscle was also collected for isolated mitochondria studies. AICAR had no effect on heat production or substrate-driven, uncoupled, or total respiratory states in skeletal muscle mitochondria. However, AICAR increased ADP-driven (coupled) respiration in mitochondria. In conclusion, leptin acts at the brain to increase heat production in muscle through altered mitochondrial function, indicative of adaptive thermogenesis.
Collapse
Affiliation(s)
- Belinda A Henry
- Department of Physiology, Monash University, Building 13F, Wellington Road, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
13
|
Zhang Y, Hu X, Sun J, Shen Y, Hu J, Xu X, Shao Z. High-resolution imaging and nano-manipulation of biological structures on surface. Microsc Res Tech 2010; 74:614-26. [DOI: 10.1002/jemt.20925] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/21/2010] [Indexed: 11/11/2022]
|
14
|
Wagenknecht TC, Liu Z. Electron microscopy of ryanodine receptors. CURRENT TOPICS IN MEMBRANES 2010; 66:27-47. [PMID: 22353475 DOI: 10.1016/s1063-5823(10)66002-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Terence C Wagenknecht
- Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | | |
Collapse
|
15
|
König M, Lin M, Nelson TE, Groban L. Sevoflurane modulation of Ca2+ regulation in skeletal muscle sarcoplasmic reticulum vesicles from young and mature rabbits. Paediatr Anaesth 2009; 19:1166-74. [PMID: 19863735 DOI: 10.1111/j.1460-9592.2009.03159.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Developmental differences in splice variants of the two key sarcoplasmic reticulum (SR) calcium regulatory proteins, ryanodine (RyR1), and sarcoendoplasmic reticulum calcium pump (SERCA1) have been linked to various neuromuscular disorders, but not malignant hyperthermia (MH). However, it is unclear whether an age-related difference in volatile anesthetic-mediated SR calcium function exists that could add to our current understanding of the clinical presentation of MH syndrome and provide insight into molecular mechanisms for general anesthesia that may have other physiologic and/or pathophysiologic significance. Therefore, the effects of sevoflurane on intracellular calcium regulation in isolated SR membrane vesicles from the skeletal muscle of healthy young rabbits were compared to their adult counterpart using an established in vitro model with the assumption that exposure to sevoflurane would elicit a weaker response in the young SR. METHODS Through dual wavelength spectroscopy of Ca(2+): Arsenazo III difference absorbance, the effects of sevoflurane on SR Ca(2+) uptake rate and release in heavy and light fraction SR membrane vesicles isolated from the white muscle of anesthetized, postweaned (age = 6 weeks, n = 5) and adult (age = 6 months, n = 5) male New Zealand rabbits were examined. RESULTS The adult group showed a 50% increase in Ca(2+) uptake rate from control at both subclinical and clinically relevant anesthetic concentrations, whereas in the SR from the younger animals, Ca(2+) uptake rate was not altered by any concentration of sevoflurane. The sensitivity of both the low and high affinity Ca(2+)-binding sites on RyR1 was increased by sevoflurane to the same extent in the SR vesicles from the young and mature adult rabbits. Interestingly, a greater potency of sevoflurane for the high affinity-binding site was identified, and this was independent of age. CONCLUSIONS These findings suggest that the sensitivity of the SR to sevoflurane-mediated Ca(2+) uptake may be increased with maturity, while an analogous developmental effect on RyR1 is less probable. Nonetheless, this study shows for the first time that a potent inhalational agent such as sevoflurane can influence the high affinity SR calcium-binding site by lowering the extraluminal concentration of calcium necessary to trigger calcium release. While this may not be of consequence when inhaled anesthetics are administered to normal children or adults, it may have life-threatening consequences in carriers of RyR1 mutations.
Collapse
Affiliation(s)
- Matthias König
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1009, USA
| | | | | | | |
Collapse
|
16
|
Blayney LM, Lai FA. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol Ther 2009; 123:151-77. [PMID: 19345240 PMCID: PMC2704947 DOI: 10.1016/j.pharmthera.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 12/25/2022]
Abstract
The cardiac ryanodine receptor-Ca2+ release channel (RyR2) is an essential sarcoplasmic reticulum (SR) transmembrane protein that plays a central role in excitation–contraction coupling (ECC) in cardiomyocytes. Aberrant spontaneous, diastolic Ca2+ leak from the SR due to dysfunctional RyR2 contributes to the formation of delayed after-depolarisations, which are thought to underlie the fatal arrhythmia that occurs in both heart failure (HF) and in catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is an inherited disorder associated with mutations in either the RyR2 or a SR luminal protein, calsequestrin. RyR2 shows normal function at rest in CPVT but the RyR2 dysfunction is unmasked by physical exercise or emotional stress, suggesting abnormal RyR2 activation as an underlying mechanism. Several potential mechanisms have been advanced to explain the dysfunctional RyR2 observed in HF and CPVT, including enhanced RyR2 phosphorylation status, altered RyR2 regulation at luminal/cytoplasmic sites and perturbed RyR2 intra/inter-molecular interactions. This review considers RyR2 dysfunction in the context of the structural and functional modulation of the channel, and potential therapeutic strategies to stabilise RyR2 function in cardiac pathology.
Collapse
Affiliation(s)
- Lynda M Blayney
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF144XN, UK.
| | | |
Collapse
|
17
|
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder triggered by volatile anesthetics or depolarizing muscle relaxants in predisposed individuals. Exercise or stress-induced MH episodes, in the absence of any obvious pharmacological trigger, have been reported, but these are rare. A considerable effort has taken place over the last two decades to identify mutations associated with MH and characterize their functional effects. A number of different, but complementary systems, have been developed and implemented to this end. The results of such studies have identified commonalities in functional affects of mutations, and also uncovered unexpected complexities in both the structure and function of the skeletal muscle calcium-release channel. The following review is an attempt to provide a summary of the background to current MH research, and highlight some recent advances in our knowledge of the molecular basis of the phenotypic expression of this disorder.
Collapse
Affiliation(s)
- Kathryn M Stowell
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
18
|
Wijers SLJ, Saris WHM, van Marken Lichtenbelt WD. Recent advances in adaptive thermogenesis: potential implications for the treatment of obesity. Obes Rev 2009; 10:218-26. [PMID: 19021870 DOI: 10.1111/j.1467-789x.2008.00538.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Large inter-individual differences in cold-induced (non-shivering) and diet-induced adaptive thermogenesis exist in animals and humans. These differences in energy expenditure can have a large impact on long-term energy balance and thus body weight (when other factors remain stable). Therefore, the level of adaptive thermogenesis might relate to the susceptibility to obesity; efforts to increase adaptive thermogenesis might be used to treat obesity. In small mammals, the main process involved is mitochondrial uncoupling in brown adipose tissue (BAT), which is regulated by the sympathetic nervous system. For a long time, it was assumed that mitochondrial uncoupling is not a major physiological contributor to adaptive thermogenesis in adult humans. However, several studies conducted in recent years suggest that mitochondrial uncoupling in BAT and skeletal muscle tissue in adult humans can be physiologically significant. Other mechanisms besides mitochondrial uncoupling that might be involved are futile calcium cycling, protein turnover and substrate cycling. In conjunction with recent advances on signal transduction studies, this knowledge makes manipulation of adaptive thermogenesis a more realistic option and thus a pharmacologically interesting target to treat obesity.
Collapse
Affiliation(s)
- S L J Wijers
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
19
|
Katz G, Arad M, Eldar M. Catecholaminergic polymorphic ventricular tachycardia from bedside to bench and beyond. Curr Probl Cardiol 2009; 34:9-43. [PMID: 19068246 DOI: 10.1016/j.cpcardiol.2008.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a primary electrical myocardial disease characterized by exercise- and stress-related ventricular tachycardia manifested as syncope and sudden death. The disease has a heterogeneous genetic basis, with mutations in the cardiac Ryanodine Receptor channel (RyR2) gene accounting for an autosomal-dominant form (CPVT1) in approximately 50% and mutations in the cardiac calsequestrin gene (CASQ2) accounting for an autosomal-recessive form (CPVT2) in up to 2% of CPVT cases. Both RyR2 and calsequestrin are important participants in the cardiac cellular calcium homeostasis. We review the physiology of the cardiac calcium homeostasis, including the cardiac excitation contraction coupling and myocyte calcium cycling. The pathophysiology of cardiac arrhythmias related to myocyte calcium handling and the effects of different modulators are discussed. The putative derangements in myocyte calcium homeostasis responsible for CPVT, as well as the clinical manifestations and therapeutic options available, are described.
Collapse
|
20
|
Liang X, Chen K, Fruen B, Hu J, Ma J, Hu X, Parness J. Impaired interaction between skeletal ryanodine receptors in malignant hyperthermia. Integr Biol (Camb) 2009; 1:533-9. [DOI: 10.1039/b907812f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Lee YS, Keener JP. A calcium-induced calcium release mechanism mediated by calsequestrin. J Theor Biol 2008; 253:668-79. [PMID: 18538346 DOI: 10.1016/j.jtbi.2008.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/27/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
Abstract
Calcium (Ca(2+))-induced Ca(2+) release (CICR) is widely accepted as the principal mechanism linking electrical excitation and mechanical contraction in cardiac cells. The CICR mechanism has been understood mainly based on binding of cytosolic Ca(2+) with ryanodine receptors (RyRs) and inducing Ca(2+) release from the sarcoplasmic reticulum (SR). However, recent experiments suggest that SR lumenal Ca(2+) may also participate in regulating RyR gating through calsequestrin (CSQ), the SR lumenal Ca(2+) buffer. We investigate how SR Ca(2+) release via RyR is regulated by Ca(2+) and calsequestrin (CSQ). First, a mathematical model of RyR kinetics is derived based on experimental evidence. We assume that the RyR has three binding sites, two cytosolic sites for Ca(2+) activation and inactivation, and one SR lumenal site for CSQ binding. The open probability (P(o)) of the RyR is found by simulation under controlled cytosolic and SR lumenal Ca(2+). Both peak and steady-state P(o) effectively increase as SR lumenal Ca(2+) increases. Second, we incorporate the RyR model into a CICR model that has both a diadic space and the junctional SR (jSR). At low jSR Ca(2+) loads, CSQs are more likely to bind with the RyR and act to inhibit jSR Ca(2+) release, while at high SR loads CSQs are more likely to detach from the RyR, thereby increasing jSR Ca(2+) release. Furthermore, this CICR model produces a nonlinear relationship between fractional jSR Ca(2+) release and jSR load. These findings agree with experimental observations in lipid bilayers and cardiac myocytes.
Collapse
Affiliation(s)
- Young-Seon Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an up-to-date personal analysis of current congenital myopathy research. RECENT FINDINGS In the past year novel congenital myopathies have been suggested, genes have been discovered for some of the congenital myopathies for the first time (beta-tropomyosin in cap disease and perhaps skeletal muscle alpha-actin in Zebra body myopathy), further genes have been identified for congenital myopathies where other genes had already been found (cofilin in nemaline myopathy, selenoprotein N in congenital fibre type disproportion) and recessive myosin storage myopathy was associated with homozygous mutation of slow-skeletal/beta-cardiac myosin which was already known to be mutated in dominant myosin storage myopathy. There has been further clarification of the pathobiology of the congenital myopathies, including determination of the basis of epigenetic effects: silencing of the normal allele in recessive central core disease and persistence of cardiac (fetal) alpha-actin in nemaline myopathy patients with no skeletal actin. SUMMARY The increased understanding of the genes and pathobiology of the congenital myopathies that is developing should ultimately lead to effective treatments.
Collapse
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia and Western Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
23
|
Bibliography. Current world literature. Neuro-muscular diseases: nerve. Curr Opin Neurol 2007; 20:600-4. [PMID: 17885452 DOI: 10.1097/wco.0b013e3282efeb3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Paolini C, Quarta M, Nori A, Boncompagni S, Canato M, Volpe P, Allen PD, Reggiani C, Protasi F. Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. J Physiol 2007; 583:767-84. [PMID: 17627988 PMCID: PMC2277031 DOI: 10.1113/jphysiol.2007.138024] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calsequestrin (CS), the major Ca(2+)-binding protein in the sarcoplasmic reticulum (SR), is thought to play a dual role in excitation-contraction coupling: buffering free Ca(2+) increasing SR capacity, and modulating the activity of the Ca(2+) release channels (RyRs). In this study, we generated and characterized the first murine model lacking the skeletal CS isoform (CS1). CS1-null mice are viable and fertile, even though skeletal muscles appear slightly atrophic compared to the control mice. No compensatory increase of the cardiac isoform CS2 is detectable in any type of skeletal muscle. CS1-null muscle fibres are characterized by structural and functional changes, which are much more evident in fast-twitch muscles (EDL) in which most fibres express only CS1, than in slow-twitch muscles (soleus), where CS2 is expressed in about 50% of the fibres. In isolated EDL muscle, force development is preserved, but characterized by prolonged time-to-peak and half-relaxation time, probably related to impaired calcium release from and re-uptake by the SR. Ca(2+)-imaging studies show that the amount of Ca(2+) released from the SR and the amplitude of the Ca(2+) transient are significantly reduced. The lack of CS1 also causes significant ultrastructural changes, which include: (i) striking proliferation of SR junctional domains; (ii) increased density of Ca(2+)-release channels (confirmed also by (3)H-ryanodine binding); (iii) decreased SR terminal cisternae volume; (iv) higher density of mitochondria. Taken together these results demonstrate that CS1 is essential for the normal development of the SR and its calcium release units and for the storage and release of appropriate amounts of SR Ca(2+).
Collapse
Affiliation(s)
- Cecilia Paolini
- IIM Interuniversity Institute of Myology, Ce.S.I. Centro Science dell'Invecchiamento, University G. d' Annunzio, I-66013 Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|