1
|
Igonina O, Samsonov V, Stoynova N. One-step cloning and targeted duplication of Pantoea ananatis chromosomal fragments. J Microbiol Methods 2024; 224:106999. [PMID: 39033856 DOI: 10.1016/j.mimet.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
In this study, we describe a novel method for one-step cloning and targeted duplication of P. ananatis chromosomal fragments. According to this method, the chromosomal region of interest is subcloned in vivo via λ Red recombination into the short synthetic non-replicable DNA fragment containing the excisable antibiotic-resistance marker gene and φ80 att-P site. The resulting circular non-replicating DNA molecule was immediately inserted into an alternative chromosomal locus due to φ80-integrase activity. To this end, the specially designed helper plasmid pONI, which can provide both the λ Red recombineering and φ80-integrase-mediated insertion, was constructed. In the described method, PCR amplification of the cloning fragment is unnecessary, making it convenient for manipulation of long-length DNA. Additionally, the possibility of spontaneous mutations occurring is completely precluded. This method was effectively used for the targeted chromosomal integration of additional copies of individual genes and operons up to 16 kb in size.
Collapse
Affiliation(s)
- O Igonina
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - V Samsonov
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - N Stoynova
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation.
| |
Collapse
|
2
|
Gulevich AY, Skorokhodova AY, Debabov VG. Biosynthesis of C4-C8 3-Hydroxycarboxylic Acids from Glucose through the Inverted Fatty Acid β-Oxidation by Metabolically Engineered Escherichia coli. Biomolecules 2024; 14:449. [PMID: 38672466 PMCID: PMC11048500 DOI: 10.3390/biom14040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Inverted fatty acid β-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid β-oxidation by engineered E. coli strains. The notable accumulation of target compounds was achieved upon the strong constitutive expression of the genes atoB, fadA, fadB, fadE/fabI, and tesB, which code for the key enzymes catalysing reactions of aerobic fatty acid β-oxidation and thioesterase II, in strains devoid of mixed-acid fermentation pathways and lacking nonspecific thioesterase YciA. The best performing recombinants were able to synthesise up to 14.5 mM of 3-hydroxycarboxylic acids from glucose with a total yield of 0.34 mol/mol and a C4/C6/C8 ratio averaging approximately 63/28/9. The results provide a framework for the development of highly efficient strains and processes for the bio-based production of valuable 3-hydroxycarboxylates from renewable raw materials.
Collapse
Affiliation(s)
- Andrey Yu. Gulevich
- Research Center of Biotechnology, Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia; (A.Y.S.); (V.G.D.)
| | | | | |
Collapse
|
3
|
Engineering Escherichia coli for Efficient Aerobic Conversion of Glucose to Malic Acid through the Modified Oxidative TCA Cycle. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Malic acid is a versatile building-block chemical that can serve as a precursor of numerous valuable products, including food additives, pharmaceuticals, and biodegradable plastics. Despite the present petrochemical synthesis, malic acid, being an intermediate of the TCA cycle of a variety of living organisms, can also be produced from renewable carbon sources using wild-type and engineered microbial strains. In the current study, Escherichia coli was engineered for efficient aerobic conversion of glucose to malic acid through the modified oxidative TCA cycle resembling that of myco- and cyanobacteria and implying channelling of 2-ketoglutarate towards succinic acid via succinate semialdehyde formation. The formation of succinate semialdehyde was enabled in the core strain MAL 0 (∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆ptsG, PL-glk, Ptac-galP, ∆aceBAK, ∆glcB) by the expression of Mycobacterium tuberculosis kgd gene. The secretion of malic acid by the strain was ensured, resulting from the deletion of the mdh, maeA, maeB, and mqo genes. The Bacillus subtilis pycA gene was expressed in the strain to allow pyruvate to oxaloacetate conversion. The corresponding recombinant was able to synthesise malic acid from glucose aerobically with a yield of 0.65 mol/mol. The yield was improved by the derepression in the strain of the electron transfer chain and succinate dehydrogenase due to the enforcement of ATP hydrolysis and reached 0.94 mol/mol, amounting to 94% of the theoretical maximum. The implemented strategy offers the potential for the development of highly efficient strains and processes of bio-based malic acid production.
Collapse
|
4
|
Gulevich AY, Skorokhodova AY, Debabov VG. Evaluation of the Efficiency of Functional Reversal of Fatty Acid Β-Oxidation in Escherichia coli upon the Action of Various Native Acyl-CoA Dehydrogenases. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Using Escherichia coli strain MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆fadE, PL‑SDφ10-atoB, Ptrc-ideal-4-SDφ10-fadB, PL-SDφ10-tesB, ∆yciA as a core strain, the efficiency of the reversal of fatty acid β-oxidation upon the action of native cellular enzymes capable of serving as acyl-CoA dehydrogenases was examined. Increased expression of fadE, fabI, and ydiO/ydiQRST genes encoding the corresponding enzymes was ensured in derivatives of the core strain by substituting their native regulatory regions with artificial regulatory element Ptrc-ideal-4-SDφ10. A three-turn reversal of the cycle in the engineered recombinants was demonstrated that was accompanied by considerable secretion of butyric, caproic, and caprylic acids. The highest level of six- and eight-carbon carboxylates production was achieved upon the overexpression of the fabI gene, while the lowest levels of secretion of the corresponding compounds were demonstrated by the strain with the enhanced expression of the ydiO and ydiQRST genes. The recombinant with the individually enhanced expression of ydiO did not produce detectable amounts of the derivatives of the complete and successful β-oxidation reversal.
Collapse
|
5
|
Engineering of Escherichia coli Glyceraldehyde-3-Phosphate Dehydrogenase with Dual NAD+/NADP+ Cofactor Specificity for Improving Amino Acid Production. Microorganisms 2022; 10:microorganisms10050976. [PMID: 35630420 PMCID: PMC9145139 DOI: 10.3390/microorganisms10050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in the central metabolism of microbial cells. GAPDHs differ in cofactor specificity and use NAD+, NADP+, or both cofactors, reducing them to NADH and NADPH, respectively. Sufficient NADPH supply is one of the critical factors required for synthesis of the amino acids l-lysine, l-threonine, and l-proline in industrially important Escherichia coli-based producer strains. E. coli cells have NAD+-dependent glycolytic GAPDH. One reasonable approach to increase NADPH formation in cells is to change the specificity of the GAPDH from NAD+ to NADP+. In this study, we modified the cofactor specificity of E. coli GAPDH by amino acid substitutions at positions 34, 188 and 189. Several mutant enzymes with dual NAD+/NADP+ cofactor specificity were obtained, and their kinetic parameters were determined. Overexpression of the genes encoding the resulting mutant GAPDHs with dual cofactor specificity in cells of l-lysine-, l-threonine-, and l-proline-producing E. coli strains led to a marked increase in the accumulation of the corresponding amino acid in the culture medium. This effect was more pronounced when cultivating on xylose as a carbon source. Other possible applications of the mutant enzymes are discussed.
Collapse
|
6
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|
7
|
Skorokhodova AY, Gulevich AY, Debabov VG. Engineering Escherichia coli for efficient aerobic conversion of glucose to fumaric acid. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00703. [PMID: 35145886 PMCID: PMC8801760 DOI: 10.1016/j.btre.2022.e00703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022]
Abstract
Escherichia coli was engineered for efficient aerobic conversion of glucose to fumaric acid. A novel design for biosynthesis of the target product through the modified TCA cycle rather than via glyoxylate shunt, implying oxaloacetate formation from pyruvate and artificial channelling of 2-ketoglutarate towards succinic acid via succinate semialdehyde formation, was implemented. The main fumarases were inactivated in the core strain MSG1.0 (∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆ptsG, PL-glk, Ptac-galP) by the deletion of the fumA, fumB, and fumC genes. The Bacillus subtilis pycA gene was expressed in the strain to ensure pyruvate to oxaloacetate conversion. The Mycobacterium tuberculosis kgd gene was expressed to enable succinate semialdehyde formation. The resulting strain was able to convert glucose to fumaric acid with a yield of 0.86 mol/mol, amounting to 86% of the theoretical maximum. The results demonstrated the high potential of the implemented strategy for development of efficient strains for bio-based fumaric acid production.
Collapse
Affiliation(s)
- Alexandra Yu. Skorokhodova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia
| | - Andrey Yu. Gulevich
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia
| | - Vladimir G. Debabov
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
8
|
Skorokhodova AY, Gulevich AY, Debabov VG. Optimization of the Anaerobic Production of Pyruvic Acid from Glucose by Recombinant Escherichia coli strains with Impaired Fermentation Ability via Enforced ATP Hydrolysis. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gulevich AY, Skorokhodova AY, Debabov VG. Optimization of (S)-3-Hydroxybutyric Acid Biosynthesis from Glucose through the Reversed Fatty Acid β-Oxidation Pathway by Recombinant Escherichia coli Strains. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
The microaerobic synthesis of 3-hydroxybutyric acid by the Escherichia coli strain BOX3.1 ∆4 PL-atoB PL-tesB (MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆fadE, PL-SDphi10-atoB, Ptrc-ideal-4-SDphi10-fadB, PL-SDphi10-tesB), which was previously directly engineered for the biosynthesis of the target compound from glucose through the reversed fatty acid β-oxidation pathway, was studied. A target product yield of 0.12 mol/mol was achieved. Inactivation of the nonspecific YciA thioesterase gene in the strain led to an increase in the yield of 3-hydroxybutyric acid to 0.15 mol/mol. For the optimization of biosynthesis of target product the strain MG∆4 PL-tesB (MG1655 ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, PL-SDphi10-tesB) was engineered, and the genes encoding key enzymes of fatty acid β-oxidation were overexpressed in the strain from the plasmid pMW118m-atoB-fadB. The level of microaerobic synthesis of 3-hydroxybutyric acid by the strain MG∆4 PL-tesB (pMW118m-atoB-fadB) achieved in primary evaluation conditions reached 0.35 mol/mol. Inactivation in the strain of the gene of nonspecific thioesterase YciA led to only minor decrease in acetate byproduction. Further inactivation in the strain of gene encoding nonspecific thioesterase YdiI had virtually no effect on the level of synthesis of side products. Cultivation of the constructed strain MG∆4 PL-tesB ∆yciA (pMW118m-atoB-fadB) in bioreactor under the controlled conditions ensured achievement of a yield of 3‑hydroxybutyric acid amounting to 0.75 mol/mol.
Collapse
|
10
|
Vybornaya TV, Yuzbashev TV, Fedorov AS, Bubnov DM, Filippova SS, Bondarenko FV, Sineoky SP. Use of an Alternative Pathway for Isoleucine Synthesis in Threonine-Producing Strains of Escherichia coli. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820070066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Gulevich AY, Skorokhodova AY, Debabov VG. Study of the Potential of the Reversal of the Fatty-Acid Beta-Oxidation Pathway for Stereoselective Biosynthesis of (S)-1,3-Butanediol from Glucose by Recombinant Escherichia coli Strains. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820080049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hoshino Y, Moriya M, Matsudaira A, Katashkina JI, Nitta N, Nishio Y, Usuda Y. Stereospecific linalool production utilizing two-phase cultivation system in Pantoea ananatis. J Biotechnol 2020; 324:21-27. [PMID: 32980368 DOI: 10.1016/j.jbiotec.2020.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
Abstract
Linalool is a monoterpene alcohol, which imparts floral scents to a variety of plants and is extensively used in various kinds of products, such as processed foods and beverages for fragrances and flavors. However, linalool from natural resources is racemate, and production of linalool enantiomers is difficult. To produce stereospecific linalool, we evaluated linalool synthase genes (LINS) from plants, such as Actinidia arguta (AaLINS) and Coriandrum sativum (CsLINS) for (S)-specific LINS and a gram-positive bacterium Streptomyces clavuligerus (ScLINS) for (R)-specific LINS, with Pantoea ananatis strain as the host. Among the 16 LINS examined, AaLINS and ScLINS showed the best (S)-linalool production and (R)-linalool production, respectively, with 100 % enantio excess. Co-expression of the mutated farnesyl diphosphate synthase gene, ispA* (S80 F), from Escherichia coli along with the LINS genes also improved linalool production. In order to prevent volatilization and cell toxicity of linalool, two-phase cultivation with isopropyl myristate was done, which had positive effects on linalool production. The carbon flux to the MVA pathway from glucose was increased by inactivating a membrane-bound glucose dehydrogenase. Overall, 5.60 g/L (S)-linalool and 3.71 g/L (R)-linalool were produced from 60.0 g/L glucose by introduction of AaLINS-ispA* and ScLINS-ispA* in P. ananatis, respectively.
Collapse
Affiliation(s)
- Yasushi Hoshino
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Mika Moriya
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Akiko Matsudaira
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Joanna I Katashkina
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr. 1-1, Moscow, 117545, Russian Federation.
| | - Nobuhisa Nitta
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Yousuke Nishio
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Yoshihiro Usuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| |
Collapse
|
13
|
Shmonova EA, Voloshina OV, Ovsienko MV, Smirnov SV, Nolde DE, Doroshenko VG. Characterization of the Corynebacterium glutamicum dehydroshikimate dehydratase QsuB and its potential for microbial production of protocatechuic acid. PLoS One 2020; 15:e0231560. [PMID: 32822353 PMCID: PMC7442255 DOI: 10.1371/journal.pone.0231560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022] Open
Abstract
The dehydroshikimate dehydratase (DSD) from Corynebacterium glutamicum encoded by the qsuB gene is related to the previously described QuiC1 protein (39.9% identity) from Pseudomonas putida. Both QuiC1 and QsuB are two-domain bacterial DSDs. The N-terminal domain provides dehydratase activity, while the C-terminal domain has sequence identity with 4-hydroxyphenylpyruvate dioxygenase. Here, the QsuB protein and its N-terminal domain (N-QsuB) were expressed in the T7 system, purified and characterized. QsuB was present mainly in octameric form (60%), while N-QsuB had a predominantly monomeric structure (80%) in aqueous buffer. Both proteins possessed DSD activity with one of the following cofactors (listed in the order of decreasing activity): Co2+, Mg2+, Mn2+. The Km and kcat values for the QsuB enzyme (Km ~ 1 mM, kcat ~ 61 s-1) were two and three times higher than those for N-QsuB. 3,4-DHBA inhibited QsuB (Ki ~ 0.38 mM, Ki' ~ 0.96 mM) and N-QsuB (Ki ~ 0.69 mM) enzymes via mixed and noncompetitive inhibition mechanism, respectively. E. coli MG1655ΔaroEPlac‒qsuB strain produced three times more 3,4-DHBA from glucose in test tube fermentation than the MG1655ΔaroEPlac‒n-qsuB strain. The C-terminal domain activity towards 3,4-DHBA was not established in vitro. This domain was proposed to promote protein oligomerization for maintaining structural stability of the enzyme. The dimer formation of QsuB protein was more predictable (ΔG = ‒15.8 kcal/mol) than the dimerization of its truncated version N-QsuB (ΔG = ‒0.4 kcal/mol).
Collapse
Affiliation(s)
| | | | | | | | - Dmitry E. Nolde
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | | |
Collapse
|
14
|
Krylov AA, Shapovalova VV, Miticheva EA, Shupletsov MS, Mashko SV. Universal Actuator for Efficient Silencing of Escherichia coli Genes Based on Convergent Transcription Resistant to Rho-Dependent Termination. ACS Synth Biol 2020; 9:1650-1664. [PMID: 32442368 DOI: 10.1021/acssynbio.9b00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic control is a distinguished strategy in modern metabolic engineering, in which inducible convergent transcription is an attractive approach for conditional gene silencing. Instead of a simple strong "reverse" (r-) promoter, a three-component actuator has been developed for constitutive genes silencing. These actuators, consisting of r-promoters with different strengths, the ribosomal transcription antitermination-inducing sequence rrnG-AT, and the RNase III processing site, were inserted into the 3'-UTR of three E. coli metabolic genes. Second and third actuator components were important to improve the effectiveness and robustness of the approach. The maximal silencing folds achieved for gltA, pgi, and ppc were approximately 7, 11, and >100, respectively. Data were analyzed using a simple model that considered RNA polymerase (RNAP) head-on collisions as the unique reason for gene silencing and continued transcription after collision with only one of two molecules. It was previously established that forward (f-) RNAP with a trailing ribosome was approximately 13-times more likely to continue transcription after head-on collision than untrailed r-RNAP which is sensitive to Rho-dependent transcription termination (RhoTT). According to the current results, this bias in complex stabilities decreased to no more than (3.0-5.7)-fold if r-RNAP became resistant to RhoTT. Therefore, the developed constitutive actuator could be considered as an improved tool for controlled gene expression mainly due to the transfer of r-transcription into a state that is resistant to potential termination and used as the basis for the design of tightly regulated actuators for the achievement of conditional silencing.
Collapse
Affiliation(s)
- Alexander A. Krylov
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr., 1-1, Moscow, 117545, Russian Federation
| | - Valeriya V. Shapovalova
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr., 1-1, Moscow, 117545, Russian Federation
| | - Elizaveta A. Miticheva
- Faculty of Biotechnology, Lomonosov Moscow State University, Leninskiye Gory, 1-51, Moscow, 119991, Russian Federation
| | - Mikhail S. Shupletsov
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr., 1-1, Moscow, 117545, Russian Federation
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Leninskiye Gory, 1-52, Moscow, 119991, Russian Federation
| | - Sergey V. Mashko
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr., 1-1, Moscow, 117545, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1-12, Moscow, 119991, Russian Federation
| |
Collapse
|
15
|
Igonina O, Samsonov V, Ublinskaya A, Hook C, Malykh E, Kozaeva E, Sycheva E, Stoynova N. A novel one-step method for targeted multiplication of DNA fragments from the Escherichia coli chromosome mediated by coordinated functioning of λ and φ80 bacteriophage recombination systems. J Microbiol Methods 2020; 170:105842. [PMID: 31954728 DOI: 10.1016/j.mimet.2020.105842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/26/2022]
Abstract
A novel technique for targeted stable multiplication of a specific long E. coli chromosome fragment was developed. The method is based on the coordinated functioning of λ and φ80 bacteriophage site-specific recombination and integration systems. In vivo cloning and targeted insertion of a chosen chromosomal region is accomplished by a simple one-step experiment. The method does not require PCR amplification of an inserted fragment, which makes it especially convenient for manipulation of long-length DNA. For this purpose, we constructed a pKDAH vector that can perform both λRed recombineering and φ80-integrase-mediated integration. Using this technique, the chromosome region is cloned via λRed recombination and immediately inserted into another chromosome locus by φ80-integrase. The method was effectively used for targeted chromosomal integration of additional copies of an individual gene (alaE), a short-length operon (kbl-tdh) and long-length DNA fragments harboring the E. coli atpIBEFHAGDC or nuoABCEFGHIJKLMN operons (7.5 and 15 kb, respectively), thus confirming the utility of the technique. Moreover, duplication of the target genes with simultaneous modification of the regulatory region was performed.
Collapse
Affiliation(s)
- O Igonina
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - V Samsonov
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - A Ublinskaya
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - Ch Hook
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - E Malykh
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - E Kozaeva
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - E Sycheva
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation
| | - N Stoynova
- Ajinomoto-Genetika Research Institute, 1(st) Dorozhny pr., Moscow 117545, Russian Federation.
| |
Collapse
|
16
|
Katashkina JI, Kazieva ED, Tajima Y, Mashko SV. Increased Isoprene Production by the Recombinant Pantoea ananatis Strain due to the Balanced Amplification of Mevalonate Pathway Genes. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819090023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Skorokhodova AY, Sukhozhenko AV, Gulevich AY, Debabov VG. Activation of Alternative Respiration with Internal Electron Acceptor during Anaerobic Glucose Utilization in Escherichia coli Strains with Impaired Fermentation Ability. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819090072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Geraskina NV, Sycheva EV, Samsonov VV, Eremina NS, Hook CD, Serebrianyi VA, Stoynova NV. Engineering Escherichia coli for autoinducible production of L-valine: An example of an artificial positive feedback loop in amino acid biosynthesis. PLoS One 2019; 14:e0215777. [PMID: 31022249 PMCID: PMC6483228 DOI: 10.1371/journal.pone.0215777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Artificial metabolically regulated inducible expression systems are often used for the production of essential compounds. In most cases, the application of such systems enables regulating the expression of an entire group of genes in response to any internal signal such as an aerobic/anaerobic switch, a transition to stationary phase, or the exhausting of essential compounds. In this work, we demonstrate an example of another type of artificial autoinducible module, denoted a positive feedback module. This positive feedback module generates an inducer molecule that in turn enhances its own synthesis, promoting an activation signal. Due to the use of acetolactate, an intermediate of the L-valine biosynthetic pathway, as a specific inducer molecule, we realized a positive feedback loop in the biosynthetic pathway of branched chain amino acids. Such positive feedback was demonstrated to improve the production of a target compound.
Collapse
Affiliation(s)
| | - Elena V. Sycheva
- Ajinomoto-Genetika Research Institute, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
19
|
Skorokhodova AY, Gulevich AY, Debabov VG. Engineering Escherichia coli for respiro-fermentative production of pyruvate from glucose under anoxic conditions. J Biotechnol 2019; 293:47-55. [DOI: 10.1016/j.jbiotec.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 11/30/2022]
|
20
|
Skorokhodova AY, Gulevich AY, Debabov VG. Inactivation of Malic Enzymes Improves the Anaerobic Production of Four-Carbon Dicarboxylic Acids by Recombinant Escherichia coli Strains Expressing Pyruvate Carboxylase. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Eremina NS, Slivinskaya EA, Yampolskaya TA, Rybak KV, Altman IB, Ptitsyn LR, Stoynova NV. Adaptive Evolution of Escherichia coli K-12 MG1655 Grown on Ethanol and Glycerol. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818080033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Skorokhodova AY, Stasenko AA, Gulevich AY, Debabov VG. Construction of a Synthetic Bypass for Improvement of Aerobic Synthesis of Succinic Acid through the Oxidative Branch of the Tricarboxylic Acid Cycle by Recombinant Escherichia coli Strains. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Slesareva AE, Kuhn LG, Doroshenko VG. Comparative Analysis of Mono- and Bifunctional Chorismate Synthases in Escherichia coli Cells Capable and Incapable of Phenylalanine Production. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683817090071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Derbikov DD, Novikov AD, Gubanova TA, Tarutina MG, Gvilava IT, Bubnov DM, Yanenko AS. Aspartic Acid Synthesis by Escherichia coli Strains with Deleted Fumarase Genes as Biocatalysts. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683817090046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Skorokhodova AY, Stasenko AA, Gulevich AY, Debabov VG. Effect of Anaplerotic Pathways Activation on CO2-dependent Anaerobic Glucose Utilization by Escherichia coli Strains Deficient in the Main Pathways of Mixed Acid Fermentation. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Skorokhodova AY, Gulevich AY, Debabov VG. Anaerobic biosynthesis of intermediates of reductive branch of tricarboxylic acids cycle by Escherichia coli strains with inactivated frdAB and sdhAB genes. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816070061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Doi H, Tokura Y, Mori Y, Mori K, Asakura Y, Usuda Y, Fukuda H, Chinen A. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus. Appl Microbiol Biotechnol 2017; 101:1581-1592. [PMID: 27915375 PMCID: PMC5266763 DOI: 10.1007/s00253-016-8021-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022]
Abstract
Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2T was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.
Collapse
Affiliation(s)
- Hidetaka Doi
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yuriko Tokura
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Yukiko Mori
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kenichi Mori
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Yoko Asakura
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Yoshihiro Usuda
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akito Chinen
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| |
Collapse
|
28
|
Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Debabov VG. Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli. J Biotechnol 2017; 244:16-24. [PMID: 28131860 DOI: 10.1016/j.jbiotec.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
Abstract
Enantiomers of 3-hydroxybutyric acid (3-HB) can be used as the chiral precursors for the production of various optically active fine chemicals, including drugs, perfumes, and pheromones. In this study, Escherichia coli was engineered to produce (S)-3-HB from glucose through the inverted reactions of the native aerobic fatty acid β-oxidation pathway. Expression of only specific genes encoding enzymes responsible for the conversion of acetyl-CoA to acetoacetyl-CoA, reduction of acetoacetyl-CoA to 3-hydroxybutyryl-CoA and subsequent hydrolysis of 3-hydroxybutyryl-CoA to 3-HB was directly upregulated in an engineered strain. The operation of multiple turns of the inverted fatty acid β-oxidation was precluded by the deletion of gene encoding enzyme that catalyse the terminal stage of the respective cycle. While the overexpression of the C-acetyltransferase gene enabled 3-HB biosynthesis through the inverted fatty acid β-oxidation, the efficient conversion of glucose to the target product was achieved resulting from the additional overexpression of the gene encoding appropriate termination thioesterase II. The engineered strain synthesised the (S)-stereoisomer of 3-HB with an enantiomeric excess of more than 99%. Under microaerobic conditions, up to 9.58g/L of enantiopure (S)-3-HB was produced from glucose, with a yield of 66% of the theoretical maximum.
Collapse
Affiliation(s)
- Andrey Yu Gulevich
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia.
| | - Alexandra Yu Skorokhodova
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| | - Alexey V Sukhozhenko
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| | - Vladimir G Debabov
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| |
Collapse
|
29
|
Hook C, Samsonov V, Ublinskaya A, Kuvaeva T, Andreeva E, Gorbacheva L, Stoynova N. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion. J Microbiol Methods 2016; 130:83-91. [DOI: 10.1016/j.mimet.2016.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
|
30
|
Gulevich AY, Skorokhodova AY, Debabov VG. Escherichia coli ydiO and ydiQRST genes encode components of acyl-CoA dehydrogenase complex of anaerobic fatty acid β-oxidation pathway. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
|
32
|
Doroshenko VG, Livshits VA, Airich LG, Shmagina IS, Savrasova EA, Ovsienko MV, Mashko SV. Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815070017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Skorokhodova AY, Morzhakova AA, Gulevich AY, Debabov VG. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. J Biotechnol 2015; 214:33-42. [PMID: 26362413 DOI: 10.1016/j.jbiotec.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 11/28/2022]
Abstract
Efficient succinate production in Escherichia coli is attained during anaerobic glucose fermentation in biosynthetic processes combining the reductive branch of the TCA cycle and the glyoxylate bypass. Pyruvate dehydrogenase (PDH) or pyruvate formate lyase (PFL) serves in E. coli as a source of acetyl-CoA, a substrate for the glyoxylate bypass. Depending on enzymes responsible for acetyl-CoA generation, the contribution of the glyoxylate bypass to the anaerobic succinate biosynthesis may vary to support redox balance resulting in diverse maximum achievable yield values. Anaerobic succinate biosynthesis from glucose was studied using E. coli strains with altered expression of genes encoding PFL and PDH. For acetyl-CoA formation by PFL, the yield of 1.32 mol succinate per mole of glucose was achieved with the theoretical value of 1.6 mol/mol. Involvement of PDH in anaerobic acetyl-CoA synthesis increased succinate yield up to 1.49 mol/mol, which is 89.8% of the predicted maximum (1.6(6) mol/mol). The maximum yield of 1.69 mol succinate per mol glucose, amounting to 98.8% of the stoichiometric maximum (1.71 mol/mol), was achieved with the strain possessing PDH as the primary anaerobic source of acetyl-CoA. During high cell density fermentation, the best engineered strain produced high amounts of succinate (570.7 mM) and only small quantities of acetate (11.9 mM).
Collapse
Affiliation(s)
- Alexandra Yu Skorokhodova
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia.
| | - Anastasiya A Morzhakova
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| | - Andrey Yu Gulevich
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| | - Vladimir G Debabov
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| |
Collapse
|
34
|
|
35
|
Doi H, Hoshino Y, Nakase K, Usuda Y. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli. Appl Microbiol Biotechnol 2014; 98:629-39. [PMID: 24169950 PMCID: PMC3890546 DOI: 10.1007/s00253-013-5327-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 01/25/2023]
Abstract
Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production.
Collapse
Affiliation(s)
- Hidetaka Doi
- Process Development Laboratories, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan,
| | | | | | | |
Collapse
|
36
|
Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media. Biotechnol Lett 2012. [DOI: 10.1007/s10529-012-1108-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Ublinskaya AA, Samsonov VV, Mashko SV, Stoynova NV. A PCR-free cloning method for the targeted φ80 Int-mediated integration of any long DNA fragment, bracketed with meganuclease recognition sites, into the Escherichia coli chromosome. J Microbiol Methods 2012; 89:167-73. [PMID: 22484061 DOI: 10.1016/j.mimet.2012.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/20/2022]
Abstract
The genetic manipulation of cells is the most promising strategy for designing microorganisms with desired traits. The most widely used approaches for integrating specific DNA-fragments into the Escherichia coli genome are based on bacteriophage site-specific and Red/ET-mediated homologous recombination systems. Specifically, the recently developed Dual In/Out integration strategy enables the integration of DNA fragments directly into specific chromosomal loci (Minaeva et al., 2008). To develop this strategy further, we designed a method for the precise cloning of any long DNA fragments from the E. coli chromosome and their targeted insertion into the genome that does not require PCR. In this method, the region of interest is flanked by I-SceI rare-cutting restriction sites, and the I-SceI-bracketed region is cloned into the unique I-SceI site of an integrative plasmid vector that then enables its targeted insertion into the E. coli chromosome via bacteriophage φ80 Int-mediated specialized recombination. This approach allows any long specific DNA fragment from the E. coli genome to be cloned without a PCR amplification step and reproducibly inserted into any chosen chromosomal locus. The developed method could be particularly useful for the construction of marker-less and plasmid-less recombinant strains in the biotechnology industry.
Collapse
Affiliation(s)
- Anna A Ublinskaya
- Ajinomoto-Genetika Research Institute, 1st Dorozhny pr., 1-1, 117545 Moscow, Russian Federation
| | | | | | | |
Collapse
|
38
|
Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science 2011; 334:986-90. [PMID: 22096201 DOI: 10.1126/science.1209855] [Citation(s) in RCA: 540] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.
Collapse
Affiliation(s)
- Konstantin Shatalin
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
39
|
Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnol Lett 2011; 34:463-9. [PMID: 22105550 DOI: 10.1007/s10529-011-0797-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/09/2011] [Indexed: 11/30/2022]
Abstract
The basic reactions of the clostridial 1-butanol biosynthesis pathway can be regarded to be the inverted reactions of the fatty acid β-oxidation pathway. A pathway for the biosynthesis of fuels and chemicals was recently engineered by combining enzymes from both aerobic and anaerobic fatty acid β-oxidation as well as enzymes from other metabolic pathways. In the current study, we demonstrate the inversion of the entire aerobic fatty acid β-oxidation cycle for 1-butanol biosynthesis. The constructed markerless and plasmidless Escherichia coli strain BOX-3 (MG1655 lacI(Q) attB-P(trc-ideal-4)-SD(φ10)-adhE(Glu568Lys) attB-P(trc-ideal-4)-SD(φ10)-atoB attB-P(trc-ideal-4)-SD(φ10)-fadB attB-P(trc-ideal-4)-SD(φ10)-fadE) synthesises 0.3-1 mg 1-butanol/l in the presence of the specific inducer. No 1-butanol production was detected in the absence of the inducer.
Collapse
Affiliation(s)
- Andrey Yu Gulevich
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy Pr., 1, Moscow, Russia 117545.
| | | | | | | | | |
Collapse
|
40
|
Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria--mini review. Appl Microbiol Biotechnol 2011; 91:857-71. [PMID: 21698377 PMCID: PMC3145075 DOI: 10.1007/s00253-011-3416-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/04/2022]
Abstract
The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends. The dual-component system, which consists of an integrative plasmid with a mini-Mu and an easily eliminated helper plasmid encoding inducible transposition factors, is described in detail as a tool for the integration/amplification of recombinant DNAs. This chromosomal editing method is based on replicative transposition through the formation of a cointegrate that can be resolved in a recombination-dependent manner. (E-plus)- or (E-minus)-helpers that differ in the presence of the trans-acting E element are used to achieve the proper mini-Mu transposition intensity. The systems that have been developed for the construction of stably maintained mini-Mu multi-integrant strains of Escherichia coli and Methylophilus methylotrophus are described. A novel integration/amplification/fixation strategy is proposed for consecutive independent replicative transpositions of different mini-Mu(LER) units with “excisable” E elements in methylotrophic cells.
Collapse
|
41
|
Pho regulon promoter-mediated transcription of the key pathway gene aroG Fbr improves the performance of an l-phenylalanine-producing Escherichia coli strain. Appl Microbiol Biotechnol 2010; 88:1287-95. [DOI: 10.1007/s00253-010-2794-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
42
|
Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S. YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 2007; 275:312-8. [PMID: 17784858 DOI: 10.1111/j.1574-6968.2007.00894.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The inner membrane protein YddG of Escherichia coli is a homologue of the known amino acid exporters RhtA and YdeD. It was found that the yddG gene overexpression conferred resistance upon E. coli cells to the inhibiting concentrations of l-phenylalanine and aromatic amino acid analogues, dl-p-fluorophenylalanine, dl-o-fluorophenylalanine and dl-5-fluorotryptophan. In addition, yddG overexpression enhanced the production of l-phenylalanine, l-tyrosine or l-tryptophan by the respective E. coli-producing strains. On the other hand, the inactivation of yddG decreased the aromatic amino acid accumulation by these strains. The cells of the E. colil-phenylalanine-producing strain containing overexpressed yddG accumulated less l-phenylalanine inside and exported the amino acid at a higher rate than the cells of the isogenic strain containing wild-type yddG. Taken together, these results indicate that YddG functions as an aromatic amino acid exporter.
Collapse
Affiliation(s)
- Vera Doroshenko
- Ajinomoto-Genetika Research Institute, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|