1
|
Sharaf MS. Scabies vaccines: where we stand and challenges ahead. Parasitol Res 2024; 123:285. [PMID: 39046602 PMCID: PMC11269436 DOI: 10.1007/s00436-024-08298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Scabies is an itchy skin disease caused by the burrowing mite, Sarcoptes scabiei. During their lifespan, female mites invade the stratum corneum and create tunnels in which they reside, move, feed, deposit fecal pellets, and lay eggs. Globally, more than 200 million people are estimated to be affected by scabies annually. Currently, using scabicidal agents is the only approved method for treating scabies. However, resistance to commonly used agents such as permethrin and ivermectin has been observed in scabies mites. Therefore, the development of vaccines for scabies, either as a preventative measure or for treatment, is crucial to control such neglected diseases. Since the host could evolve a protective immune response that could prevent re-infestation by scabies mites, vaccine development is theoretically possible. This review aims to provide a comprehensive overview of the ongoing challenges regarding the currently available control measures for scabies. It also explores the promising path of scabies vaccine development, highlighting the current state of research and challenges that need to be addressed to develop new and innovative measures for both treating and preventing scabies infections.
Collapse
Affiliation(s)
- Mahmoud S Sharaf
- Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt.
| |
Collapse
|
2
|
Asadollahi P, Kalani BS. Novel toxin-based mRNA vaccine against Clostridium perfringens using in silico approaches. Toxicon 2024; 238:107584. [PMID: 38185287 DOI: 10.1016/j.toxicon.2023.107584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
Clostridium perfringens is a bacterium that causes gastrointestinal diseases in humans and animals. The several powerful toxins such as alpha toxin (CPA), beta toxin (CPB), enterotoxin (CPE), Epsilon toxin (ETX), and theta toxin, play a major role in its pathogenesis. Traditional vaccine development methods are time-consuming and costly. In silico approaches offer an alternative strategy for designing vaccines by analyzing biological data and predicting immunogenic peptides. In this study, computational tools were utilized to design a RNA vaccine targeting C. perfringens toxins. Toxin protein sequences were retrieved and their linear B-cell, MHCI, and MHCII binding epitopes were predicted. Allergenicity, toxigenicity, and IFN-γ induction were assessed to select non-allergenic, non-toxic, and IFN-γ-inducing epitopes. Molecular docking was performed to identify epitopes that fit within the binding cleft of MHC alleles. A final peptide vaccine construct was designed with selected epitopes separated by a linker sequence. The antigenicity and physicochemical properties of the vaccine were evaluated. Immune response simulation showed enhanced secondary and tertiary immune responses, increased levels of immunoglobulins, cytotoxic T lymphocytes, helper T lymphocytes, macrophage activity, and elevated levels IFN-γ and interleukin-2. Docking analysis was done to assess interactions between the vaccine structure and Toll-like receptors. Codon optimization was performed, and a final RNA vaccine construct was designed. The secondary structure of the RNA vaccine was predicted and validated. Overall, this study demonstrates the potential of in silico approaches for designing an RNA vaccine against C. perfringens toxins, contributing to improved prevention and control of associated diseases.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
3
|
Choudhury A, Kumar P, Nafidi HA, Almaary KS, Wondmie GF, Kumar A, Bourhia M. Immunoinformatics approaches in developing a novel multi-epitope chimeric vaccine protective against Saprolegnia parasitica. Sci Rep 2024; 14:2260. [PMID: 38278861 PMCID: PMC10817918 DOI: 10.1038/s41598-024-52223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Saprolegnia parasitica is responsible for devastating infections in fish and poses a tremendous threat to the global aquaculture industry. Presently, no safe and effective control measures are available, on the contrary, use of banned toxic compounds against the pathogen is affecting humans via biomagnification routes. This pioneering study aims to design an effective multi-epitope multi-target vaccine candidate against S. parasitica by targeting key proteins involved in the infection process. The proteins were analyzed and linear B-cell epitopes, MHC class I, and class II epitopes were predicted. Subsequently, highly antigenic epitopes were selected and fused to a highly immunogenic adjuvant, 50S ribosomal protein L7/L12, to design a multi-epitope chimeric vaccine construct. The structure of the vaccine was generated and validated for its stereochemical quality, physicochemical properties, antigenicity, allergenicity, and virulence traits. Molecular docking analyses demonstrated strong binding interactions between the vaccine and piscine immune receptors (TLR5, MHC I, MHC II). Molecular dynamics simulations and binding energy calculations of the complexes, further, reflected the stability and favorable interactions of the vaccine and predicted its cytosolic stability. Immune simulations predicted robust and consistent kinetics of the immune response elicited by the vaccine. The study posits the vaccine as a promising solution to combat saprolegniasis in the aquaculture industry.
Collapse
Affiliation(s)
| | - Pawan Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, 124 001, India
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, 2325G1V 0A6, Canada
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, 114 51, Riyadh, Saudi Arabia
| | | | - Ajit Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, 124 001, India.
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 700 00, Laayoune, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, B. P. 5696, Casablanca, Morocco
| |
Collapse
|
4
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Farzan M, Farzan M, Mirzaei Y, Aiman S, Azadegan-Dehkordi F, Bagheri N. Immunoinformatics-based multi-epitope vaccine design for the re-emerging monkeypox virus. Int Immunopharmacol 2023; 123:110725. [PMID: 37556996 DOI: 10.1016/j.intimp.2023.110725] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND On May 7, 2022, WHO reported a new monkeypox case. By May 2023 over 80,000 cases had been reported worldwide outside previously endemic nations. (This primarily affected the men who have sex with men (MSM) community in rich nations). The present research aims to develop a multi-epitope vaccine for the monkeypox virus (MPXV) using structural and cell surface proteins. METHODS The first part of the research involved retrieving protein sequences. The Immune Epitope Database (IEDB) was then used to analyze the B and T lymphocyte epitopes. After analyzing the sensitizing properties, toxicity, antigenicity, and molecular binding, appropriate linkers were utilizedto connect selected epitopes to adjuvants, and the structure of the vaccine was formulated. Algorithms from the field of immunoinformatics predicted the secondary and tertiary structures of vaccines. The physical, chemical, and structural properties were refined and validated to achieve maximum stability. Molecular docking and molecular dynamic simulations were subsequently employed to assess the vaccine's efficacy. Afterward, the ability of the vaccine to interact with toll-like receptors 3 and 4 (TLR3 and TLR4) was evaluated. Finally, the optimized sequence was then introduced into the Escherichia coli (E. coli) PET30A + vector. RESULTS An immunoinformatics evaluation suggested that such a vaccine might be safe revealed that this vaccine is safe, hydrophilic, temperature- and condition-stable, and can stimulate innate immunity by binding to TLR3 and TLR4. CONCLUSION Our findings suggest that the first step in MPXV pathogenesis is structural and cell surface epitopes. In this study, the most effective and promising epitopes were selected and designed throughprecision servers. Furthermore,through the utilization of multi-epitope structures and a combination of two established adjuvants, this research has the potential to be a landmarkin developing an antiviralvaccine against MPXV. However, additional in vitro and in vivo tests are required to confirm these results.
Collapse
Affiliation(s)
- Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Suleman M, Khan SH, Rashid F, Khan A, Hussain Z, Zaman N, Rehman SU, Zhai J, Xue M, Zheng C. Designing a multi-epitopes subunit vaccine against human herpes virus 6A based on molecular dynamics and immune stimulation. Int J Biol Macromol 2023:125068. [PMID: 37245745 DOI: 10.1016/j.ijbiomac.2023.125068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Human Herpesvirus 6A (HHV-6A) is a prevalent virus associated with various clinical manifestations, including neurological disorders, autoimmune diseases, and promotes tumor cell growth. HHV-6A is an enveloped, double-stranded DNA virus with a genome of approximately 160-170 kb containing a hundred open-reading frames. An immunoinformatics approach was applied to predict high immunogenic and non-allergenic CTL, HTL, and B cell epitopes and design a multi-epitope subunit vaccine based on HHV-6A glycoprotein B (gB), glycoprotein H (gH), and glycoprotein Q (gQ). The stability and correct folding of the modeled vaccines were confirmed through molecular dynamics simulation. Molecular docking found that the designed vaccines have a strong binding network with human TLR3, with Kd values of 1.5E-11 mol/L, 2.6E-12 mol/L, 6.5E-13 mol/L, and 7.1E-11 mol/L for gB-TLR3, gH-TLR3, gQ-TLR3, and the combined vaccine-TLR3, respectively. The codon adaptation index values of the vaccines were above 0.8, and their GC content was around 67 % (normal range 30-70 %), indicating their potential for high expression. Immune simulation analysis demonstrated robust immune responses against the vaccine, with approximately 650,000/ml combined IgG and IgM antibody titer. This study lays a strong foundation for developing a safe and effective vaccine against HHV-6A, with significant implications for treating associated conditions.
Collapse
Affiliation(s)
- Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Syed Hunain Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Shoaib Ur Rehman
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450001, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
8
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
9
|
Ayyagari VS, T. C. V, K. AP, Srirama K. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. J Biomol Struct Dyn 2022; 40:2963-2977. [PMID: 33252008 PMCID: PMC7754933 DOI: 10.1080/07391102.2020.1850357] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
In the present study, one of the targets present on the envelopes of coronaviruses, membrane glycoprotein (M) was chosen for the design of a multi-epitope vaccine by Immunoinformatics approach. The B-cell and T-cell epitopes used for the construction of vaccine were antigenic, nonallergic and nontoxic. An adjuvant, β-defensin and PADRE sequence were included at the N-terminal end of the vaccine. All the epitopes were joined by linkers for decreasing the junctional immunogenicity. Various physicochemical parameters of the vaccine were evaluated. Secondary and tertiary structures were predicted for the vaccine construct. The tertiary structure was further refined, and various parameters related to the refinement of the protein structure were validated by using different tools. Humoral immunity induced by B-cells relies upon the identification of antigenic determinants on the surface of the vaccine construct. In this regard, the vaccine construct was found to consist of several B-cell epitopes in its three-dimensional conformation. Molecular docking of the vaccine was carried out with TLR-3 receptor to study their binding and its strength. Further, protein-protein interactions in the docked complex were visualized using LigPlot+. Population coverage analysis had shown that the multi-epitope vaccine covers 94.06% of the global population. The vaccine construct was successfully cloned in silico into pET-28a (+). Immune simulation studies showed the induction of primary, secondary and tertiary immune responses marked by the increased levels of antibodies, INF-γ, IL-2, TGF-β, B- cells, CD4+ and CD8+ cells. Finally, the vaccine construct was able to elicit immune response as desired.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijaya Sai Ayyagari
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Venkateswarulu T. C.
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Abraham Peele K.
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Krupanidhi Srirama
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| |
Collapse
|
10
|
da Silva MK, Azevedo AAC, Campos DMDO, de Souto JT, Fulco UL, Oliveira JIN. Computational vaccinology guided design of multi-epitope subunit vaccine against a neglected arbovirus of the Americas. J Biomol Struct Dyn 2022; 41:3321-3338. [PMID: 35285772 DOI: 10.1080/07391102.2022.2050301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mayaro virus (MAYV) is an arbovirus found in the Americas that can cause debilitating arthritogenic disease. Although it is an emerging virus, the only current approach is vector control, as there are no approved vaccines to prevent MAYV infection nor therapeutics to treat it. In search of an effective vaccine candidate against MAYV, we used immunoinformatics and molecular modeling to attempt to identify promiscuous T-cell epitopes of the nonstructural polyproteins (nsP1, nsP2, nsP3, and nsP4) from 127 MAYV genomes sequenced in the Americas (08 Bolivia, 72 Brazil, 04 French Guiana, 05 Haiti, 20 Peru, 04 Trinidad and Tobago, and 14 Venezuela). For this purpose, consensus sequences of 360 proteins were used to identify short protein sequences that can bind to MHC I class (MHC II). Our analysis revealed 56 potential MHC-I/TCD8+ (29 MHC-II/TCD4+) epitopes, but only 6 (16) TCD8+ (TCD4+) epitopes showed high antigenicity and conservation, non-allergenicity, non-toxicity, and excellent population coverage. Finally, classical and quantum mechanical calculations (QM:MM) were used to improve the quality of the docking calculations, with the QM part of the simulations performed using the density functional theory formalism (DFT). These results provide insights for the advancement of diagnostic platforms, vaccine development, and immunotherapeutic interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maria Karolaynne da Silva
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Janeusa Trindade de Souto
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
11
|
Ahmad S, Shahid F, Tahir ul Qamar M, Rehman HU, Abbasi SW, Sajjad W, Ismail S, Alrumaihi F, Allemailem KS, Almatroudi A, Ullah Saeed HF. Immuno-Informatics Analysis of Pakistan-Based HCV Subtype-3a for Chimeric Polypeptide Vaccine Design. Vaccines (Basel) 2021; 9:293. [PMID: 33801143 PMCID: PMC8004085 DOI: 10.3390/vaccines9030293] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) causes chronic and acute hepatitis infections. As there is extreme variability in the HCV genome, no approved HCV vaccine has been available so far. An effective polypeptide vaccine based on the functionally conserved epitopes will be greatly helpful in curing disease. For this purpose, an immuno-informatics study is performed based on the published HCV subtype-3a from Pakistan. First, the virus genome was translated to a polyprotein followed by a subsequent prediction of T-cell epitopes. Non-allergenic, IFN-γ producer, and antigenic epitopes were shortlisted, including 5 HTL epitopes and 4 CTL, which were linked to the final vaccine by GPGPG and AAY linkers, respectively. Beta defensin was included as an adjuvant through the EAAAK linker to improve the immunogenicity of the polypeptide. To ensure its safety and immunogenicity profile, antigenicity, allergenicity, and various physiochemical attributes of the polypeptide were evaluated. Molecular docking was conducted between TLR4 and vaccine to evaluate the binding affinity and molecular interactions. For stability assessment and binding of the vaccine-TLR4 docked complex, molecular dynamics (MD) simulation and MMGBSA binding free-energy analyses were conducted. Finally, the candidate vaccine was cloned in silico to ensure its effectiveness. The current vaccine requires future experimental confirmation to validate its effectiveness. The vaccine construct produced might be useful in providing immune protection against HCV-related infections.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | | | - Habib ur Rehman
- Department of Medical, DHQ Hospital, Faisalabad Medical University, Faisalabad 38000, Pakistan;
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (S.W.A.); (W.S.); (S.I.)
| | - Wasim Sajjad
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (S.W.A.); (W.S.); (S.I.)
| | - Saba Ismail
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (S.W.A.); (W.S.); (S.I.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (K.S.A.); (A.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (K.S.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (K.S.A.); (A.A.)
| | | |
Collapse
|
12
|
Sasidharan S, Selvaraj C, Singh SK, Dubey VK, Kumar S, Fialho AM, Saudagar P. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:5706-5721. [PMID: 32619162 DOI: 10.1080/07391102.2020.1787864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current pandemic SARS-CoV-2 has wreaked havoc in the world, and neither drugs nor vaccine is available for the treatment of this disease. Thus, there is an immediate need for novel therapeutics that can combat this deadly infection. In this study, we report the therapeutic assessment of azurin and its peptides: p18 and p28 against the viral structural S-protein and non-structural 3CLpro and PLpro proteins. Among the analyzed complexes, azurin docked relatively well with the S2 domain of S-protein compared to the other viral proteins. The derived peptide p18 bound to the active site domain of the PLpro protein; however, in other complexes, lesser interactions were recorded. The second azurin derived peptide p28, fared the best among the docked proteins. p28 interacted with all the three viral proteins and the host ACE-2 receptor by forming several electrostatic and hydrogen bonds with the S-protein, 3CLpro, and PLpro. MD simulations indicated that p28 exhibited a strong affinity to S-protein and ACE-2 receptor, indicating a possibility of p28 as a protein-protein interaction inhibitor. Our data suggest that the p28 has potential as an anti-SARS-CoV-2 agent and can be further exploited to establish its validity in the treatment of current and future SARS-CoV crisis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Arsenio M Fialho
- Department of Bioengineering, Instituto Superior Técnico, Institute of Bioengineering and Biosciences (iBB), University of Lisbon, Lisbon, Portugal
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
13
|
Zika viral proteome analysis reveals an epitope cluster within NS3 helicase as a potential vaccine candidate: An in silico study. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|