1
|
Carman PJ, Barrie KR, Dominguez R. Novel human cell expression method reveals the role and prevalence of posttranslational modification in nonmuscle tropomyosins. J Biol Chem 2021; 297:101154. [PMID: 34478714 PMCID: PMC8463859 DOI: 10.1016/j.jbc.2021.101154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Biochemical studies require large quantities of proteins, which are typically obtained using bacterial overexpression. However, the folding machinery in bacteria is inadequate for expressing many mammalian proteins, which additionally undergo posttranslational modifications (PTMs) that bacteria, yeast, or insect cells cannot perform. Many proteins also require native N- and C-termini and cannot tolerate extra tag amino acids for proper function. Tropomyosin (Tpm), a coiled coil protein that decorates most actin filaments in cells, requires both native N- and C-termini and PTMs, specifically N-terminal acetylation (Nt-acetylation), to polymerize along actin filaments. Here, we describe a new method that combines native protein expression in human cells with an intein-based purification tag that can be precisely removed after purification. Using this method, we expressed several nonmuscle Tpm isoforms (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2) and the muscle isoform Tpm1.1. Proteomics analysis revealed that human-cell-expressed Tpms present various PTMs, including Nt-acetylation, Ser/Thr phosphorylation, Tyr phosphorylation, and Lys acetylation. Depending on the Tpm isoform (humans express up to 40 Tpm isoforms), Nt-acetylation occurs on either the initiator methionine or on the second residue after removal of the initiator methionine. Human-cell-expressed Tpms bind F-actin differently than their Escherichia coli-expressed counterparts, with or without N-terminal extensions intended to mimic Nt-acetylation, and they can form heterodimers in cells and in vitro. The expression method described here reveals previously unknown features of nonmuscle Tpms and can be used in future structural and biochemical studies with Tpms and other proteins, as shown here for α-synuclein.
Collapse
Affiliation(s)
- Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle R Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Silva AMM, Goonasekara CL, Hayley M, Heeley DH. Further Investigation into the Biochemical Effects of Phosphorylation of Tropomyosin Tpm1.1(α). Serine-283 Is in Communication with the Midregion. Biochemistry 2020; 59:4725-4734. [PMID: 33290064 DOI: 10.1021/acs.biochem.0c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphorylated and unphosphorylated forms of tropomyosin Tpm1.1(α) are prepared from adult rabbit heart and compared biochemically. Electrophoresis confirms the high level of enrichment of the chromatography fractions and is consistent with a single site of phosphorylation. Covalently bound phosphate groups at position 283 of Tpm1.1(α) increase the rate of digestion at Leu-169, suggestive of a conformational rearrangement that extends to the midregion. Such a rearrangement, which is supported by ellipticity measurements between 25 and 42 °C, is consistent with a phosphorylation-mediated tightening of the interaction between various myofilament components. In a nonradioactive, co-sedimentation assay [30 mM KCl, 1 mM Mg(II), and 4 °C], phosphorylated Tpm1.1(α) displays a higher affinity for F-actin compared to that of the unphosphorylated control (Kd, 0.16 μM vs 0.26 μM). Phosphorylation decreases the concentration of thin filaments (pCa 4 plus ATP) required to attain a half-maximal rate of release of product from a pre-power stroke complex [myosin-S1-2-deoxy-3-O-(N-methylanthraniloyl)ADP-Pi], as investigated by double-mixing stopped-flow fluorescence, suggestive of a change in the proportion of active (turned on) and inactive (turned off) conformers, but similar maximum rates of product release are observed with either type of reconstituted thin filament. Phosphorylated thin filaments (pCa 4 and 8) display a higher affinity for myosin-S1(ADP) versus the control scenario without affecting isotherm steepness. Specific activities of ATP and Tpm1.1(α) are determined during an in vitro incubation of rat cardiac tissue [12 day-old, 50% phosphorylated Tpm1.1(α)] with [32P]orthophosphate. The incorporation of an isotope into tropomyosin lags behind that of ATP by a factor of approximately 10, indicating that transfer is a comparatively slow process.
Collapse
Affiliation(s)
- A Madhushika M Silva
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Charitha L Goonasekara
- Department of Biochemistry, Faculty of Medicine, Kotelawala University, Colombo 10390, Sri Lanka
| | - Michael Hayley
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - David H Heeley
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| |
Collapse
|
3
|
Nefedova VV, Koubassova NA, Borzova VA, Kleymenov SY, Tsaturyan AK, Matyushenko AM, Levitsky DI. Tropomyosin pseudo-phosphorylation can rescue the effects of cardiomyopathy-associated mutations. Int J Biol Macromol 2020; 166:424-434. [PMID: 33129908 DOI: 10.1016/j.ijbiomac.2020.10.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/28/2022]
Abstract
We applied various methods to investigate how mutations S283D and S61D that mimic phosphorylation of tropomyosin (Tpm) affect structural and functional properties of cardiac Tpm carrying cardiomyopathy-associated mutations in different parts of its molecule. Using differential scanning calorimetry and molecular dynamics, we have shown that the S61D mutation (but not the S283 mutation) causes significant destabilization of the N-terminal part of the Tpm molecule independently of the absence or presence of cardiomyopathy-associated mutations. Our results obtained by cosedimentation of Tpm with F-actin demonstrated that both S283D and S61D mutations can reduce or even eliminate undesirable changes in Tpm affinity for F-actin caused by some cardiomyopathy-associated mutations. The results indicate that Tpm pseudo-phosphorylation by mutations S283D or S61D can rescue the effects of mutations in the TPM1 gene encoding a cardiac isoform of Tpm that lead to the development of such severe inherited heart diseases as hypertrophic or dilated cardiomyopathies.
Collapse
Affiliation(s)
- Victoria V Nefedova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, 119071 Moscow, Russia
| | - Natalia A Koubassova
- Institute of Mechanics, Moscow State University, Mitchurinsky prosp. 1, 119192 Moscow, Russia
| | - Vera A Borzova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, 119071 Moscow, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, 119071 Moscow, Russia; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrey K Tsaturyan
- Institute of Mechanics, Moscow State University, Mitchurinsky prosp. 1, 119192 Moscow, Russia
| | - Alexander M Matyushenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, 119071 Moscow, Russia
| | - Dmitrii I Levitsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, 119071 Moscow, Russia.
| |
Collapse
|
4
|
Silva AMM, Kennedy LS, Hasan SC, Cohen AM, Heeley DH. Demonstration of beta-tropomyosin (Tpm2) and duplication of the alpha-slow tropomyosin gene (TPM3) in Atlantic salmon Salmo salar. Comp Biochem Physiol B Biochem Mol Biol 2020; 245:110439. [DOI: 10.1016/j.cbpb.2020.110439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
|
5
|
Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle. Sci Rep 2020; 10:1750. [PMID: 32019949 PMCID: PMC7000794 DOI: 10.1038/s41598-020-58349-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
The growth and development of embryonic skeletal muscle plays a crucial role in sheep muscle mass. But proteomic analyses for embryonic skeletal development in sheep had been little involved in the past research. In this study, we explored differential abundance proteins during embryonic skeletal muscle development by the tandem mass tags (TMT) and performed a protein profile analyses in the longissimus dorsi of Chinese merino sheep at embryonic ages Day85 (D85N), Day105 (D105N) and Day135 (D135N). 5,520 proteins in sheep embryonic skeletal muscle were identified, and 1,316 of them were differential abundance (fold change ≥1.5 and p-value < 0.05). After the KEGG enrichment analyses, these differential abundance proteins were significant enriched in the protein binding, muscle contraction and energy metabolism pathways. After validation of the protein quantification with the parallel reaction monitoring (PRM), 41% (16/39) significant abundance proteins were validated, which was similar to the results of protein quantification with TMT. All results indicated that D85N to D105N was the stage of embryonic muscle fibers proliferation, while D105N to D135N was the stage of their hypertrophy. These findings provided a deeper understanding of the function and rules of proteins in different phases of sheep embryonic skeletal muscle growth and development.
Collapse
|
6
|
Rajan S, Jagatheesan G, Petrashevskaya N, Biesiadecki BJ, Warren CM, Riddle T, Liggett S, Wolska BM, Solaro RJ, Wieczorek DF. Tropomyosin pseudo-phosphorylation results in dilated cardiomyopathy. J Biol Chem 2018; 294:2913-2923. [PMID: 30567734 DOI: 10.1074/jbc.ra118.004879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation of cardiac sarcomeric proteins plays a major role in the regulation of the physiological performance of the heart. Phosphorylation of thin filament proteins, such as troponin I and T, dramatically affects calcium sensitivity of the myofiber and systolic and diastolic functions. Phosphorylation of the regulatory protein tropomyosin (Tpm) results in altered biochemical properties of contraction; however, little is known about the physiological effect of Tpm phosphorylation on cardiac function. To address the in vivo significance of Tpm phosphorylation, here we generated transgenic mouse lines having a phosphomimetic substitution in the phosphorylation site of α-Tpm (S283D). High expression of Tpm S283D variant in one transgenic mouse line resulted in an increased heart:body weight ratio, coupled with a severe dilated cardiomyopathic phenotype resulting in death within 1 month of birth. Moderate Tpm S283D mice expression in other lines caused mild myocyte hypertrophy and fibrosis, did not affect lifespan, and was coupled with decreased expression of extracellular signal-regulated kinase 1/2 kinase signaling. Physiological analysis revealed that the transgenic mice exhibit impaired diastolic function, without changes in systolic performance. Surprisingly, we observed no alterations in calcium sensitivity of the myofibers, cooperativity, or calcium-ATPase activity in the myofibers. Our experiments also disclosed that casein kinase 2 plays an integral role in Tpm phosphorylation. In summary, increased expression of pseudo-phosphorylated Tpm impairs diastolic function in the intact heart, without altering calcium sensitivity or cooperativity of myofibers. Our findings provide the first extensive in vivo assessment of Tpm phosphorylation in the heart and its functional role in cardiac performance.
Collapse
Affiliation(s)
- Sudarsan Rajan
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Ganapathy Jagatheesan
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | - Brandon J Biesiadecki
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612.,the Department of Physiology and Cell Biology and the Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio 43210, and
| | - Chad M Warren
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612
| | - Tara Riddle
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Stephen Liggett
- the Department of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Beata M Wolska
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612.,the Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois 60612
| | - R John Solaro
- the Department of Physiology and Biophysics, University of Illinois, Chicago College of Medicine, Chicago, Illinois 60612
| | - David F Wieczorek
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267,
| |
Collapse
|
7
|
Wei L, Gregorich ZR, Lin Z, Cai W, Jin Y, McKiernan SH, McIlwain S, Aiken JM, Moss RL, Diffee GM, Ge Y. Novel Sarcopenia-related Alterations in Sarcomeric Protein Post-translational Modifications (PTMs) in Skeletal Muscles Identified by Top-down Proteomics. Mol Cell Proteomics 2017; 17:134-145. [PMID: 29046390 DOI: 10.1074/mcp.ra117.000124] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and strength, is a significant cause of morbidity in the elderly and is a major burden on health care systems. Unfortunately, the underlying molecular mechanisms in sarcopenia remain poorly understood. Herein, we utilized top-down proteomics to elucidate sarcopenia-related changes in the fast- and slow-twitch skeletal muscles of aging rats with a focus on the sarcomeric proteome, which includes both myofilament and Z-disc proteins-the proteins that constitute the contractile apparatuses. Top-down quantitative proteomics identified significant changes in the post-translational modifications (PTMs) of critical myofilament proteins in the fast-twitch skeletal muscles of aging rats, in accordance with the vulnerability of fast-twitch muscles to sarcopenia. Surprisingly, age-related alterations in the phosphorylation of Cypher isoforms, proteins that localize to the Z-discs in striated muscles, were also noted in the fast-twitch skeletal muscle of aging rats. This represents the first report of changes in the phosphorylation of Z-disc proteins in skeletal muscle during aging. In addition, increased glutathionylation of slow skeletal troponin I, a novel modification that may help protect against oxidative damage, was observed in slow-twitch skeletal muscles. Furthermore, we have identified and characterized novel muscle type-specific proteoforms of myofilament proteins and Z-disc proteins, including a novel isoform of the Z-disc protein Enigma. The finding that the phosphorylation of Z-disc proteins is altered in response to aging in the fast-twitch skeletal muscles of aging rats opens new avenues for the investigation of the role of Z-discs in age-related muscle dysfunction.
Collapse
Affiliation(s)
- Liming Wei
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,§Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Zachery R Gregorich
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,¶Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Ziqing Lin
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,‖Human Proteomics Program,University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Wenxuan Cai
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,¶Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Yutong Jin
- **Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706
| | - Susan H McKiernan
- ‡‡Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, Wisconsin, 53705
| | - Sean McIlwain
- §§Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792.,¶¶UW Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792
| | - Judd M Aiken
- ‖‖Departments of Agriculture, Food, and Nutritional Sciences, University of Alberta-Edmonton, Edmonton, AB, Canada
| | - Richard L Moss
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,‖Human Proteomics Program,University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Gary M Diffee
- ‡‡Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, Wisconsin, 53705
| | - Ying Ge
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705; .,¶Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,‖Human Proteomics Program,University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,**Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706
| |
Collapse
|
8
|
Lohmeier-Vogel EM, Heeley DH. Biochemical Comparison of Tpm1.1 (α) and Tpm2.2 (β) Tropomyosins from Rabbit Skeletal Muscle. Biochemistry 2016; 55:1418-27. [DOI: 10.1021/acs.biochem.5b01140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Elke M. Lohmeier-Vogel
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - David H. Heeley
- Department
of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| |
Collapse
|
9
|
Yuen M, Cooper ST, Marston SB, Nowak KJ, McNamara E, Mokbel N, Ilkovski B, Ravenscroft G, Rendu J, de Winter JM, Klinge L, Beggs AH, North KN, Ottenheijm CAC, Clarke NF. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres. Hum Mol Genet 2015; 24:6278-92. [PMID: 26307083 DOI: 10.1093/hmg/ddv334] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition.
Collapse
Affiliation(s)
- Michaela Yuen
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia,
| | - Sandra T Cooper
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Elyshia McNamara
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Nancy Mokbel
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Faculty of Health Sciences, St. George Health Complex, The University of Balamand, Beirut, Lebanon
| | - Biljana Ilkovski
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - John Rendu
- Département de Biochimie Toxicologie et Pharmacologie, Département de Biochimie Génétique et Moléculaire, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Josine M de Winter
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lars Klinge
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, Faculty of Medicine, Georg August University, Göttingen, Germany
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn N North
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia, Murdoch Children's Research Institute, the Royal Children's Hospital, Parkville, Australia and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Coen A C Ottenheijm
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia, Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Phosphorylation of Ser283 enhances the stiffness of the tropomyosin head-to-tail overlap domain. Arch Biochem Biophys 2015; 571:10-5. [PMID: 25726728 DOI: 10.1016/j.abb.2015.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
The ends of coiled-coil tropomyosin molecules are joined together by nine to ten residue-long head-to-tail "overlapping domains". These short four-chained interconnections ensure formation of continuous tropomyosin cables that wrap around actin filaments. Molecular Dynamics simulations indicate that the curvature and bending flexibility at the overlap is 10-20% greater than over the rest of the molecule, which might affect head-to-tail filament assembly on F-actin. Since the penultimate residue of striated muscle tropomyosin, Ser283, is a natural target of phosphorylating enzymes, we have assessed here if phosphorylation adjusts the mechanical properties of the tropomyosin overlap domain. MD simulations show that phosphorylation straightens the overlap to match the curvature of the remainder of tropomyosin while stiffening it to equal or exceed the rigidity of canonical coiled-coil regions. Corresponding EM data on phosphomimetic tropomyosin S283D corroborate these findings. The phosphorylation-induced change in mechanical properties of tropomyosin likely results from electrostatic interactions between C-terminal phosphoSer283 and N-terminal Lys12 in the four-chain overlap bundle, while promoting stronger interactions among surrounding residues and thus facilitating tropomyosin cable assembly. The stiffening effect of D283-tropomyosin noted correlates with previously observed enhanced actin-tropomyosin activation of myosin S1-ATPase, suggesting a role for the tropomyosin phosphorylation in potentiating muscle contraction.
Collapse
|
11
|
Introducing a special edition of the Journal of Muscle Research and Cell Motility on tropomyosin: form and function. J Muscle Res Cell Motil 2013; 34:151-3. [PMID: 24101402 DOI: 10.1007/s10974-013-9361-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
|