1
|
Cassese E, Koszelewski D, Brodzka A, Wavhal DS, Kowalczyk P, Ostaszewski R. Tuning the lipophilicity of new ciprofloxacin derivatives in selected ESKAPE bacteria with emphasis on E. coli mutants. Bioorg Chem 2025; 158:108324. [PMID: 40054399 DOI: 10.1016/j.bioorg.2025.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
The objective of the present study was to improve the antimicrobial profile of ciprofloxacin by introducing a peptidomimetic function. A ciprofloxacin C3 carboxyl group was modified by a three-component Passerini reaction conducted under micellar conditions. The series of newly synthesized peptidomimetics was evaluated for their possible in vitro antibacterial activity toward including selected LPS-varied E. coli strains. A preliminary exploration of ciprofloxacin-based peptidomimetic analogues as novel antimicrobial agents was carried out to determine the basic characteristics of the structure responsible for the observed biological activity. The collected data demonstrated that an appropriate modification of the C3 position of ciprofloxacin significantly extends and improves antimicrobial activity, particularly against LPS-varied E. coli strains, which may cause various diseases such as urinary tract infections (UTI), enteric / diarrheal disease, and sepsis/meningitis. Furthermore, the antimicrobial activities of peptidomimetics against selected Gram-positive and Gram-negative bacterial strains belonging to ESKAPE bacteria (A. baumannii, P. aeruginosa, E. cloacae, and S. aureus) were investigated. All synthesized ciprofloxacin derivatives were found to be more potent antibacterial agents than the native compound. Most importantly, the introduction of a short aliphatic substituent into the peptidomimetic structure allowed to enhance and extend the activity of modified ciprofloxacin not only to the native E. coli strain but also to all of its tested mutants. The results showed that all tested peptidomimetics have enhanced antimicrobial activities (MIC values from 0.22 to 2.19 μM) as compared to ciprofloxacin (MIC = 0.62 to 3.44 μg/mL). Furthermore, the cytotoxicity of sixteen derivatives was measured using the MTT test on BALB/c3T3 mouse fibroblast cell lines. Cytotoxicity studies revealed that the tested substances exert a similar or lower effect on cell proliferation than that observed for native ciprofloxacin. This study presents that it is possible to extend the antimicrobial activity of ciprofloxacin by appropriate modification of its structure, which can prolong its use. This is very important in light of the reports incoming on pathogens in nosocomial infections that acquire resistance to this antibiotic.
Collapse
Affiliation(s)
- Emilia Cassese
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Deepak S Wavhal
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Ryszard Ostaszewski
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland.
| |
Collapse
|
2
|
Klein VJ, Troøyen SH, Fernandes Brito L, Courtade G, Brautaset T, Irla M. Identification and characterization of a novel formaldehyde dehydrogenase in Bacillus subtilis. Appl Environ Microbiol 2024; 90:e0218123. [PMID: 39470218 DOI: 10.1128/aem.02181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
Formaldehyde is a known toxic compound, and functional formaldehyde detoxification is crucial for the survival of all living cells. Such detoxification systems are of particular importance for methylotrophic microorganisms that rely on formaldehyde as a central metabolite in their one-carbon metabolism. Understanding formaldehyde dissimilation pathways in non-methylotrophic industrial microorganisms is necessary for ongoing research aiming at engineering methylotrophy into their metabolism (synthetic methylotrophy). There is a variety of formaldehyde dissimilation pathways across microorganisms, often based on the activity of formaldehyde dehydrogenases. In this study, we investigated the role of the yycR gene of Bacillus subtilis putatively encoding a novel, uncharacterized zinc-type alcohol dehydrogenase-like protein. We showed that the B. subtilis ΔyycR mutant displayed a reduced formaldehyde tolerance level and confirmed the enzymatic activity of recombinantly produced and purified YycR as formaldehyde dehydrogenase in vitro. Biochemical analyses demonstrated that YycR activity is optimal at 40°C, with the highest measured activity at pH 9.5, formaldehyde is the preferred substrate, and the kinetic constants are Km of 0.19 ± 0.05 mM and Vmax of 2.24 ± 0.05 nmol min-1. Altogether, we showed that YycR is a novel formaldehyde dehydrogenase with a role in formaldehyde detoxification in B. subtilis, providing valuable insights for future research on synthetic methylotrophy in this organism. IMPORTANCE Formaldehyde is a key metabolite in methanol assimilation for many methylotrophic microorganisms, and at the same time, it is toxic to all living cells, which means its intracellular concentrations must be tightly controlled. An in-depth understanding of methanol detoxification systems in industrially relevant microorganisms is a prerequisite for the introduction of methanol utilization pathways into their metabolism (synthetic methylotrophy). Bacillus subtilis, an industrial workhorse conventionally used for the production of enzymes, is known to possess two formaldehyde detoxification pathways. Here, we identify a novel formaldehyde dehydrogenase in this bacterium as a path towards creating innovative prospect strategies for strain engineering towards synthetic methylotrophy.
Collapse
Affiliation(s)
- Vivien Jessica Klein
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Susanne Hansen Troøyen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Yang H, Ye DM, Lin ZZ, Lin XY, Yuan JJ, Guo Y. Young people exposure to antibiotics: Implication for health risk and the impact from eating habits of takeaway food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166377. [PMID: 37597538 DOI: 10.1016/j.scitotenv.2023.166377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Exposure to antibiotics, mainly from animal food ingestion, may have adverse effects on human health. Takeaway food is the preferred choice for the dietary of most Chinese young people nowadays, but the relationship between takeaway eating and antibiotic exposure is not yet adequately understood. In the present study, 297 young people were recruited to collect urine samples and questionnaires with an emphasis on their takeaway eating habits. The internal exposure to 16 antibiotics and three metabolites was measured in urine samples by high-performance liquid chromatography-tandem mass spectrometry, as well as a DNA oxidative damage marker, 8-hydroxydeoxyguanosine (8-OHdG). At least one kind of antibiotic was found in over 90 % of urine samples, with total concentrations from 0.667 to 3.02 × 104 ng/mL. High exposure levels of antibiotics were more likely to be found in individuals with a larger body mass index. The concentrations of six antibiotics were significantly different among people with different overall weekly eating frequencies, usually an upward trend. The estimated daily intakes of antibiotics were on the levels of 0.001-1.0 μg/kg/day, mainly contributed by clarithromycin, ciprofloxacin and oxytetracycline, indicating a potential health risk based on the microbiological effect. A significantly positive correlation was found between DNA oxidative damage and exposure for four categories of antibiotics, conformed by both Spearman correlation and multiple linear regression analysis. The levels of 8-OHdG were 355 %, 239 %, 234 %, and 334 % higher with elevated levels of phenicols, macrolides, tetracyclines and sulfonamides from quartiles 2 to 4. Our results suggest that high-frequency consumption of takeaways may exacerbate oxidative stress trends through human exposure to antibiotics.
Collapse
Affiliation(s)
- Hao Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Dong-Min Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ze-Zhao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiao-Ya Lin
- Sanya Woman and Children's Hospital, Sanya 572022, China
| | - Jia-Jun Yuan
- Sanya Woman and Children's Hospital, Sanya 572022, China; Shanghai Engineering Research Center of Intelligence Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
4
|
Delghandi PS, Soleimani V, Fazly Bazzaz BS, Hosseinzadeh H. A review on oxidant and antioxidant effects of antibacterial agents: impacts on bacterial cell death and division and therapeutic effects or adverse reactions in humans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2667-2686. [PMID: 37083711 DOI: 10.1007/s00210-023-02490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the mitochondrial respiratory pathway and cellular metabolism. They are responsible for creating oxidative stress and lipid peroxidation. In living organisms, there is a balance between oxidative stress and the antioxidant system, but some factors such as medicines disturb the balance and cause many problems. These effects can impact bacterial death and division and also in humans can induce therapeutic or adverse reactions. Web of Science and Pubmed databases were used for searching. This review focuses on the oxidant and antioxidant effects of different classes of antibacterial agents and the mechanisms of oxidative stress. Some of these agents have beneficial effects on killing bacteria due to their antioxidant or oxidant effects. However, some of their side effects may be due to their oxidative effects. Based on the results of this review, minocycline is an antioxidant, but aminoglycosides, chloramphenicol, glycopeptides, antituberculosis drugs, fluoroquinolones, and sulfamethoxazole agents have oxidant effects. Furthermore, cephalosporins, penicillins, metronidazole, and macrolides have both oxidant and antioxidant effects in different studies. It is concluded that some antibacterial agents have oxidant and other antioxidant effects. These activities may affect their therapeutic effects or side effects. Some antioxidants can prevent the adverse effects of antibacterial agents. Clarifying the exact oxidant and antioxidant effects of some antimicrobial agents needs more research projects.
Collapse
Affiliation(s)
| | - Vahid Soleimani
- School of Pharmacy, Mashhad University of Medical Science, Mashhad, IR, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
| |
Collapse
|
5
|
Jesmina ARS, Induja DK, Drissya T, Sruthi CR, Raghu KG, Nelson-Sathi S, Kumar BNSAD, Lankalapalli RS. In vitro antibacterial effects of combination of ciprofloxacin with compounds isolated from Streptomyces luteireticuli NIIST-D75. J Antibiot (Tokyo) 2023; 76:198-210. [PMID: 36781977 DOI: 10.1038/s41429-023-00600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Three phenazines, 1-methoxyphenazine (1), methyl-6-methoxyphenazine-1-carboxylate (2), 1,6-dimethoxyphenazine (4), and a 2,3-dimethoxy benzamide (3) were isolated from the Streptomyces luteireticuli NIIST-D75, and the antibacterial effects of compounds 1-3, each in combination with ciprofloxacin, were investigated. The in vitro antibacterial activity was assessed by microdilution, checkerboard, and time-kill assay against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi. According to the checkerboard assay results, each combination of compounds 1, 2 and 3 with ciprofloxacin resulted in a significantly lower minimum inhibitory concentrations (MICs) of 0.02-1.37 µg ml-1, suggesting synergistic combinations by fractional inhibitory concentration index, and displayed bactericidal activity in time-kill kinetics within 48 h. SEM analysis was carried out to determine the changes in morphology in S. aureus and E. coli during treatment with individual combination of ciprofloxacin and compounds (1-3), which revealed drastic changes in the cells such as dent formation, biofilm disruption, cell bursting, and doughnut-like formation, change in surface morphology in S. aureus, and cell elongation, cell burst with ruptured cell, and change in surface morphology in E. coli. Hep G2 cell viability was not affected by the compounds (1-3) that were tested for cytotoxicity up to 250 µM.
Collapse
Affiliation(s)
- Abdul Rasheed Safiya Jesmina
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D K Induja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
| | - Thankappan Drissya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chakiniplackal Rajan Sruthi
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kozhiparambil Gopalan Raghu
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shijulal Nelson-Sathi
- Transdisciplinary Biology, Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Bhaskaran Nair Saraswathy Amma Dileep Kumar
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ravi S Lankalapalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India.
| |
Collapse
|
6
|
Tang T, Chen Y, Du Y, Yao B, Liu M. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129870. [PMID: 36063716 DOI: 10.1016/j.jhazmat.2022.129870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Turgimbayeva A, Zein U, Zharkov DO, Ramankulov Y, Saparbaev M, Abeldenov S. Cloning and characterization of the major AP endonuclease from Staphylococcus aureus. DNA Repair (Amst) 2022; 119:103390. [DOI: 10.1016/j.dnarep.2022.103390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
|
8
|
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 2022; 10:microorganisms10020220. [PMID: 35208673 PMCID: PMC8879981 DOI: 10.3390/microorganisms10020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
Collapse
|
9
|
Seregina TA, Lobanov KV, Shakulov RS, Mironov AS. Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Mol Biol 2022; 56:638-648. [PMID: 36217334 PMCID: PMC9534473 DOI: 10.1134/s0026893322050120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
Abstract
Counteraction of the origin and distribution of multidrug-resistant pathogens responsible for intra-hospital infections is a worldwide issue in medicine. In this brief review, we discuss the results of our recent investigations, which argue that many antibiotics, along with inactivation of their traditional biochemical targets, can induce oxidative stress (ROS production), thus resulting in increased bactericidal efficiency. As we previously showed, hydrogen sulfide, which is produced in the cells of different pathogens protects them not only against oxidative stress but also against bactericidal antibiotics. Next, we clarified the interplay of oxidative stress, cysteine metabolism, and hydrogen sulfide production. Finally, demonstrated that small molecules, which inhibit a bacterial enzyme involved in hydrogen sulfide production, potentiate bactericidal antibiotics including quinolones, beta-lactams, and aminoglycosides against bacterial pathogens in in vitro and in mouse models of infection. These inhibitors also suppress bacterial tolerance to antibiotics by disrupting the biofilm formation and substantially reducing the number of persister bacteria, which survive the antibiotic treatment. We hypothesise that agents which limit hydrogen sulfide biosynthesis are effective tools to counteract the origin and distribution of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- T. A. Seregina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - K. V. Lobanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - R. S. Shakulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - A. S. Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| |
Collapse
|
10
|
Zhao J, Qian J, Zhuang H, Luo J, Huang M, Yan W, Zhang J. Effect of Plasma-Activated Solution Treatment on Cell Biology of Staphylococcus aureus and Quality of Fresh Lettuces. Foods 2021; 10:foods10122976. [PMID: 34945530 PMCID: PMC8701378 DOI: 10.3390/foods10122976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate effects of plasma-activated solution (PAS) on the cell biology of Staphylococcus aureus and qualities of fresh lettuce leaves. PAS was prepared by dielectric barrier discharge plasma and incubated with S. aureus for 10–30 min or with lettuces for 10 min. Effects on cell biology were evaluated with microscopic images, cell integrity, and chemical modification of cellular components. Effects on lettuce quality were estimated with the viable microbial counts, color, contents of vitamin C and chlorophyll, and surface integrity. PAS reduced S. aureus population by 4.95-log and resulted in increased cell membrane leakage. It also resulted in increased contents of reactive oxygen species in cells, C=O bonds in peptidoglycan, and 8-hydroxydeoxyguanosine content in cellular DNA, and reduced ratios of unsaturated/saturated fatty acids in the cell membrane. PAS treatment reduced bacterial load on fresh lettuce and had no negative effects on the quality. Data suggest that PAS can be used for the disinfection of ready-to-eat fresh vegetables.
Collapse
Affiliation(s)
- Jianying Zhao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (J.Q.); (W.Y.)
| | - Jing Qian
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (J.Q.); (W.Y.)
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Road, Athens, GA 30605, USA;
| | - Ji Luo
- College of Life Science, Anhui Normal University, Wuhu 241000, China;
| | - Mingming Huang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (J.Q.); (W.Y.)
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (J.Q.); (W.Y.)
- Correspondence:
| |
Collapse
|
11
|
Monedeiro F, Railean-Plugaru V, Monedeiro-Milanowski M, Pomastowski P, Buszewski B. Metabolic Profiling of VOCs Emitted by Bacteria Isolated from Pressure Ulcers and Treated with Different Concentrations of Bio-AgNPs. Int J Mol Sci 2021; 22:4696. [PMID: 33946710 PMCID: PMC8124631 DOI: 10.3390/ijms22094696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL-1. Headspace solid phase microextraction associated to gas chromatography-mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Maciej Monedeiro-Milanowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
12
|
Wang X, Koffi PF, English OF, Lee JC. Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins (Basel) 2021; 13:toxins13020075. [PMID: 33498438 PMCID: PMC7909408 DOI: 10.3390/toxins13020075] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus generates and releases extracellular vesicles (EVs) that package cytosolic, cell-wall associated, and membrane proteins, as well as glycopolymers and exoproteins, including alpha hemolysin, leukocidins, phenol-soluble modulins, superantigens, and enzymes. S. aureus EVs, but not EVs from pore-forming toxin-deficient strains, were cytolytic for a variety of mammalian cell types, but EV internalization was not essential for cytotoxicity. Because S. aureus is subject to various environmental stresses during its encounters with the host during infection, we assessed how these exposures affected EV production in vitro. Staphylococci grown at 37 °C or 40 °C did not differ in EV production, but cultures incubated at 30 °C yielded more EVs when grown to the same optical density. S. aureus cultivated in the presence of oxidative stress, in iron-limited media, or with subinhibitory concentrations of ethanol, showed greater EV production as determined by protein yield and quantitative immunoblots. In contrast, hyperosmotic stress or subinhibitory concentrations of erythromycin reduced S. aureus EV yield. EVs represent a novel S. aureus secretory system that is affected by a variety of stress responses and allows the delivery of biologically active pore-forming toxins and other virulence determinants to host cells.
Collapse
|
13
|
Oxidative stress responses of pathogen bacteria in poultry to plasma-activated lactic acid solutions. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107355] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Masadeh MM, Alzoubi KH, Al-Taani BM, Masadeh MM, Aburashed ZO, Alrabadi N. Vitamin D Pretreatment Attenuates Ciprofloxacin-Induced Antibacterial Activity. Clin Pharmacol 2020; 12:171-176. [PMID: 33116949 PMCID: PMC7567563 DOI: 10.2147/cpaa.s268330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Background Ciprofloxacin is an antimicrobial that is commonly used to treat several types of infections. It exerts its antimicrobial activity through interfering with bacterial DNA replication and transcription, leading to increase oxidative stress and eventually bacterial death. Vitamin D, on the other hand, has been found to have DNA protective and antioxidant effects. In the current study, the possible interactive effect of vitamin D on ciprofloxacin-induced cytotoxicity was investigated in various standard bacterial strains. Methods The bacterial strains that were used include Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Acinetobacter baumannii, Proteus mirabilis, and Klebsiella pneumoniae. The antibacterial effect of ciprofloxacin with and without vitamin D treatment of the bacteria was assessed using disc diffusion method and by measuring the minimum inhibitory concentration (MIC) and zones of inhibition of bacterial growth. Moreover, reactive oxygen species (ROS) generation after pretreatment of E. Coli cells with ciprofloxacin and/or vitamin D was measured as a function of as a function of hydrogen peroxide generation. Results Ciprofloxacin demonstrated a potent antibacterial effect against the tested strains of bacteria. Moreover, pretreatment with vitamin D resulted in protecting the bacteria from the cytotoxicity of ciprofloxacin, this was indicated by the significantly smaller zones of inhibition and higher MIC values compared to ciprofloxacin alone as well as reduced ciprofloxacin-induced ROS generation after treatment with vitamin D. Conclusion Results revealed the possible reduction in the activity of ciprofloxacin when used in combination with vitamin D. This could be explained by the ability of vitamin D to reduce oxidative stress in the bacterial cells.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Bashar M Al-Taani
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Zainah O Aburashed
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
15
|
Jia F, Sun MY, Zhang XJ, Zhou XZ. Total alkaloids of Sophora alopecuroides- and matrine-induced reactive oxygen species impair biofilm formation of Staphylococcus epidermidis and increase bacterial susceptibility to ciprofloxacin. CHINESE HERBAL MEDICINES 2020; 12:390-398. [PMID: 36120175 PMCID: PMC9476472 DOI: 10.1016/j.chmed.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022] Open
Abstract
Objective To investigate the mechanism by which total alkaloids of Sophora alopecuroides (TASA) and matrine (MT) impair biofilm to increase the susceptibility of Staphylococcus epidermidis (S. epidermidis) to ciprofloxacin. Methods The minimum biofilm inhibitory concentration (mBIC) was determined using a 2-fold dilution method. Structure of biofilm of S. epidermidis was examined by Confocal Laser Scanning Microscope (CLSM). The cellular reactive oxygen species (ROS) was determined using a DCFH-DA assay. The key factors related to the regulation of ROS were accessed using respective kits. Results TASA and MT were more beneficial to impair biofilm of S. epidermidis than ciprofloxacin (CIP) (P < 0.05). TASA and MT were not easily developed resistance to biofilm-producing S. epidermidis. The mBIC of CIP decreased by 2–6-fold following the treatment of sub-biofilm inhibitory concentration (sub-BIC) TASA and MT, whereas the mBIC of CIP increased by 2-fold following a treatment of sub-BIC CIP from the first to sixth generations. TASA and MT can improve the production of ROS in biofilm-producing S. epidermidis. The ROS content was decreased 23%−33% following the treatment of sub-mBIC CIP, whereas ROS content increased 7%−24% following treatment with TASA + CIP and MT + CIP combination from the first to sixth generations. Nitric oxide (NO) as a ROS, which was consistent with the previously confirmed relationship between ROS and drug resistance. Related regulatory factors-superoxide dismutase (SOD) and glutathione peroxidase (GSH) could synergistically maintain the redox balance in vivo. Conclusion TASA and MT enhanced reactive oxygen species to restore the susceptibility of S. epidermidis to ciprofloxacin.
Collapse
|
16
|
Martínez SR, Durantini AM, Becerra MC, Cosa G. Real-Time Single-Cell Imaging Reveals Accelerating Lipid Peroxyl Radical Formation in Escherichia coli Triggered by a Fluoroquinolone Antibiotic. ACS Infect Dis 2020; 6:2468-2477. [PMID: 32786297 DOI: 10.1021/acsinfecdis.0c00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of reactive oxygen species (ROS) induced by bactericidal antibiotics has been associated with a common, nonspecific mechanism of cellular death. Herein, we report real-time single-cell fluorescence studies on Escherichia coli stained with a fluorogenic probe for lipid peroxyl radicals showing the generation of this form of ROS when exposed to the minimum inhibitory concentration (MIC) and 10× MIC of the fluoroquinolone antibiotic ciprofloxacin (3 and 30 μM, respectively). Single-cell intensity-time trajectories show an induction period followed by an accelerating phase for cells treated with antibiotic, where initial and maximum intensity achieved following 3.5 h of incubation with antibiotic showed dose-dependent average values. A large fraction of bacteria remains viable after the studies, indicating ROS formation is occurring a priori of cell death. Punctate structures are observed, consistent with membrane blebbing. The addition of a membrane embedding lipid peroxyl radical scavenger, an α-tocopherol analogue, to the media increased the MIC of ciprofloxacin. Lipid peroxyl radical formation precedes E. coli cell death and may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Altogether, our work illustrates that lipid peroxidation is caused by ciprofloxacin in E. coli and suppressed by α-tocopherol analogues. Lipid peroxidation may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Our work provides a methodology to assess antibiotic-induced membrane peroxidation at the single-cell level; this methodology provides opportunities to explore the scope and nature of lipid peroxidation in antibiotic-induced cell lethality.
Collapse
Affiliation(s)
- Sol R. Martínez
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Andrés M. Durantini
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - María C. Becerra
- IMBIV-CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre S/N, Córdoba X5000, Argentina
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
17
|
Martínez SR, Aiassa V, Sola C, Becerra MC. Oxidative stress response in reference and clinical Staphylococcus aureus strains under Linezolid exposure. J Glob Antimicrob Resist 2020; 22:257-262. [PMID: 32169679 DOI: 10.1016/j.jgar.2020.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) strains are some of the most widespread pathogens with multi-resistant to antimicrobial agents (AA). AA provoke several changes inside bacteria, which cannot be solely explained by the main mechanisms of action reported. OBJECTIVE The role of oxidative stress in bacteria exposed to bacteriostatic AA has not been widely studied; hence, the aim of our work was to investigate the effect of linezolid (LZD) on S. aureus strains. METHODS Oxidative stress markers, such as superoxide dismutase (SOD) enzyme activity, the global antioxidant response, advanced oxidation protein products (AOPP) and basal levels of glutathione in 28 clinical and 2 reference strains were measured. RESULTS AND CONCLUSIONS We identified 10 of 30 strains showing a slight increase in reactive species under LZD treatment with respect to the untreated control (between 22% and 56%). Higher generation was detected in clinical strains compared with the reference strains; however, the impact on the antioxidant response was not significant, and the oxidized protein levels were almost undetectable. The strains exposed to this oxazolidinone did not suffer acute oxidative stress. This is the first work reporting the behaviour of clinical and reference strains of S. aureus exposed to LZD, showing negligible oxidative stress.
Collapse
Affiliation(s)
- Sol Romina Martínez
- InstitutoMultidisciplinario de Biología Vegetal (IMBIV), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Virginia Aiassa
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Claudia Sola
- Departamento Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - María Cecilia Becerra
- InstitutoMultidisciplinario de Biología Vegetal (IMBIV), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| |
Collapse
|
18
|
Li L, Ning Z, Zhang X, Mayne J, Cheng K, Stintzi A, Figeys D. RapidAIM: a culture- and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs. MICROBIOME 2020; 8:33. [PMID: 32160905 PMCID: PMC7066843 DOI: 10.1186/s40168-020-00806-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/12/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Human-targeted drugs may exert off-target effects or can be repurposed to modulate the gut microbiota. However, our understanding of such effects is limited due to a lack of rapid and scalable assay to comprehensively assess microbiome responses to drugs. Drugs and other compounds can drastically change the overall abundance, taxonomic composition, and functions of a gut microbiome. RESULTS Here, we developed an approach to screen compounds against individual microbiomes in vitro, using metaproteomics to both measure absolute bacterial abundances and to functionally profile the microbiome. Our approach was evaluated by testing 43 compounds (including 4 antibiotics) against 5 individual microbiomes. The method generated technically highly reproducible readouts, including changes of overall microbiome abundance, microbiome composition, and functional pathways. Results show that besides the antibiotics, the compounds berberine and ibuprofen inhibited the accumulation of biomass during in vitro growth of the microbiota. By comparing genus and species level-biomass contributions, selective antibacterial-like activities were found with 35 of the 39 non-antibiotic compounds. Seven of the compounds led to a global alteration of the metaproteome, with apparent compound-specific patterns of functional responses. The taxonomic distributions of altered proteins varied among drugs, i.e., different drugs affect functions of different members of the microbiome. We also showed that bacterial function can shift in response to drugs without a change in the abundance of the bacteria. CONCLUSIONS Current drug-microbiome interaction studies largely focus on relative microbiome composition and microbial drug metabolism. In contrast, our workflow enables multiple insights into microbiome absolute abundance and functional responses to drugs. The workflow is robust, reproducible, and quantitative and is scalable for personalized high-throughput drug screening applications.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Kai Cheng
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
- Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
19
|
Khan MI, Behera SK, Paul P, Das B, Suar M, Jayabalan R, Fawcett D, Poinern GEJ, Tripathy SK, Mishra A. Biogenic Au@ZnO core-shell nanocomposites kill Staphylococcus aureus without provoking nuclear damage and cytotoxicity in mouse fibroblasts cells under hyperglycemic condition with enhanced wound healing proficiency. Med Microbiol Immunol 2018; 208:609-629. [PMID: 30291475 DOI: 10.1007/s00430-018-0564-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
The aim of the present study is focused on the synthesis of Au@ZnO core-shell nanocomposites, where zinc oxide is overlaid on biogenic gold nanoparticles obtained from Hibiscus Sabdariffa plant extract. Optical property of nanocomposites is investigated using UV-visible spectroscopy and crystal structure has been determined using X-ray crystallography (XRD) technique. The presence of functional groups on the surface of Au@ZnO core-shell nanocomposites has been observed by Fourier transforms infrared (FTIR) spectroscopy. Electron microscopy studies revealed the morphology of the above core-shell nanocomposites. The synthesized nanocomposite material has shown antimicrobial and anti-biofilm activity against Staphylococcus aureus and Methicillin Resistant Staphylococcus haemolyticus (MRSH). The microbes are notorious cross contaminant and are known to cause infection in open wounds. The possible antimicrobial mechanism of as synthesized nanomaterials has been investigated against Staphylococcus aureus and obtained data suggests that the antimicrobial activity could be due to release of reactive oxygen species (ROS). Present study has revealed that surface varnishing of biosynthesized gold nanoparticles through zinc oxide has improved its antibacterial proficiency against Staphylococcus aureus, whereas reducing its toxic effect towards mouse fibroblast cells under normal and hyperglycaemic condition. Further studies have been performed in mice model to understand the wound healing efficiency of Au@ZnO nanocomposites. The results obtained suggest the possible and effective use of as synthesized core shell nanocomposites in wound healing.
Collapse
Affiliation(s)
- Md Imran Khan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | | | - Prajita Paul
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Bhaskar Das
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - R Jayabalan
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Derek Fawcett
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, WA, Australia
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, WA, Australia
| | - Suraj K Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.,School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, Odisha, India
| | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
20
|
Quinteros MA, Viviana CA, Onnainty R, Mary VS, Theumer MG, Granero GE, Paraje MG, Páez PL. Biosynthesized silver nanoparticles: Decoding their mechanism of action in Staphylococcus aureus and Escherichia coli. Int J Biochem Cell Biol 2018; 104:87-93. [PMID: 30243952 DOI: 10.1016/j.biocel.2018.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
The oxidative stress generation in bacteria by the presence of antibiotics (in this case silver nanoparticles (AgNPs)) is already widely known. Previously, we demonstrated that AgNPs generate oxidative stress in Staphylococcus aureus and Escherichia coli mediated by the increase of reactive oxygen species (ROS). In this work we are demonstrating the consequences of the oxidative stress by the presence of AgNPs; these bacterial strains increased the levels of oxidized proteins and lipids. In addition, it was possible to determine which reactive oxygen species are mainly responsible for the oxidative damage to macromolecules. Also, we found that the bacterial DNA was fragmented and the membrane potential was modified. This increase in the levels of ROS found in both, S. aureus and E. coli, was associated with the oxidation of different types of important macromolecules for the normal functioning of cell, so the oxidative stress would be one of the mechanisms by which the AgNPs would exert their toxicity in both strains, one Gram positive and the other Gram negative of great clinical relevance.
Collapse
Affiliation(s)
- Melisa A Quinteros
- Dto Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina
| | - Cano Aristizabal Viviana
- Dto Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA)-CONICET, Argentina
| | - Renné Onnainty
- Dto Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA)-CONICET, Argentina
| | - Verónica S Mary
- Dto de Bioquímica Clínica, Facultad de Ciencias Químicas, UNC, Argentina
| | - Martín G Theumer
- Dto de Bioquímica Clínica, Facultad de Ciencias Químicas, UNC, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina
| | - Gladys E Granero
- Dto Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA)-CONICET, Argentina
| | - María G Paraje
- Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, UNC, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina
| | - Paulina L Páez
- Dto Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA)-CONICET, Argentina.
| |
Collapse
|
21
|
Ajiboye TO, Skiebe E, Wilharm G. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
22
|
Ajiboye T. 2-(2-Nitrovinyl) furan exacerbates oxidative stress response of Escherichia coli to bacteriostatic and bactericidal antibiotics. Microb Pathog 2018; 116:130-134. [DOI: 10.1016/j.micpath.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
|
23
|
Comini LR, Morán Vieyra FE, Mignone RA, Páez PL, Laura Mugas M, Konigheim BS, Cabrera JL, Núñez Montoya SC, Borsarelli CD. Parietin: an efficient photo-screening pigment in vivo with good photosensitizing and photodynamic antibacterial effects in vitro. Photochem Photobiol Sci 2017; 16:201-210. [PMID: 27976779 DOI: 10.1039/c6pp00334f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical, photoinduced pro-oxidant and antibacterial properties in vitro of the natural occurring parietin (PTN; 1,8-dihydroxy-3-methoxy-6-methyl-9,10-anthraquinone) were evaluated. PTN was extracted from the lichen identified as Teloschistes flavicans (Sw.) Norm. (Telochistaceae). Results indicate that in chloroform solution, PTN presents spectroscopic features corresponding to an excited-state intramolecular proton-transfer (ESIPT) state with partial keto-enol tautomerization. In argon-saturated solutions, the singlet excited state is poorly fluorescent (ΦF = 0.03), decaying by efficient intersystem crossing to an excited triplet state 3PTN*, as detected by laser-flash photolysis experiments. In the presence of triplet molecular oxygen, the 3PTN* was fully quenched producing singlet molecular oxygen (1O2) with a quantum yield of 0.69. In addition, in buffer solutions, PTN has the ability to also generate a superoxide radical anion (O2˙-) in a human leukocyte model and its production was enhanced under UVA-Vis irradiation. Finally, the in vitro antibacterial capability of PTN in the dark and under UVA-Vis illumination was compared in microbial cultures of both Gram positive and negative bacteria. As a result, PTN showed promising photo-induced antibacterial activity through the efficient photosensitized generation of both 1O2 and O2˙- species. Thus, we have demonstrated that PTN, an efficient photo-screening pigment in lichens, is also a good photosensitizer in solution with promising applications in antibacterial photodynamic therapy.
Collapse
Affiliation(s)
- Laura R Comini
- IMBIV, CONICET and Facultad de Ciencias Químicas, Universidad Nacional Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - F Eduardo Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero - CONICET, RN9, Km 1125, G4206XCP Santiago del Estero, Argentina.
| | - Ricardo A Mignone
- Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero - CONICET, RN9, Km 1125, G4206XCP Santiago del Estero, Argentina.
| | - Paulina L Páez
- Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Unidad de Tecnología Farmacéutica (UNITEFA) - CONICET, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - M Laura Mugas
- IMBIV, CONICET and Facultad de Ciencias Químicas, Universidad Nacional Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Brenda S Konigheim
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - José L Cabrera
- IMBIV, CONICET and Facultad de Ciencias Químicas, Universidad Nacional Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Susana C Núñez Montoya
- IMBIV, CONICET and Facultad de Ciencias Químicas, Universidad Nacional Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Claudio D Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero - CONICET, RN9, Km 1125, G4206XCP Santiago del Estero, Argentina.
| |
Collapse
|
24
|
Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez PL. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro 2016; 36:216-223. [PMID: 27530963 DOI: 10.1016/j.tiv.2016.08.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Oxidative stress is a condition caused by the high intracellular concentrations of reactive oxygen species (ROS) that includes superoxide anion radicals, hydroxyl radicals and hydrogen peroxide. Nanoparticles could cause rapid generation of free radicals by redox reactions. ROS can react directly with membrane lipids, proteins and DNA and are normally scavenged by antioxidants that are capable of neutralizing; however, elevated concentrations of ROS in bacterial cells can result in oxidative stress. The aim of this work was contribute to the knowledge of action mechanism of silver nanoparticles (Ag-NPs) and their relation to the generation of oxidative stress in bacteria. We demonstrated that Ag-NPs generated oxidative stress in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa mediated by the increment of ROS and this increase correlated with a better antimicrobial activity. On the other hand, we showed that the oxidative stress caused by the Ag-NPs biosynthesized was associated to a variation in the level of reactive nitrogen intermediates (RNI). Oxidative stress in bacteria can result from disruption of the electronic transport chain due to the high affinity of Ag-NPs for the cell membrane. This imbalance in the oxidative stress was evidentiated by a macromolecular oxidation at level of DNA, lipids and proteins in E. coli exposed to Ag-NPs. The formation of ROS and RNI by Ag-NPs may also be considered to explain the bacterial death.
Collapse
Affiliation(s)
- M A Quinteros
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - V Cano Aristizábal
- Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - P R Dalmasso
- CITSE, INBIONATEC, CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - M G Paraje
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina
| | - P L Páez
- Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
25
|
Involvement of Antibiotic Efflux Machinery in Glutathione-Mediated Decreased Ciprofloxacin Activity in Escherichia coli. Antimicrob Agents Chemother 2016; 60:4369-74. [PMID: 27139480 DOI: 10.1128/aac.00414-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/24/2016] [Indexed: 01/20/2023] Open
Abstract
We have analyzed the contribution of different efflux components to glutathione-mediated abrogation of ciprofloxacin's activity in Escherichia coli and the underlying potential mechanism(s) behind this phenomenon. The results indicated that glutathione increased the total active efflux, thereby partially contributing to glutathione-mediated neutralization of ciprofloxacin's antibacterial action in E. coli However, the role of glutathione-mediated increased efflux becomes evident in the absence of a functional TolC-AcrAB efflux pump.
Collapse
|
26
|
Feldman M, Ginsburg I, Al-Quntar A, Steinberg D. Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm. Front Microbiol 2016; 7:140. [PMID: 26904013 PMCID: PMC4748032 DOI: 10.3389/fmicb.2016.00140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022] Open
Abstract
The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.
Collapse
Affiliation(s)
- Mark Feldman
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Abed Al-Quntar
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of JerusalemJerusalem, Israel; Institute of Drug Research, School of Pharmacy, The Hebrew University of JerusalemJerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
27
|
Martínez SR, Miana GE, Albesa I, Mazzieri MR, Becerra MC. Evaluation of Antibacterial Activity and Reactive Species Generation of N-Benzenesulfonyl Derivatives of Heterocycles. Chem Pharm Bull (Tokyo) 2016; 64:135-41. [PMID: 26833442 DOI: 10.1248/cpb.c15-00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two N-benzenesulfonyl (BS) derivatives of 1,2,3,4-tetrahydroquinoline (THQ) were designed, prepared, and screened for antibacterial activity. This approach was based on combining the two privileged structures, BS and THQ, which are known to be active. The objective of this study was to evaluate the antibacterial activity of BS-THQ and its analogue 4-NH2BS-THQ, and to investigate the roles of reactive oxygen species and reactive nitrogen species in their lethality. Both showed bactericidal activity against Staphylococcus aureus ATCC 29213 and methicillin-resistant S. aureus (MRSA) ATCC 43300, with transmission electron microscopy revealing a disturbed membrane architecture. Furthermore, an increase of reactive oxygen species (ROS) in strains treated with BS-THQ with respect to the control was detected when fluorescent microscopy and spectrophotometric techniques were used. The analogue 4-NH2BS-THQ demonstrated a broader spectrum of activity than BS-THQ, with a minimum inhibitory concentration of 100 µg/mL against reference strains of S. aureus, Escherichia coli and Pseudomonas aeruginosa. The assayed compounds represent promising structures for the development of new synthetic classes of antimicrobials.
Collapse
Affiliation(s)
- Sol Romina Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | | | | | | | | |
Collapse
|
28
|
Silvero MJ, Becerra MC. Plasmon-induced oxidative stress and macromolecular damage in pathogenic bacteria. RSC Adv 2016. [DOI: 10.1039/c6ra22233a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial death during PACT would be consequence of macromolecular damage by large amounts of radicals produced after plasmon excitation of nanoparticles.
Collapse
Affiliation(s)
- M. J. Silvero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)
- CONICET and Dpto. de Farmacia
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - M. C. Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)
- CONICET and Dpto. de Farmacia
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| |
Collapse
|
29
|
Fu H, Yuan J, Gao H. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria. Arch Biochem Biophys 2015; 584:28-35. [DOI: 10.1016/j.abb.2015.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 02/03/2023]
|
30
|
Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol 2014; 55:313-32. [PMID: 25251995 DOI: 10.1146/annurev-pharmtox-010814-124712] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We face an impending crisis in our ability to treat infectious disease brought about by the emergence of antibiotic-resistant pathogens and a decline in the development of new antibiotics. Urgent action is needed. This review focuses on a less well-understood aspect of antibiotic action: the complex metabolic events that occur subsequent to the interaction of antibiotics with their molecular targets and play roles in antibiotic lethality. Independent lines of evidence from studies of the action of bactericidal antibiotics on diverse bacteria collectively suggest that the initial interactions of drugs with their targets cannot fully account for the antibiotic lethality and that these interactions elicit the production of reactive oxidants including reactive oxygen species that contribute to bacterial cell death. Recent challenges to this concept are considered in the context of the broader literature of this emerging area of research. Possible ways that this new knowledge might be exploited to improve antibiotic therapy are also considered.
Collapse
Affiliation(s)
- Daniel J Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742;
| | | | | |
Collapse
|
31
|
Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 2014; 21:1-6. [PMID: 25078317 DOI: 10.1016/j.mib.2014.06.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
Bacteria are killed by a variety of lethal stressors, some of which promote a cascade of reactive oxygen species (ROS). Perturbations expected to alter ROS accumulation affect the lethal action of diverse antibacterials, leading to the hypothesis that killing by these agents can involve ROS-mediated self-destruction. Recent challenges to the hypothesis are considered, particularly with respect to complexities in assays that distinguish primary damage from the cellular response to that damage. Also considered are bifunctional factors that are protective at low stress levels but destructive at high levels. These considerations, plus new data, support an involvement of ROS in the lethal action of some antimicrobials and raise important questions concerning consumption of antioxidant dietary supplements during antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China; Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, NJ 07103, USA.
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
32
|
Lam PL, Lu GL, Hon KM, Lee KW, Ho CL, Wang X, Tang JCO, Lam KH, Wong RSM, Kok SHL, Bian ZX, Li H, Lee KKH, Gambari R, Chui CH, Wong WY. Development of ruthenium(II) complexes as topical antibiotics against methicillin resistant Staphylococcus aureus. Dalton Trans 2014; 43:3949-57. [PMID: 24448670 DOI: 10.1039/c3dt52879k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of ruthenium(II) bis(2,2'-bipyridyl) complexes containing N-phenyl-substituted diazafluorenes (Ru-C1, Ru-C6, Ru-C7 and Ru-F) was synthesized and their potential antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) was investigated. The Ru-C7 complex showed significant improvement in both minimum inhibitory concentration (MIC, 6.25 μg mL(-1)) and minimum bactericidal concentration (MBC, 25 μg mL(-1)) towards MRSA when compared with those of methicillin (positive control) (MIC = 25 μg mL(-1) and MBC = 100 μg mL(-1)). The Ru-C7 complex possessed much stronger antibacterial effects than the Ru-C6 complex (MIC, 25 μg mL(-1), MBC, >100 μg mL(-1)). Both Ru-C6 and Ru-C7 complexes were also demonstrated to be biologically safe when tested on normal human skin keratinocytes.
Collapse
Affiliation(s)
- P-L Lam
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Oxidative stress and antimicrobial activity of chromium(III) and ruthenium(II) complexes on Staphylococcus aureus and Escherichia coli. BIOMED RESEARCH INTERNATIONAL 2013; 2013:906912. [PMID: 24093107 PMCID: PMC3777176 DOI: 10.1155/2013/906912] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022]
Abstract
The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. The main aim of this work was to establish the potential of the synthetic α-diimine chromium(III) and ruthenium(II) complexes (where the α-diimine ligands are bpy = 2,2-bipyridine, phen = 1,10-phenanthroline, and dppz = dipyrido[3,2-a:2′,3′-c]-phenazine) like [Cr(phen)3]3+, [Cr(phen)2(dppz)]3+, [Ru(phen)3]2+, and [Ru(bpy)3]2+ as antibacterial agents by generating oxidative stress. The [Cr(phen)3]3+ and [Cr(phen)2(dppz)]3+ complexes showed activity against Gram positive and Gram negative bacteria with minimum inhibitory concentrations (MICs) ranging from 0.125 μg/mL to 1 μg/mL, while [Ru(phen)3]2+ and [Ru(bpy)3]2+ do not exhibit antimicrobial activity against the two bacterial genera studied at the concentration range used. When ciprofloxacin was combined with [Cr(phen)3]3+ for the inhibition of Staphylococcus aureus and Escherichia coli, an important synergistic effect was observed, FIC 0.066 for S. aureus and FIC 0.064 for E. coli. The work described here shows that chromium(III) complexes are bactericidal for S. aureus and E. coli. Our results indicate that α-diimine chromium(III) complexes may be interesting to open new paths for metallodrug chemotherapy against different bacterial genera since some of these complexes have been found to exhibit remarkable antibacterial activities.
Collapse
|
34
|
Macromolecular Oxidation in Planktonic Population and Biofilms of Proteus mirabilis Exposed to Ciprofloxacin. Cell Biochem Biophys 2013; 68:49-54. [DOI: 10.1007/s12013-013-9693-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Virginia A, Claudia A, Soledad BP, Gabriela O, Jorge EA, Albesa I. Nitrosylation: An adverse factor in Uremic Hemolytic Syndrome. Antitoxin effect of Ziziphus mistol Griseb. Food Chem Toxicol 2013; 56:381-6. [DOI: 10.1016/j.fct.2013.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 01/22/2023]
|
36
|
Impact of ciprofloxacin and chloramphenicol on the lipid bilayer of Staphylococcus aureus: changes in membrane potential. BIOMED RESEARCH INTERNATIONAL 2013; 2013:276524. [PMID: 23762834 PMCID: PMC3676981 DOI: 10.1155/2013/276524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/16/2013] [Accepted: 05/07/2013] [Indexed: 11/18/2022]
Abstract
The present study was undertaken to explore the interaction of ciprofloxacin and chloramphenicol with bacterial membranes in a sensitive and in a resistant strains of Staphylococcus aureus by using 1-anilino-8-naphthalene sulfonate (ANS). The binding of this probe to the cell membrane depends on the surface potential, which modulates the binding constant to the membrane. We observed that these antibiotics interacted with the bilayer, thus affecting the electrostatic surface potential. Alterations caused by antibiotics on the surface of the bacteria were accompanied by a reduction in the number of binding sites and an increase in the ANS dissociation constant in the sensitive strain, whereas in the ciprofloxacin-resistant strain no significant changes were detected. The changes seen in the electrostatic surface potential generated in the membrane of S. aureus by the antibiotics provide new aspects concerning their action on the bacterial cell.
Collapse
|
37
|
Baronetti JL, Villegas NA, Aiassa V, Paraje MG, Albesa I. Hemolysin from Escherichia coli induces oxidative stress in blood. Toxicon 2013; 70:15-20. [PMID: 23567037 DOI: 10.1016/j.toxicon.2013.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 02/05/2023]
Abstract
Hemolysin (HlyA) produced by some stains of Escherichia coli is considered to be an important virulence factor of those bacteria. On the other hand, reactive oxygen species (ROS) have been reported to be involved in the pathogenesis of different diseases via oxidative stress generation. The purpose of this study was to analyze the capacity of HlyA to induce oxidative stress in whole blood cultures (WBCs). To this end, ROS production, the damage induced in lipids and proteins, and the antioxidant defense system was evaluated in blood cultures exposed to low concentrations of HlyA. We found that HlyA increased the level of free radicals detected by chemiluminescence assay. Moreover, lipid peroxidation and protein damage was significantly increased in cultures treated with HlyA in comparation with those found in control cultures. On the other hand, a decrease in total antioxidant capacity of plasma and in the activity of superoxide dismutase (SOD) was observed in plasma from blood treated with HlyA. Collectively, our data demonstrate that low concentrations of E. coli hemolysin induced oxidative stress in WBCs with the induction of different oxidative damage biomarkers.
Collapse
Affiliation(s)
- José Luis Baronetti
- Department of Pharmacy, IMBIV-CONICET, Faculty of Chemical Sciences, National University of Córdoba, Haya de la Torre y Medina Allende, University Campus, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
38
|
Mary VS, Theumer MG, Arias SL, Rubinstein HR. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 2012; 302:299-307. [PMID: 22981896 DOI: 10.1016/j.tox.2012.08.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Abstract
Aflatoxin B1 (AFB(1)) and fumonisin B1 (FB(1)) are mycotoxins widely found as cereal contaminants. Their immunotoxicities predispose to infectious diseases and may alter the tumor immunosurveillance of human and animals, but the mechanisms underlying have not been fully elucidated, and the induction of oxidative stress has been proposed as a probable mechanism. This work was aimed at evaluating in spleen mononuclear cells (SMC) from Wistar rats the effects of the exposure, in vitro for up to 48 h, to 20 μM AFB(1), 10 μM FB(1) and AFB(1)-FB(1) mixture (MIX), over cellular oxidative status, as well as at elucidating the contribution of different reactive oxygen species (ROS) to biomolecular oxidative damage, the biochemical pathways involved, and the probable interaction of both toxins to induce oxidative stress. All the treatments increased total ROS and oxidation of biomolecules, with MIX having the greatest effects. However, only MIX increased superoxide anion radical. The main ROS involved in oxidation of proteins, lipids and DNA appear to be hydrogen peroxide and hydroxyl radical. The mitochondrial complex I and CYP450 were involved in the ROS generation induced by all treatments. The NADPH oxidase system was induced by FB1 and MIX. The arachidonic acid metabolism contributed to the ROS formation induced by AFB(1) and MIX. These results demonstrate that an interaction between AFB(1) and FB(1) occur in the oxidative stress induction, and show the biochemical pathways involved in ROS generation in SMC. The oxidative stress could mediate the AFB(1) and FB(1) individual and combined immunotoxicities.
Collapse
Affiliation(s)
- Verónica S Mary
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
| | | | | | | |
Collapse
|
39
|
Páez PL, Becerra MC, Albesa I. Comparison of Macromolecular Oxidation by Reactive Oxygen Species in Three Bacterial Genera Exposed to Different Antibiotics. Cell Biochem Biophys 2011; 61:467-72. [DOI: 10.1007/s12013-011-9227-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Effect of ciprofloxacin concentration on the frequency and nature of resistant mutants selected from Pseudomonas aeruginosa mutS and mutT hypermutators. Antimicrob Agents Chemother 2011; 55:3668-76. [PMID: 21646492 DOI: 10.1128/aac.01826-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid emergence of drug resistance upon treatment of Pseudomonas aeruginosa infections with fluoroquinolones is a serious concern. In this study, we report the effect of hypermutability on the mutant selection window for ciprofloxacin (CIP) by comparing the hypermutator MPAO1 mutS and mutT strains with the wild-type strain. The mutant selection window was shifted to higher CIP concentrations for both hypermutators, presenting the mutS strain with a broader selection window in comparison to the wild-type strain. The mutation prevention concentrations (MPC) determined for mutT and mutS strains were increased 2- and 4-fold over the wild-type level, respectively. In addition, we analyzed the molecular bases for resistance in the bacterial subpopulations selected at different points in the window. At the top of the window, the resistant clones isolated were mainly mutated in GyrA and ParC topoisomerase subunits, while at the bottom of the window, resistance was associated with the overexpression of MexCD-OprJ and MexAB-OprM efflux pumps. Accordingly, a greater proportion of multidrug-resistant clones were found among the subpopulations isolated at the lower CIP concentrations. Furthermore, we found that the exposure to CIP subinhibitory concentrations favors the accumulation of cells overexpressing MexCD-OprJ (due to mutations in the transcriptional repressor NfxB) and MexAB-OprM efflux pumps. We discuss these results in the context of the possible participation of this antibiotic in a mutagenic process.
Collapse
|
41
|
Páez PL, Becerra MC, Albesa I. Antioxidative mechanisms protect resistant strains of Staphylococcus aureus against ciprofloxacin oxidative damage. Fundam Clin Pharmacol 2011; 24:771-6. [PMID: 20412315 DOI: 10.1111/j.1472-8206.2009.00806.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of this investigation was to determine whether the antioxidant defences protect resistant strains of Staphylococcus aureus against ciprofloxacin oxidative damage. Reactive oxygen species (ROS) were determined by chemiluminescence and nitric oxide (NO) was assayed by Griess reaction. The accumulation of ciprofloxacin was examined by fluorometry and oxidation of protein, catalase, ferrous reduction antioxidant potency (FRAP), carbonyls and advanced oxidation protein products (AOPP), studied by spectrophotometry. Ciprofloxacin stimulated higher production of ROS and NO in the susceptible strains than in the resistant ones. There was higher accumulation of antibiotic in sensitive strains than in resistant ones, except for the most resistant strain, which accumulated an elevated amount of antibiotic. The FRAP/ciprofloxacin accumulation ratio of the antibiotic was lower in sensitive than in resistant strains. The most resistant strain exhibited the highest FRAP and presented a high catalase activity. There was oxidation of proteins in the presence of ciprofloxacin, with the carbonyl residues increasing in sensitive and resistant S. aureus. The degradation of carbonyls to AOPP in oxidized proteins was higher in the resistant than in sensitive strains. In conclusion, an increase in antioxidant capacity and a rapid oxidation of carbonyls to AOPP contributed to resistance to ciprofloxacin.
Collapse
Affiliation(s)
- Paulina Laura Páez
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba- Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
42
|
Ji K, Lim Kho Y, Park Y, Choi K. Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: a pilot study with "Temple Stay" participants. ENVIRONMENTAL RESEARCH 2010; 110:375-382. [PMID: 20227070 DOI: 10.1016/j.envres.2010.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/04/2010] [Accepted: 02/22/2010] [Indexed: 05/28/2023]
Abstract
Diet is purported to be means of exposure to many environmental contaminants. The purpose of this study is to understand the influence of dietary change on the levels of exposure to several environmental chemicals - in particular, antibiotics and phthalates. For this purpose, we examined the extent to which short-term changes in diet influenced the inadvertent exposure levels to these chemicals in an adult population. We recruited participants (n=25) of a five-day 'Temple Stay' program in Korea and collected urine samples before and after the program. We also conducted a questionnaire survey on participants' dietary patterns prior to their participation. During the program, participants followed the daily routines of Buddhist monks and maintained a vegetarian diet. Urinary levels of three antibiotics and their major metabolites, metabolites of four major phthalates, and malondialdehyde (MDA) as an oxidative stress biomarker were analyzed. The frequency and levels of detection for antibiotics and phthalates noticeably decreased during the program. Urinary MDA levels were significantly lower than before program participation (0.16 versus 0.27mg/g creatinine). Although the exposure to target compounds might be influenced by other behavioral patterns, these results suggest that even short-term changes in dietary behavior may significantly decrease inadvertent exposure to antibiotics and phthalates and hence may reduce oxidative stress levels.
Collapse
Affiliation(s)
- Kyunghee Ji
- Department of Environmental Health, School of Public Health, Seoul National University, Yeongun, Chongro, Seoul 110-799, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Superoxide dismutase, protease and lipase expression in clinical isolates of Staphylococcus aureus: a tool for antimicrobial drug discovery. Mol Cell Biochem 2010; 341:217-23. [DOI: 10.1007/s11010-010-0452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
44
|
Aiassa V, Barnes AI, Albesa I. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochem Biophys Res Commun 2010; 393:84-8. [DOI: 10.1016/j.bbrc.2010.01.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
45
|
Páez PL, Becerra MC, Albesa I. Effect of the association of reduced glutathione and ciprofloxacin on the antimicrobial activity in Staphylococcus aureus. FEMS Microbiol Lett 2009; 303:101-5. [PMID: 20030722 DOI: 10.1111/j.1574-6968.2009.01867.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report the effect of glutathione and the role of reactive oxygen species (ROS), assayed by a nitro blue tetrazolium reaction, on the antibacterial action of ciprofloxacin, gentamicin and chloramphenicol in Staphylococcus aureus 22 resistant to ciprofloxacin and gentamicin, and in S. aureus ATCC 29213 sensitive to the above three antibiotics. The association of glutathione with ciprofloxacin or gentamicin significantly reduced the value of the minimum inhibitory concentration (MIC) in resistant S. aureus 22, measured using the macrodilution method, with a concomitant increase of intracellular ROS and a decrease of extracellular ROS. However, glutathione did not induce modifications in MIC or ROS generated by chloramphenicol. Furthermore, in the sensitive S. aureus ATCC 29213, the association of glutathione with ciprofloxacin, gentamicin or chloramphenicol did not induce any significant variations of MIC or ROS. There was a correlation between the stimulus of intracellular ROS and the decrease of MIC caused by exogenous glutathione. According to the results obtained, it is possible to modify the sensitivity of resistant strains of S. aureus by the addition of exogenous glutathione.
Collapse
Affiliation(s)
- Paulina Laura Páez
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | | | | |
Collapse
|
46
|
Halicka HD, Smart DJ, Traganos F, Williams GM, Darzynkiewicz Z. Fluoroquinolones lower constitutive H2AX and ATM phosphorylation in TK6 lymphoblastoid cells via modulation of the intracellular redox status. Pharmacol Rep 2009; 61:711-8. [PMID: 19815954 DOI: 10.1016/s1734-1140(09)70124-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 06/26/2009] [Indexed: 11/29/2022]
Abstract
Accumulation of reactive oxygen species (ROS)-induced damage and mutations in the genomic DNA is considered the primary etiology of aging and age-related pathologies including cancer. Strategies aimed at slowing these conditions often involve protecting against oxidative DNA damage via modulation of the intracellular redox state. Recently, a biomarker of DNA double-strand breaks (DSBs), serine 139-phosphorylated histone H2AX (gammaH2AX), and its upstream mediator, activated PI-3-related kinase, ATM (ATM(P1981)), were shown to be constitutively expressed in cells and modulated by antioxidant treatment. Thus, both constitutive histone H2AX phosphorylation (CHP) and constitutive ATM activation (CAA) are thought to reflect a cell's response to endogenous ROS-induced DSBs. In the present study, we investigated the effects of a battery of fluoroquinolone (FQ) compounds, namely ciprofloxacin, enrofloxacin, gatifloxacin, lomefloxacin and ofloxacin, on CHP and CAA in human TK6 lymphoblastoid cells. All FQs tested reduced CHP and CAA compared to controls following 6 and 24 h treatment with CAA being more sensitive to their effects at both time points. In addition, intracellular ROS levels and mitochondrial activities were also lowered in FQ-treated cells at 6 and 24 h.We presume that FQs mediate this effect via a combination of ROS-scavenging and mitochondrial suppression and therefore may protect against the onset or may slow the progression of numerous oxidative pathophysiological conditions.
Collapse
Affiliation(s)
- H Dorota Halicka
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
47
|
Simultaneous determination of malondialdehyde and ofloxacin in plasma using an isocratic high-performance liquid chromatography/fluorescence detection system. Anal Chim Acta 2008; 616:230-4. [DOI: 10.1016/j.aca.2008.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
|