1
|
Lin CY, Hsieh CH, Lai PY, Huang CW, Chung YH, Huang SM, Hsu KC. Inhibitory Effects of Gliadin Hydrolysates on BACE1 Expression and APP Processing to Prevent Aβ Aggregation. Int J Mol Sci 2024; 25:13212. [PMID: 39684923 DOI: 10.3390/ijms252313212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD), a leading neurodegenerative disorder, is closely associated with the accumulation of amyloid-beta (Aβ) peptides in the brain. The enzyme β-secretase (BACE1), pivotal in Aβ production, represents a promising therapeutic target for AD. While bioactive peptides derived from food protein hydrolysates have neuroprotective properties, their inhibitory effects on BACE1 remain largely unexplored. In this study, we evaluated the inhibitory potential of protein hydrolysates from gliadin, whey, and casein proteins prepared using bromelain, papain, and thermolysin. Through in vitro and cellular assays, bromelain-hydrolyzed gliadin (G-Bro) emerged as the most potent BACE1 inhibitor, with an IC50 of 0.408 mg/mL. G-Bro significantly reduced BACE1 expression and amyloid precursor protein (APP) processing in N2a/PS/APP cell cultures, suggesting its potential to attenuate Aβ aggregation. The unique peptide profile of G-Bro likely contributes to its inhibitory effect, with proline residues disrupting β-sheets, lysine residues introducing positive charges that hinder aggregation, hydrophobic residues stabilizing binding interactions, and glutamine residues enhancing solubility and stability. These findings highlight gliadin hydrolysates, particularly G-Bro, as potential natural BACE1 inhibitors with applications in dietary interventions for AD prevention. However, further studies are warranted to elucidate specific peptide interactions and their bioactivity in neural pathways to better understand their therapeutic potential.
Collapse
Affiliation(s)
- Chin-Yu Lin
- Department of Biomedical Sciences and Engineering, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien City 970374, Taiwan
| | - Cheng-Hong Hsieh
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, 500 Lioufeng Rd., Wufeng, Taichung City 41354, Taiwan
| | - Pei-Yu Lai
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Ching-Wei Huang
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Yung-Hui Chung
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
| | - Kuo-Chiang Hsu
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, 500 Lioufeng Rd., Wufeng, Taichung City 41354, Taiwan
| |
Collapse
|
2
|
Jensen GS, Cruickshank D, Hamilton DE. Effects of a β-Glucan-Rich Blend of Medicinal Mushrooms and Botanicals on Innate Immune Cell Activation and Function Are Enhanced by a Very Low Dose of Bovine Colostrum Peptides. Molecules 2024; 29:2787. [PMID: 38930852 PMCID: PMC11207084 DOI: 10.3390/molecules29122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Nutraceutical immune support offers potential for designing blends with complementary mechanisms of action for robust support of innate immune alertness. We documented enhanced immune activation when bovine colostrum peptides (BC-Pep) were added to an immune blend (IB) containing β-glucans from yeast, shiitake, maitake, and botanical non-β-glucan polysaccharides. Human peripheral blood mononuclear cells (PBMCs) were cultured with IB, BC-Pep, and IB + BC-Pep for 20 h, whereafter expression of the activation marker CD69 was evaluated on NK cells, NKT cells, and T cells. Cytokine levels were tested in culture supernatants. PBMCs were co-cultured with K562 target cells to evaluate T cell-mediated cytotoxicity. IB + BC-Pep triggered highly significant increases in IL-1β, IL-6, and TNF-α, above that of cultures treated with matching doses of either IB or BC-Pep. NK cell and T cell activation was increased by IB + BC-Pep, reaching levels of CD69 expression several fold higher than either BC-Pep or IB alone. IB + BC-Pep significantly increased T cell-mediated cytotoxic killing of K562 target cells. This synergistic effect suggests unique amplification of signal transduction of NK cells and T cells due to modulation of IB-induced signaling pathways by BC-Pep and is of interest for further pre-clinical and clinical testing of immune defense activity against virally infected and transformed cells.
Collapse
MESH Headings
- Animals
- Cattle
- Humans
- Colostrum/chemistry
- Colostrum/immunology
- Immunity, Innate/drug effects
- beta-Glucans/pharmacology
- beta-Glucans/chemistry
- Peptides/pharmacology
- Peptides/chemistry
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Cytokines/metabolism
- Lymphocyte Activation/drug effects
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Agaricales/chemistry
- Antigens, Differentiation, T-Lymphocyte/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- K562 Cells
- Antigens, CD/metabolism
- Lectins, C-Type
Collapse
|
3
|
Linehan K, Ross RP, Stanton C. Bovine Colostrum for Veterinary and Human Health Applications: A Critical Review. Annu Rev Food Sci Technol 2023; 14:387-410. [PMID: 36972163 DOI: 10.1146/annurev-food-060721-014650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bovine colostrum harbors a diverse array of bioactive components suitable for the development of functional foods, nutraceuticals, and pharmaceuticals with veterinary and human health applications. Bovine colostrum has a strong safety profile with applications across all age groups for health promotion and the amelioration of a variety of disease states. Increased worldwide milk production and novel processing technologies have resulted in substantial growth of the market for colostrum-based products. This review provides a synopsis of the bioactive components in bovine colostrum, the processing techniques used to produce high-value colostrum-based products, and recent studies utilizing bovine colostrum for veterinary and human health.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland;
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland;
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
- VistaMilk Research Centre, Teagasc Moorepark, County Cork, Ireland
| |
Collapse
|
4
|
Banasiak‐Cieślar H, Wiener D, Kuszczyk M, Dobrzyńska K, Polanowski A. Proline-rich polypeptides (Colostrinin ®/COLOCO ®) modulate BDNF concentration in blood affecting cognitive function in adults: A double-blind randomized placebo-controlled study. Food Sci Nutr 2023; 11:1477-1485. [PMID: 36911821 PMCID: PMC10002942 DOI: 10.1002/fsn3.3187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
Proline-rich polypeptides (PRPs complex also known as COLOCO®, Colostrinin®) consist of low-molecular weight peptides ranging up to 10 kDa, isolated from the bovine colostrum obtained up to 48 h postpartum. PRPs have been shown to affect processes involved in inflammation, brain aging, and neurodegeneration. The aim of this study was to investigate the effect of Colostrinin® (COLOCO®) on the cognitive abilities of healthy volunteers in three different age groups using the CANTAB tool in a double-blind randomized placebo-controlled study. BDNF serum level was used as a physicochemical marker of improvement of the cognitive skills. Three hundred and sixty-one healthy volunteers were divided into three study groups aged 18-24, 25-54, and 55-75; each group was then divided into two subgroups which took either placebo or tested lozenge with 120 μg of PRPs for the period of 4 months. The CANTAB battery test was used to measure the efficacy of PRP in the context of cognitive functioning. After the treatment with COLOCO®, we observed differences within MoCA score in the oldest patients, improvement in DMS and drop in PAL scores within the youngest group, drop in RTI and improvement in RVP scores within the middle-aged group. It was observed that serum BDNF level increased in all study groups which confirms cognitive improvement. In conclusion, we have shown that Colostrinin® exhibits cognitive enhancing effects, probably through the modulation of BDNF concentrations.
Collapse
Affiliation(s)
| | - Dawid Wiener
- Department of Design (School of Form)SWPS University of Social Sciences and HumanitiesWarsawPoland
| | | | | | - Antoni Polanowski
- Department of Animal Products Technology and Quality ManagementUniversity of Environmental and Life SciencesWroclawPoland
| |
Collapse
|
5
|
Ceniti C, Costanzo N, Morittu VM, Tilocca B, Roncada P, Britti D. Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2034165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Nicola Costanzo
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|
6
|
Poonia A, Shiva. Bioactive compounds, nutritional profile and health benefits of colostrum: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022; 4:26. [PMCID: PMC9592540 DOI: 10.1186/s43014-022-00104-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bovine colostrum is defined as first milk by milching animals responsible for providing the innate immunity to the neonatal and possess many immunoglobulins for preventing the calf from diseases. Colostrum consist of many bioactive compounds like proteins, enzymes, growth factors, immunoglobulins and nucleotides that provides several benefits to human health. Numerous clinical and pre-clinical studies have demonstrated the therapeutic benefits of the bovine colostrum. This review focusses on bioactive compounds, their health benefits, potential of colostrum for developing several health foods and prevention of respiratory and gastrointestinal tract disorders. Processing can also be done to extend shelf-life and extraction of bioactive constituents either as encapsulated or as extracts. The products derived from bovine colostrum are high-end supplements possessing high nutraceutical value.
Collapse
Affiliation(s)
- Amrita Poonia
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Shiva
- grid.411507.60000 0001 2287 8816Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
7
|
Zabłocka A, Bobak Ł, Macała J, Rymaszewska J, Kazana W, Zambrowicz A. Comparative Studies of Yolkin Preparations Isolated from Egg Yolks of Selected Bird Species. Chem Biodivers 2021; 18:e2100178. [PMID: 34085749 DOI: 10.1002/cbdv.202100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022]
Abstract
The results of our research have proven that yolkin preparations isolated from eggs of different bird species show a high similarity in polypeptide composition. Despite the small differences in protein patterns, all of yolkin preparations showed also strong immunomodulatory activity, comparable with yolkin obtained previously from hen egg yolk. It can therefore be deducted that the presence of this polypeptide complex in the egg is not accidental and performs an important biological function for developing embryo.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Łukasz Bobak
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Józefa Macała
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wrocław Medical University, Wybrzeże Pasteura 10, 50-367, Wrocław, Poland
| | - Wioletta Kazana
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| |
Collapse
|
8
|
Chen HL, Lan YW, Tu MY, Tung YT, Chan MNY, Wu HS, Yen CC, Chen CM. Kefir peptides exhibit antidepressant-like activity in mice through the BDNF/TrkB pathway. J Dairy Sci 2021; 104:6415-6430. [PMID: 33741171 DOI: 10.3168/jds.2020-19222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2024]
Abstract
Depression is a prevalent, stress-related mental disorder that can lead to serious psychiatric diseases with morbidity and high mortality. Although some functional fermented dairy drinks have promising anxiolytic and antidepressant effects, the mechanism is still not clear. To determine the antidepressant-like effect and the potential molecule mechanism of kefir peptides (KP), various behavioral tests, including the elevated plus maze test, open field test, forced swimming test, and tail suspension test, were used. Administration of 150 mg/kg KP in mice reduced the duration of immobility in the forced swimming test and tail suspension test, elevated the time spent in the open arm and center zone in the elevated plus maze test, and increased the total distance traveled, average speed, and time spent in the center zone in the open field test compared with the mock group. These results indicated that KP dramatically ameliorated the depression-like behaviors. Kefir peptides were further isolated and identified using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry, from which 3 peptides were identified and designated KFP-1, KFP-3, and KFP-5. Among these peptides, administration of KFP-3 (15 AA residues) remarkably decreased immobility time in the forced swimming test and increased mobility time in the tail suspension test. Therefore, KFP-3 may be the major active peptide with antidepressant activity in KP. Overexpression of brain-derived neurotrophic factor, phosphorylated tropomyosin receptor kinase B, and phosphorylated ERK1/2 protein levels could be detected in the hippocampus under KP administration. Therefore, we suggest that KP improves depressive-like behaviors by activating the brain-derived neurotrophic factor-phosphorylated tropomyosin receptor kinase B signaling pathway. Kefir peptides may serve as a new type of antidepressant dairy product and may provide potent antidepressant effects for clinical use.
Collapse
Affiliation(s)
- Hsiao-Ling Chen
- Department of Biomedical Sciences, Da-Yeh University, Changhwa 515, Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, and PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Yu Tu
- Department of Health Business Administration, Meiho University, Pingtung 912, Taiwan; Aviation Physiology Research Laboratory, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung 820, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Tang Tung
- Department of Life Sciences, and PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Megan Ning-Yu Chan
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore 639798, Singapore
| | - Hsin-Shan Wu
- Department of Life Sciences, and PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, and PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Internal Medicine, China Medical University Hospital, and College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
9
|
Playford RJ, Weiser MJ. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021; 13:265. [PMID: 33477653 PMCID: PMC7831509 DOI: 10.3390/nu13010265] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colostrum is the milk produced during the first few days after birth and contains high levels of immunoglobulins, antimicrobial peptides, and growth factors. Colostrum is important for supporting the growth, development, and immunologic defence of neonates. Colostrum is naturally packaged in a combination that helps prevent its destruction and maintain bioactivity until it reaches more distal gut regions and enables synergistic responses between protective and reparative agents present within it. Bovine colostrum been used for hundreds of years as a traditional or complementary therapy for a wide variety of ailments and in veterinary practice. Partly due to concerns about the side effects of standard Western medicines, there is interest in the use of natural-based products of which colostrum is a prime example. Numerous preclinical and clinical studies have demonstrated therapeutic benefits of bovine colostrum for a wide range of indications, including maintenance of wellbeing, treatment of medical conditions and for animal husbandry. Articles within this Special Issue of Nutrients cover the effects and use bovine colostrum and in this introductory article, we describe the main constituents, quality control and an overview of the use of bovine colostrum in health and disease.
Collapse
Affiliation(s)
- Raymond John Playford
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
- Department of R&D, PanTheryx Inc., Boulder, CO 80301, USA;
| | | |
Collapse
|