1
|
Wang Y, Fleishman JS, Wang J, Chen J, Zhao L, Ding M. Pharmacologically inducing anoikis offers novel therapeutic opportunities in hepatocellular carcinoma. Biomed Pharmacother 2024; 176:116878. [PMID: 38843588 DOI: 10.1016/j.biopha.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Tumor metastasis occurs in hepatocellular carcinoma (HCC), leading to tumor progression and therapeutic failure. Anoikis is a matrix detachment-induced apoptosis, also known as detachment-induced cell death, and mechanistically prevents tumor cells from escaping their native extracellular matrix to metastasize to new organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat HCC. Several natural and synthetic products induce anoikis in HCC cells and in vivo models. Here, we first briefly summarize the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in HCC metastasis. Then we discuss the therapeutic potential of pharmacological induction of anoikis as a potential treatment against HCC. Finally, we discuss the key limitations of this therapeutic paradigm and propose possible strategies to overcome them. Cumulatively this review suggests that the pharmacological induction of anoikis can be used a promising therapeutic modality against HCC.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
2
|
Zheng Y, Yuan J, Gu Z, Yang G, Li T, Chen J. Transcriptome alterations in female Daphnia (Daphnia magna) exposed to 17β-estradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114208. [PMID: 32097791 DOI: 10.1016/j.envpol.2020.114208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The molecular mechanism of evaluating 17β-estradiol (E2)-induced toxicity in female Daphnia magna has not been determined. In this study, the transcriptome of D. magna was analyzed after exposure to three different concentrations (0, 10, and 100 ng L-1) of E2 at 3, 6, and 12 h. The results showed 351-17,221 significantly up-regulated and 505-10,282 significantly down-regulated genes (P < 0.05). Overall, the selected largest 10,282 (10 ng L-1vs control at 12 h) down-regulated and 17,221 (100 vs 10 ng L-1) up-regulated genes were identified; following annotation, pathways in cancer and RNA transport were found to be enriched according to the interaction network. Among all completed comparisons, KEGG pathways related to the immune system, cancer, disease infection, and active compound metabolism were identified by short time series expression miner analysis. A different set of genes fluctuated in a "U"-shaped pattern over time and at different concentrations of E2, whereas some genes associated with disintoxication showed a reverse "U"-shaped response as E2 administration was increased. These results suggest that E2 exposure caused transcriptional changes in the immune system, disintoxication, disease prevention, and the protein degradation pathway.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Guang Yang
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, 100000, PR China
| | - Tian Li
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, 100000, PR China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100039, PR China.
| |
Collapse
|
3
|
Jeng LB, Velmurugan BK, Hsu HH, Wen SY, Shen CY, Lin CH, Lin YM, Chen RJ, Kuo WW, Huang CY. Fenofibrate induced PPAR alpha expression was attenuated by oestrogen receptor alpha overexpression in Hep3B cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:234-247. [PMID: 29134746 DOI: 10.1002/tox.22511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
The physiological regulation of Oestrogen receptor α (ERα) and peroxisome proliferator-activated receptor alpha (PPARα) in Hepatocellular carcinoma (HCC) remains unknown. The present study we first treat the cells with fenofibrate and further investigated the possible mechanisms of 17β-estradiol (E2 ) and/or ERα on regulating PPARα expression. We also found higher PPARα expression in the tumor area than adjacent areas and subsequently compared PPARα expression in four different hepatic cancer cell lines. Hep3B cells were found to express more PPARα than the other cell lines. Using the PPARα agonist fenofibrate, we found that fenofibrate increased Hep3B cell proliferation efficiency by increasing cell cycle proteins, such as cyclin D1 and PCNA, and inhibiting p27 and caspase 3 expressions. Next, we performed transient transfections and immuno-precipitation studies using the pTRE2/ERα plasmid to evaluate the interaction between ERα and PPARα. ERα interacted directly with PPARα and negatively regulated its function. Moreover, in Tet-on ERα over-expressed Hep3B cells, E2 treatment inhibited PPARα, its downstream gene acyl-CoA oxidase (ACO), cyclin D1 and PCNA expression and further increased p27 and caspase 3 expressions. However, over-expressed ERα plus 17-β-estradiol (10-8 M) reversed the fenofibrate effect and induced apoptosis, which was blocked in ICI/melatonin/fenofibrate-treated cells. This study illustrates that PPARα expression and function were negatively regulated by ERα expression in Hep3B cells.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Department of Surgery and Organ Transplantation Centre, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Bharath Kumar Velmurugan
- Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City, 700000, Vietnam
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Nursing and Management College, Mackay Medicine, Taipei, Taiwan
| | - Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Chih-Hao Lin
- Department of Information Science and Applications, Asia University, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Selective estrogen receptor modulator: A novel polysaccharide from Sparganii Rhizoma induces apoptosis in breast cancer cells. Carbohydr Polym 2017; 163:199-207. [DOI: 10.1016/j.carbpol.2017.01.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 01/29/2023]
|
5
|
Chang-Lee SN, Hsu HH, Shibu MA, Ho TJ, Tsai CH, Chen MC, Tu CC, Viswanadha VP, Kuo WW, Huang CY. E 2/ERβ Inhibits PPARα to Regulate Cell-Proliferation and Enhance Apoptosis in Hep3B-Hepatocellular Carcinoma. Pathol Oncol Res 2016; 23:477-485. [PMID: 27757837 DOI: 10.1007/s12253-016-0136-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) is a member of the nuclear receptor superfamily involved in hepatocarcinogenesis in rodents. In previous studies on liver tumor tissues, PPARα mRNA expression was found to be significantly higher and overexpression of ERα inhibited the PPARα expression, cell-proliferation and also induced apoptosis in Hep3B cell. However, the role of ERβ is not known yet. Therefore, the aim of this study is to define the role of ERβ on PPARα in Hep3B cells. The effect of PPARα signaling cascade were monitored by inducing Hep3B cells by fenofibrate. Further the cells were transfected with pCMV-ERβ and the consequences of ERβ-overexpression on the PPARα induced changes such as enhanced cell-proliferation and suppressed apoptosis were determined using western blot analysis and TUNEL assay. The EMSA was used to identify whether ERβ modulates PPARα expression by binding to PPARα promoter region to repress PPARα promoter activity. In addition, the direct interaction between ERβ and PPARα proteins was verified by co-immunoprecipitation assay. Our results show that the overexpressed ERβ not only attenuated the effects of fenofibrate to induce the levels of apoptosis protein such as Cyt.c, Caspase 9 and Caspase 3 but also inhibited the levels of survival protein such Bcl-xL, p-Bad, cyclin A and cyclin E. All these effects of E2/ERβ resulted in the enhancement of mitochondria dependent apoptotic pathway and the attenuation of cell proliferation. Moreover, the overexpressed ERβ reduced the mRNA and protein levels of PPARα and its downstream Acyl-CoA oxidase (ACO). EMSA results show that ERβ directly binds to PPRE and inhibit PPARα gene expression and according to immunoprecipitation assay ERβ also binds strongly with PPARα. The E2/ERβ further inhibited the fenofibrate-induced nuclear translocation of PPARα. Taken together, ERβ might directly downregulate PPARα gene expression and inhibit the nuclear translocation to suppress the proliferation and induce the apoptosis of Hep3B cells.
Collapse
Affiliation(s)
- Shu Nu Chang-Lee
- Department of Healthcare Administration, Asia University, Taichung, 413, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, 104, Taiwan
- Mackay Medicine, Nursing and Management College, Taipei, 11260, Taiwan
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404, Taiwan
| | - Tsung-Jung Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Chinese Medicine Department, China Medical University Beigang Hospital, Yunlin, 651, Taiwan
| | - Chih-Hao Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, 411, Taiwan
| | | | - Wei- Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 402, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404, Taiwan.
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
6
|
Kavoosi F, Dastjerdi MN, Valiani A, Esfandiari E, Sanaei M, Hakemi MG. Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line. Adv Biomed Res 2016; 5:133. [PMID: 27656602 PMCID: PMC5025906 DOI: 10.4103/2277-9175.187395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. This cancer may be due to a multistep process with an accumulation of epigenetic alterations in tumor suppressor genes (TSGs), leading to hypermethylation of the genes. Hypermethylation of TSGs is associated with silencing and inactivation of them. It is well-known that DNA hypomethylation is the initial epigenetic abnormality recognized in human tumors. Estrogen receptor alpha (ERα) is one of the TSGs which modulates gene transcription and its hypermethylation is because of overactivity of DNA methyltransferases. Fortunately, epigenetic changes especially hypermethylation can be reversed by pharmacological compounds such as genistein (GE) and 17-beta estradiol (E2) which involve in preventing the development of certain cancers by maintaining a protective DNA methylation. The aim of the present study was to analyze the effects of GE on ERα and DNMT1 genes expression and also apoptotic and antiproliferative effects of GE and E2 on HCC. Materials and Methods: Cells were treated with various concentrations of GE and E2 and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used. Furthermore, cells were treated with single dose of GE and E2 (25 μM) and flow cytometry assay was performed. The expression level of the genes was determined by quantitative real-time reverse transcription polymerase chain reaction. Results: GE increased ERα and decreased DNMT1 genes expression, GE and E2 inhibited cell viability and induced apoptosis significantly. Conclusion: GE can epigenetically increase ERα expression by inhibition of DNMT1 expression which in turn increases apoptotic effect of E2. Furthermore, a combination of GE and E2 can induce apoptosis more significantly.
Collapse
Affiliation(s)
- Fraidoon Kavoosi
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masumeh Sanaei
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Ren J, Chen GG, Liu Y, Su X, Hu B, Leung BCS, Wang Y, Ho RLK, Yang S, Lu G, Lee CG, Lai PBS. Cytochrome P450 1A2 Metabolizes 17β-Estradiol to Suppress Hepatocellular Carcinoma. PLoS One 2016; 11:e0153863. [PMID: 27093553 PMCID: PMC4836701 DOI: 10.1371/journal.pone.0153863] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) occurs more frequently in men than in women. It is commonly agreed that estrogen plays important roles in suppressing HCC development, however, the underlying mechanism remains largely unknown. Since estrogen is mainly metabolized in liver and its metabolites affect cell proliferation, we sought to investigate if the liver-specific cytochrome P450 1A2 (CYP1A2) mediated the inhibitory effect of estrogen on HCC. In this study, the expression of estrogen-metabolizing enzyme CYP1A2 was determined in HCC tissues and cell lines. Cell proliferation and apoptosis were assessed in cells with or without CYP1A2 overexpression. The levels of 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2-ME) were determined. A xenograft tumor model in mice was established to confirm the findings. It was found that CYP1A2 expression was greatly repressed in HCC. E2 suppressed HCC cell proliferation and xenograft tumor development by inducing apoptosis. The inhibitory effect was significantly enhanced in cells with CYP1A2 overexpression, which effectively conversed E2 to the cytotoxic 2-ME. E2 in combination with sorafenib showed an additive effect on HCC. The anti-HCC effect of E2 was not associated with estrogen receptors ERα and ERβ as well as tumor suppressor P53 but enhanced by the approved anti-HCC drug sorafenib. In addition, HDAC inhibitors greatly induced CYP1A2 promoter activities in cancer cells, especially liver cancer cells, but not in non-tumorigenic cells. Collectively, CYP1A2 metabolizes E2 to generate the potent anti-tumor agent 2-ME in HCC. The reduction of CYP1A2 significantly disrupts this metabolic pathway, contributing the progression and growth of HCC and the gender disparity of this malignancy.
Collapse
Affiliation(s)
- Jianwai Ren
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute (SZRI), Shenzhen, 518057, China
| | - George G. Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute (SZRI), Shenzhen, 518057, China
- * E-mail: (GGC); (PBSL)
| | - Yi Liu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xianwei Su
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Baoguang Hu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Billy C. S. Leung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Y. Wang
- National Cancer Centre, Division of Medical Sciences, Singapore, Singapore
| | - Rocky L. K. Ho
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Shengli Yang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - Gang Lu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| | - C. G. Lee
- National Cancer Centre, Division of Medical Sciences, Singapore, Singapore
| | - Paul B. S. Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong; New Territories, Hong Kong, China
| |
Collapse
|
8
|
Fatima A, Waters S, O’Boyle P, Seoighe C, Morris DG. Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle. BMC Genomics 2014; 15:28. [PMID: 24428929 PMCID: PMC3902422 DOI: 10.1186/1471-2164-15-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Negative energy balance (NEB), an altered metabolic state, occurs in early postpartum dairy cattle when energy demands to support lactation exceed energy intake. During NEB the liver undergoes oxidative stress and increased breakdown of fatty acids accompanied by changes in gene expression. It is now known that micro RNAs (miRNA) can have a role in mediating such alterations in gene expression through repression or degradation of target mRNAs. miRNA expression is known to be altered by metabolism and environmental factors and miRNAs are implicated in expression modulation of metabolism related genes. RESULTS miRNA expression was profiled in the liver of moderate yielding dairy cattle under severe NEB (SNEB) and mild NEB (MNEB) using the Affymetrix Gene Chip miRNA_2.0 array with 679 probe sets for Bos-taurus miRNAs. Ten miRNAs were found to be differentially expressed using the 'samr' statistical package (delta = 0.6) at a q-value FDR of < 12%. Five miRNAs including miR-17-5p, miR-31, miR-140, miR-1281 and miR-2885 were validated using RT-qPCR, to be up-regulated under SNEB. Liver diseases associated with these miRNAs include non-alcoholic fatty liver (NAFLD) and hepatocellular carcinoma (HCC). miR-140 and miR-17-5p are known to show differential expression under oxidative stress. A total of 32 down-regulated putative target genes were also identified among 418 differentially expressed hepatic genes previously reported for the same animal model. Among these, GPR37 (G protein-coupled receptor 37), HEYL (hairy/enhancer-of-split related with YRPW motif-like), DNJA1, CD14 (Cluster of differentiation 14) and GNS (glucosamine (N-acetyl)-6-sulfatase) are known to be associated with hepatic metabolic disorders. In addition miR-140 and miR-2885 have binding sites on the most down-regulated of these genes, FADS2 (Fatty acid desaturase 2) which encodes an enzyme critical in lipid biosynthesis. Furthermore, HNF3-gamma (Hepatocyte nuclear factor 3-gamma), a hepatic transcription factor (TF) that is involved in IGF-1 expression regulation and maintenance of glucose homeostasis is a putative target of miR-31. CONCLUSIONS This study shows that SNEB affects liver miRNA expression and these miRNAs have putative targets in hepatic genes down-regulated under this condition. This study highlights the potential role of miRNAs in transcription regulation of hepatic gene expression during SNEB in dairy cattle.
Collapse
Affiliation(s)
- Attia Fatima
- School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Galway, Ireland
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| | - Sinead Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| | - Padraig O’Boyle
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Galway, Ireland
| | - Dermot G Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| |
Collapse
|
9
|
Chang YM, Kuo WH, Lai TY, Shih YT, Tsai FJ, Tsai CH, Shu WT, Chen YY, Chen YS, Kuo WW, Huang CY. RSC96 Schwann Cell Proliferation and Survival Induced by Dilong through PI3K/Akt Signaling Mediated by IGF-I. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:216148. [PMID: 20040524 PMCID: PMC3135880 DOI: 10.1093/ecam/nep216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/19/2009] [Indexed: 12/31/2022]
Abstract
Schwann cell proliferation is critical for the regeneration of injured nerves. Dilongs are widely used in Chinese herbal medicine to remove stasis and stimulate wound-healing functions. Exactly how this Chinese herbal medicine promotes tissue survival remains unclear. The aim of the present study was to investigate the molecular mechanisms by which Dilong promote neuron regeneration. Our results show that treatment with extract of Dilong induces the phosphorylation of the insulin-like growth factor-I (IGF-I)-mediated phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/Akt) pathway, and activates protein expression of cell nuclear antigen (PCNA) in a time-dependent manner. Cell cycle analysis showed that G1 transits into the S phase in 12–16 h, and S transits into the G2 phase 20 h after exposure to earthworm extract. Strong expression of cyclin D1, cyclin E and cyclin A occurs in a time-dependent manner. Small interfering RNA (siRNA)-mediated knockdown of PI3K significantly reduced PI3K protein expression levels, resulting in Bcl2 survival factor reduction and a marked blockage of G1 to S transition in proliferating cells. These results demonstrate that Dilong promotes the proliferation and survival of RSC96 cells via IGF-I signaling. The mechanism is mainly dependent on the PI3K protein.
Collapse
Affiliation(s)
- Yung-Ming Chang
- Graduate Institute of Chinese Medical Science and Institute of Basic Medical Science, China Medical University, No 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Depalo R, Lorusso F, Bettocchi S, Selvaggi L, Cavallini A, Valentini AM, Caruso ML, Lippolis C. Assessment of Estrogen Receptors and Apoptotic Factors in Cryopreserved Human Ovarian Cortex. Syst Biol Reprod Med 2009; 55:236-43. [DOI: 10.3109/19396360903046761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Sánchez Y, Calle C, de Blas E, Aller P. Modulation of arsenic trioxide-induced apoptosis by genistein and functionally related agents in U937 human leukaemia cells. Regulation by ROS and mitogen-activated protein kinases. Chem Biol Interact 2009; 182:37-44. [DOI: 10.1016/j.cbi.2009.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 01/04/2023]
|
12
|
Genistein sensitizes human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by enhancing Bid cleavage. Anticancer Drugs 2009; 20:713-22. [DOI: 10.1097/cad.0b013e32832e8998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Kalra M, Mayes J, Assefa S, Kaul AK, Kaul R. Role of sex steroid receptors in pathobiology of hepatocellular carcinoma. World J Gastroenterol 2008; 14:5945-5961. [PMID: 18932272 PMCID: PMC2760195 DOI: 10.3748/wjg.14.5945] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/16/2008] [Accepted: 09/23/2008] [Indexed: 02/06/2023] Open
Abstract
The striking gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERalpha alone until 1996 when ERbeta isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC.
Collapse
|
14
|
Xu XW, Shi C, He ZQ, Ma CM, Chen WH, Shen YP, Guo Q, Shen CJ, Xu J. Effects of phytoestrogen on mitochondrial structure and function of hippocampal CA1 region of ovariectomized rats. Cell Mol Neurobiol 2008; 28:875-86. [PMID: 18311520 PMCID: PMC11515463 DOI: 10.1007/s10571-008-9265-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/02/2008] [Indexed: 10/22/2022]
Abstract
The present study was undertaken to evaluate whether estrogen deprivation might lead to mitochondrial alteration of hippocampal neurons of ovariectomized (OVX) rats, and to evaluate the protective effect of estrogen and phytoestrogen on the mitochondrial alteration. First, OVX rats were used to mimic the pathologic changes of neurodegeneration of postmenopausal female, and we looked into the alteration of the mitochondrial ultrastructure and ATP content of hippocampal CA1 region after ovariectomy on different phase by transmission electron microscope (TEM) and reversed-phase high-performance liquid chromatography (HPLC), and found the best phase points of the alteration of the mitochondrial ultrastructure and ATP content. Next, estrogen and phytoestrogen were administered to the OVX rats for the protective effects on the mitochondrial ultrastructure and ATP content. Meanwhile, the density, size, shape, and distribution parameters of mitochondrial ultrastructure were analyzed according to the morphometry principle. The experimental results presented that (1) The alteration of mitochondrial ultrastructure elicited by ovariectomy worsened with the days going on, and the changes were the most noteworthy in volume density (Vv), average surface area (S), specific surface area (delta), and particle dispersity (Clambdaz) on 12th day (P < 0.05 or P < 0.01). Moreover, there was no statistical significance of the numerical density (Nv) among the five groups in the first step experiment. (2) The treatment with estrogen, genistein (Gs), and ipriflavone (Ip) significantly reversed the effect elicited by ovariectomy on Vv, S, delta, Clambdaz, Nv, and particle average diameter (D) of mitochondria of hippocampal CA1 region (P < 0.05). (3) Furthermore, ATP content of hippocampal CA1 region after ovariectomy declined significantly on 7th day (P < 0.05), and estrogen and phytoestrogen could reverse the alteration (P < 0.05). Taken together, these results revealed that phytoestrogen may have a protective role against the neurodegeneration after menopause via protecting mitochondrial structure and functions. Phytoestrogen may be a good alternative as a novel therapeutic strategy for menopausal syndrome.
Collapse
Affiliation(s)
- Xiao-Wu Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, NO.74, ZhongShan 2 Road, Guangzhou, 510080 China
- Department of Anatomy, College of Preclinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006 China
| | - Chun Shi
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, Guangdong, 510080 China
| | - Zhen-Quan He
- Department of Anatomy, College of Preclinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006 China
| | - Chun-Mei Ma
- Department of Anatomy, College of Preclinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006 China
| | - Wen-Hua Chen
- Department of Anatomy, College of Preclinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006 China
| | - Yi-Ping Shen
- Department of Anatomy, College of Preclinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006 China
| | - Qiang Guo
- Department of Anatomy, College of Preclinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006 China
| | - Chuan-Jun Shen
- Department of Anatomy, College of Preclinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006 China
| | - Jie Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, NO.74, ZhongShan 2 Road, Guangzhou, 510080 China
| |
Collapse
|
15
|
Zhou ZW, Tang WS, Shen X, Han Y, Wang XX, Zhang LA. Anti-tumor activities of novel estrogen compound 17a α-D-homo-ethynylestradiol-3-acetate. Chin J Cancer Res 2008. [DOI: 10.1007/s11670-008-0017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Seli E, Guzeloglu-Kayisli O, Kayisli UA, Kizilay G, Arici A. Estrogen increases apoptosis in the arterial wall in a murine atherosclerosis model. Fertil Steril 2007; 88:1190-6. [PMID: 17498707 DOI: 10.1016/j.fertnstert.2007.01.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the effect of estrogen (E) on vascular apoptosis during atherosclerotic plaque formation. DESIGN Laboratory study using a murine atherosclerosis model. SETTING Academic research center. ANIMAL(S) Female mice homozygous for null alleles of LDL receptor (LDL-R(-/-)) in a C57BL/6 background. LDL-R(-/-) mice develop atherosclerosis in a predictable manner when fed a high cholesterol diet. INTERVENTION(S) Eight-week-old female LDL-R(-/-) mice (n = 68) were ovariectomized, and implanted subcutaneously with 90-day release pellets containing 0.5 mg of 17beta-estradiol (E(2)) or placebo. Four animals were evaluated at the initiation of the study. Thereafter, four animals from each group were sacrificed weekly for 8 weeks and their aortas studied. MAIN OUTCOME MEASURE(S) The effect of E(2) on atherosclerotic plaque development, apoptosis, and cell proliferation was examined in the aorta of ovariectomized LDL-R(-/-) mice that were fed a high cholesterol diet. RESULT(S) Mice treated with E(2) displayed a delay in atherosclerotic plaque formation, associated with an increase in DNA strand breaks in the arterial wall indicative of increased apoptosis, compared to placebo-treated mice. The two groups did not differ in mitotic activity. CONCLUSION(S) In female LDL-R(-/-) mice fed a high cholesterol diet, ovariectomy is associated with increased atherogenesis. The effect of ovariectomy on atherogenesis is reversed by E(2) treatment. In addition to delayed atherogenesis, E(2) treatment of ovariectomized LDL-R(-/-) mice results in an increase in apoptosis in the aortic wall without an effect on the mitotic activity. Our findings suggest that vascular effects of E may be in part mediated by a proapoptotic activity.
Collapse
Affiliation(s)
- Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520-8063 , USA
| | | | | | | | | |
Collapse
|